1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "pequal-list-1")
(%interactive)
(%autoprove equal-of-logic.pequal-list-and-logic.pequal-list
;; BOZO this proof is really big. We might do better to improve
;; our conditional eqsubst tactic by allowing it to take a list of
;; equalities to substitute in. The autoelim tactic could then
;; look for multiple variables to substitute at once, and hit them
;; all together.
;; NOTE: This rewriting is kind of slow; consider using it for cache
;; analysis.
(%four-cdrs-induction a b c d))
(%autoprove logic.pequal-list-of-app-and-app
(%cdr-cdr-induction a c)
(%disable default equal-of-logic.pequal-list-and-logic.pequal-list))
(%autoprove rev-of-logic.pequal-list
(%cdr-cdr-induction a b)
(%disable default
forcing-logic.formulap-of-logic.pequal
aggressive-equal-of-logic.pequals))
|