File: proofp-2.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (336 lines) | stat: -rw-r--r-- 12,768 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
;   Kookamara LLC
;   11410 Windermere Meadows
;   Austin, TX 78759, USA
;   http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
;   Permission is hereby granted, free of charge, to any person obtaining a
;   copy of this software and associated documentation files (the "Software"),
;   to deal in the Software without restriction, including without limitation
;   the rights to use, copy, modify, merge, publish, distribute, sublicense,
;   and/or sell copies of the Software, and to permit persons to whom the
;   Software is furnished to do so, subject to the following conditions:
;
;   The above copyright notice and this permission notice shall be included in
;   all copies or substantial portions of the Software.
;
;   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
;   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
;   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
;   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
;   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
;   FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
;   DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>

(in-package "MILAWA")
(include-book "proofp-2-strip-conclusions")
(include-book "proofp-2-induction")
(%interactive)



(%autoadmit logic.axiom-okp)

(%autoprove booleanp-of-logic.axiom-okp
            (%enable default logic.axiom-okp))

(%autoprove logic.formula-atblp-of-logic.conclusion-when-logic.axiom-okp
            (%enable default logic.axiom-okp))


(%autoadmit logic.theorem-okp)

(%autoprove booleanp-of-logic.theorem-okp
            (%enable default logic.theorem-okp))

(%autoprove logic.formula-atblp-of-logic.conclusion-when-logic.theorem-okp
            (%enable default logic.theorem-okp))


(%autoadmit logic.propositional-schema-okp)

(%autoprove booleanp-of-logic.propositional-schema-okp
            (%enable default logic.propositional-schema-okp))

(%autoprove logic.formula-atblp-of-logic.conclusion-when-logic.propositional-schema-okp
            (%enable default
                     logic.propositional-schema-okp
                     backtracking-logic.formula-atblp-rules)
            (%disable default
                      forcing-logic.formula-atblp-rules))




(%autoadmit logic.check-functional-axiom)

(%autoprove booleanp-of-logic.check-functional-axiom
            (%induct (rank x)
                     ((equal (logic.fmtype x) 'pequal*)
                      nil)
                     ((equal (logic.fmtype x) 'por*)
                      (((x  (logic.vrhs x))
                        (ti (cons (logic.=lhs (logic.~arg (logic.vlhs x))) ti))
                        (si (cons (logic.=rhs (logic.~arg (logic.vlhs x))) si)))))
                     ((and (not (equal (logic.fmtype x) 'pequal*))
                           (not (equal (logic.fmtype x) 'por*)))
                      nil))
            (%restrict default logic.check-functional-axiom (equal x 'x)))

(%autoadmit logic.functional-equality-okp)

(%autoprove booleanp-of-logic.functional-equality-okp
            (%enable default logic.functional-equality-okp))

(%autoprove logic.formula-atblp-of-logic.conclusion-when-logic.functional-equality-okp
            (%enable default logic.functional-equality-okp))



(%autoadmit logic.expansion-okp)

(%autoprove booleanp-of-logic.expansion-okp
            (%enable default logic.expansion-okp))

(%autoprove logic.formula-atblp-of-logic.conclusion-when-logic.expansion-okp
            (%enable default
                     logic.expansion-okp
                     backtracking-logic.formula-atblp-rules
                     logic.formula-list-atblp-of-logic.strip-conclusions-when-len-1)
            (%disable default
                      forcing-logic.formula-atblp-rules
                      forcing-true-listp-of-logic.subproofs))



(%autoadmit logic.contraction-okp)

(%autoprove booleanp-of-logic.contraction-okp
            (%enable default logic.contraction-okp))

(%autoprove logic.formula-atblp-of-logic.conclusion-when-logic.contraction-okp
            (%enable default
                     logic.contraction-okp
                     backtracking-logic.formula-atblp-rules
                     logic.formula-list-atblp-of-logic.strip-conclusions-when-len-1)
            (%disable default
                      forcing-logic.formula-atblp-rules
                      forcing-true-listp-of-logic.subproofs))


(%autoadmit logic.associativity-okp)

(%autoprove booleanp-of-logic.associativity-okp
            (%enable default logic.associativity-okp))

