1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "proofp-2")
(%interactive)
(%defchoose logic.provable-witness proof (x axioms thms atbl)
(and (logic.appealp proof)
(logic.proofp proof axioms thms atbl)
(equal (logic.conclusion proof) x)))
(defun logic.provablep (x axioms thms atbl)
;; BOZO because we used defun-sk to introduce it, which is based on
;; ACL2::defun instead of MILAWA::defun, there's no syntax-defuns entry for
;; logic.provablep, So, we now add a redundant definition of logic.provablep
;; using MILAWA::defun, so that %autoadmit knows what its definition is.
(declare (xargs :guard (and (logic.formulap x)
(logic.formula-listp axioms)
(logic.formula-listp thms)
(logic.arity-tablep atbl))))
(let ((proof (logic.provable-witness x axioms thms atbl)))
(and (logic.appealp proof)
(logic.proofp proof axioms thms atbl)
(equal (logic.conclusion proof) x))))
(%autoadmit logic.provablep)
(%autoprove logic.provablep-suff
(%use (build.axiom (defchoose-axiom-for-logic.provable-witness)))
(%enable default logic.provablep))
(%autoprove booleanp-of-logic.provablep
(%enable default logic.provablep))
(%autoprove forcing-logic.appealp-of-logic.provable-witness
(%enable default logic.provablep))
(%autoprove forcing-logic.proofp-of-logic.provable-witness
(%enable default logic.provablep)
(%disable default forcing-logic.appealp-of-logic.provable-witness))
(%autoprove forcing-logic.conclusion-of-logic.provable-witness
(%enable default logic.provablep))
(%autoprove logic.formulap-when-logic.provablep
(%disable default forcing-logic.formulap-of-logic.conclusion)
(%use (%instance (%thm forcing-logic.formulap-of-logic.conclusion)
(x (logic.provable-witness x axioms thms atbl))))
;; This %split is important for some reason
(%split))
(%autoprove logic.formula-atblp-when-logic.provablep
(%use (%instance (%thm logic.formula-atblp-of-logic.conclusion-when-logic.proofp)
(x (logic.provable-witness x axioms thms atbl)))))
(%autoprove logic.provablep-when-not-consp
(%disable default logic.formulap-when-not-consp)
(%use (%instance (%thm logic.formulap-when-not-consp))))
(%autoprove forcing-logic.provablep-when-logic.proofp
(%use (%instance (%thm logic.provablep-suff)
(proof x)
(x (logic.conclusion x)))))
(%deflist logic.provable-listp (x axioms thms atbl)
(logic.provablep x axioms thms atbl))
(%autoprove logic.provablep-of-car-when-logic.provable-listp-free)
(%autoprove logic.provablep-of-second-when-logic.provable-listp)
(%autoprove forcing-logic.provable-listp-of-logic.strip-conclusions-when-logic.proof-listp
(%cdr-induction x))
(%autoprove forcing-logic.provable-listp-of-logic.subproofs-when-logic.proofp
(%restrict default definition-of-logic.proofp (equal x 'x)))
(%autoprove logic.formula-list-atblp-of-when-logic.provable-listp
(%cdr-induction x))
(%defprojection :list (logic.provable-list-witness x axioms thms atbl)
:element (logic.provable-witness x axioms thms atbl))
(%autoprove forcing-logic.appeal-listp-of-logic.provable-list-witness
(%cdr-induction x))
(%autoprove force-logic.proof-listp-of-logic.provable-list-witness
(%cdr-induction x))
(%autoprove forcing-logic.strip-conclusions-of-logic.provable-list-witness
(%cdr-induction x))
(%autoprove logic.provablep-of-logic.conclusion-of-first-when-logic.provable-listp)
(%autoprove logic.provablep-of-logic.conclusion-of-second-when-logic.provable-listp)
(%autoprove logic.provablep-of-logic.conclusion-of-third-when-logic.provable-listp)
(%autoprove logic.provablep-of-logic.conclusion-of-fourth-when-logic.provable-listp)
|