1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "proofp-1")
(%interactive)
(%defprojection :list (logic.strip-conclusions x)
:element (logic.conclusion x)
:nil-preservingp t)
(%autoprove second-of-logic.strip-conclusions)
(%autoprove forcing-logic.formula-listp-of-logic.strip-conclusions
(%cdr-induction x))
(%autoprove logic.fmtype-of-logic.conclusion-of-nth-when-logic.all-disjunctionsp)
(%autoprove logic.fmtype-of-logic.conclusion-of-nth-when-logic.all-atomicp)
(%autoprove logic.vlhs-of-logic.conclusion-of-car-when-all-equalp)
(%autoprove logic.vlhs-of-logic.conclusion-of-nth-when-all-equalp-of-logic.vlhses
(%autoinduct nth)
(%restrict default nth (equal n 'n)))
(%autoprove logic.fmtype-of-logic.vrhs-of-logic.conclusion-of-nth-when-logic.all-disjunctionsp-of-logic.all-atomicp)
(%autoprove logic.formula-atblp-of-logic.conclusion-of-car)
(%autoprove logic.formula-atblp-of-logic.conclusion-of-second)
(%autoprove logic.formula-atblp-of-logic.conclusion-of-third)
(%autoprove logic.formula-list-atblp-of-logic.strip-conclusions-when-len-1)
(%autoprove logic.formula-list-atblp-of-logic.strip-conclusions-when-len-2)
|