(%autoprove logic.formula-atblp-of-logic.conclusion-when-logic.associativity-okp
            (%enable default
                     logic.associativity-okp
                     backtracking-logic.formula-atblp-rules
                     logic.formula-list-atblp-of-logic.strip-conclusions-when-len-1)
            (%disable default
                      forcing-logic.formula-atblp-rules
                      forcing-true-listp-of-logic.subproofs))



(%autoadmit logic.cut-okp)

(%autoprove booleanp-of-logic.cut-okp
            (%enable default logic.cut-okp))

(%autoprove logic.formula-atblp-of-logic.conclusion-when-logic.cut-okp
            (%enable default
                     logic.cut-okp
                     backtracking-logic.formula-atblp-rules
                     logic.formula-list-atblp-of-logic.strip-conclusions-when-len-2)
            (%disable default
                      forcing-logic.formula-atblp-rules
                      forcing-true-listp-of-logic.subproofs))



(%autoadmit logic.instantiation-okp)

(%autoprove booleanp-of-logic.instantiation-okp
            (%enable default logic.instantiation-okp))

(%autoprove logic.formula-atblp-of-logic.conclusion-when-logic.instantiation-okp
            (%enable default
                     logic.instantiation-okp
                     backtracking-logic.formula-atblp-rules
                     logic.formula-list-atblp-of-logic.strip-conclusions-when-len-1)
            (%disable default
                      forcing-logic.formula-atblp-rules
                      forcing-true-listp-of-logic.subproofs))


(%autoadmit logic.beta-reduction-okp)

(%autoprove booleanp-of-logic.beta-reduction-okp
            (%enable default logic.beta-reduction-okp))

(%autoprove logic.formula-atblp-of-logic.conclusion-when-logic.beta-reduction-okp
            (%enable default logic.beta-reduction-okp))



(%autoadmit logic.base-eval-okp)

(%autoprove booleanp-of-logic.base-eval-okp
            (%enable default logic.base-eval-okp))

(%autoprove logic.formula-atblp-of-logic.conclusion-when-logic.base-eval-okp
            (%enable default
                     logic.base-eval-okp
                     backtracking-logic.formula-atblp-rules)
            (%disable default
                      forcing-logic.formula-atblp-rules
                      forcing-true-listp-of-logic.subproofs))





(%autoadmit logic.induction-okp)

(%autoprove booleanp-of-logic.induction-okp
            (%enable default logic.induction-okp))

(%autoprove lemma-for-logic.formula-atblp-of-logic.conclusion-when-logic.induction-okp
            (%enable default logic.make-basis-step))

(%autoprove logic.formula-atblp-of-logic.conclusion-when-logic.induction-okp
            (%enable default
                     logic.induction-okp
                     lemma-for-logic.formula-atblp-of-logic.conclusion-when-logic.induction-okp)
            (%disable default
                      logic.formula-atblp-when-memberp-of-logic.formula-list-atblp
                      logic.formula-atblp-when-memberp-of-logic.formula-list-atblp-alt)
            (%auto)
            (%use (%instance (%thm logic.formula-atblp-when-memberp-of-logic.formula-list-atblp)
                             (a (logic.make-basis-step (logic.conclusion x) (second (logic.extras x))))
                             (x (logic.strip-conclusions (logic.subproofs x))))))


(%autoadmit logic.appeal-step-okp)

;; (defsection logic.appeal-step-okp
;;   ;; Bleh skip okp thing.  We need autoadmit to respect :export.
;;   (%defun logic.appeal-step-okp (x axioms thms atbl)
;;           (LET ((HOW (LOGIC.METHOD X)))
;;                (COND ((EQUAL HOW 'AXIOM)
;;                       (LOGIC.AXIOM-OKP X AXIOMS ATBL))
;;                      ((EQUAL HOW 'THEOREM)
;;                       (LOGIC.THEOREM-OKP X THMS ATBL))
;;                      ((EQUAL HOW 'PROPOSITIONAL-SCHEMA)
;;                       (LOGIC.PROPOSITIONAL-SCHEMA-OKP X ATBL))
;;                      ((EQUAL HOW 'FUNCTIONAL-EQUALITY)
;;                       (LOGIC.FUNCTIONAL-EQUALITY-OKP X ATBL))
;;                      ((EQUAL HOW 'BETA-REDUCTION)
;;                       (LOGIC.BETA-REDUCTION-OKP X ATBL))
;;                      ((EQUAL HOW 'EXPANSION)
;;                       (LOGIC.EXPANSION-OKP X ATBL))
;;                      ((EQUAL HOW 'CONTRACTION)
;;                       (LOGIC.CONTRACTION-OKP X))
;;                      ((EQUAL HOW 'ASSOCIATIVITY)
;;                       (LOGIC.ASSOCIATIVITY-OKP X))
;;                      ((EQUAL HOW 'CUT) (LOGIC.CUT-OKP X))
;;                      ((EQUAL HOW 'INSTANTIATION)
;;                       (LOGIC.INSTANTIATION-OKP X ATBL))
;;                      ((EQUAL HOW 'INDUCTION)
;;                       (LOGIC.INDUCTION-OKP X))
;;                      ((EQUAL HOW 'BASE-EVAL)
;;                       (LOGIC.BASE-EVAL-OKP X ATBL))
;;                      ;((EQUAL HOW 'SKIP)
;;                      ; (LOGIC.SKIP-OKP X ATBL))
;;                      (T NIL))))
;;   (%admit))

(%autoprove booleanp-of-logic.appeal-step-okp
            (%enable default logic.appeal-step-okp))

(%autoprove logic.appeal-step-okp-when-not-consp
            (%enable default logic.appeal-step-okp logic.method))

(%autoprove logic.formula-atblp-of-logic.conclusion-when-logic.appeal-step-okp
            (%enable default logic.appeal-step-okp))


(encapsulate
 ()
 ;; BOZO add hints facility to %autoadmit
 (local (%disable default forcing-true-listp-of-logic.subproofs))
 (%autoadmit logic.flag-proofp))

(%autoadmit logic.proofp)
(%autoadmit logic.proof-listp)

(%autoprove definition-of-logic.proofp
            (%enable default logic.proofp logic.proof-listp)
            (%restrict default logic.flag-proofp (equal x 'x)))

(%autoprove definition-of-logic.proof-listp
            (%enable default logic.proofp logic.proof-listp)
            (%restrict default logic.flag-proofp (equal x 'x)))

(%autoprove logic.proofp-when-not-consp
            (%restrict default definition-of-logic.proofp (equal x 'x)))

(%autoprove logic.proof-listp-when-not-consp
            (%restrict default definition-of-logic.proof-listp (equal x 'x)))

(%autoprove logic.proof-listp-of-cons
            (%restrict default definition-of-logic.proof-listp (equal x '(cons a x))))

(%autoprove lemma-for-booleanp-of-logic.proofp
            (%logic.appeal-induction flag x)
            (%disable default forcing-true-listp-of-logic.subproofs)
            (%restrict default definition-of-logic.proofp (equal x 'x)))

(%autoprove booleanp-of-logic.proofp
            (%use (%instance (%thm lemma-for-booleanp-of-logic.proofp) (flag 'proof))))

(%autoprove booleanp-of-logic.proof-listp
            (%use (%instance (%thm lemma-for-booleanp-of-logic.proofp) (flag 'list))))



(%deflist logic.proof-listp (x axioms thms atbl)
          (logic.proofp x axioms thms atbl))

(%autoprove logic.proofp-of-nth-when-logic.proof-listp
            (%autoinduct nth)
            (%restrict default nth (equal n 'n)))

(%autoprove forcing-logic.proof-listp-of-firstn)

(%autoprove forcing-logic.proof-listp-of-restn)



(%autoprove lemma-for-logic.formula-atblp-of-logic.conclusion-when-logic.proofp
            (%logic.appeal-induction flag x)
            (%restrict default definition-of-logic.proofp (equal x 'x))
            (%disable default forcing-true-listp-of-logic.subproofs))

(%autoprove logic.formula-atblp-of-logic.conclusion-when-logic.proofp
            (%use (%instance (%thm lemma-for-logic.formula-atblp-of-logic.conclusion-when-logic.proofp)
                             (flag 'proof))))

(%autoprove logic.formula-list-atblp-of-logic.strip-conclusions-when-logic.proof-listp
            (%use (%instance (%thm lemma-for-logic.formula-atblp-of-logic.conclusion-when-logic.proofp)
                             (flag 'list))))

(%autoprove logic.proof-listp-of-logic.subproofs-when-logic.proofp
            (%restrict default definition-of-logic.proofp (equal x 'x)))