1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
; Proof Sizes Script
;
; This script measures the proof sizes of some sample proofs when emitted at
; the various levels. You must run this script with the proof-sizes-acl2
; executable, which can be generated by running proof-sizes-acl2.lsp in
; level2/symmetry.
(in-package "MILAWA")
(%interactive)
; Now we introduce the %reprove command. This takes the name of the theorem to
; reprove, and perhaps some additional hints that will be necessary to fix the
; issues with "local" theory changes, etc. It then tries to redo the proof by
; reusing the theory and hints and so forth that our modified %autoprove has
; built. Finally, if everything is successful, it saves the UNCOMPILED PROOF
; SKELETON so that it can be compiled at various levels and the proof sizes
; compared.
(ACL2::table reprove 'goalworlds nil)
(ACL2::table reprove 'skeletons nil)
(ACL2::table reprove 'sizes nil)
(defun reprove->goalworlds (world)
(declare (xargs :mode :program))
(cdr (lookup 'goalworlds (ACL2::table-alist 'reprove world))))
(defun reprove->skeletons (world)
(declare (xargs :mode :program))
(cdr (lookup 'skeletons (ACL2::table-alist 'reprove world))))
(defun reprove->sizes (world)
(declare (xargs :mode :program))
(cdr (lookup 'sizes (ACL2::table-alist 'reprove world))))
(ACL2::table reprove 'full-world (tactic.harness->world acl2::world))
(defun reprove->fullworld (world)
(declare (xargs :mode :program))
(cdr (lookup 'full-world (ACL2::table-alist 'reprove world))))
(defmacro %reprove (name &rest rhints)
`(ACL2::make-event (%reprove-fn ',name ',rhints (ACL2::w ACL2::state))))
;; stupid god damn embeddable events and time$...
(defun start-timer ()
(declare (xargs :guard t))
(acl2::cw "start-timer not redefined.~%"))
(defun end-timer ()
(declare (xargs :guard t))
(acl2::cw "end-timer not redefined.~%"))
(defun %reprove-fn (name rhints world)
(declare (xargs :mode :program))
(let* ((rule (tactic.find-rule name (reprove->fullworld world)))
(hints-tuple (lookup name (get-autoprove-hints world)))
(hints (second hints-tuple))
(initial-world (third hints-tuple)))
(ACL2::prog2$
(ACL2::cw "%reprove-fn> size of initial-world is ~x0.~%" (rank initial-world))
`(ACL2::encapsulate
()
; This is basically like %prove. We need to load the goalrule, goalworld, and
; set up an empty, initial skeleton with the appropriate goals.
(ACL2::value-triple (ACL2::cw "[%Reprove]> Submitting ~x0.~%" ',name))
(ACL2::table tactic-harness 'goalrule ',rule)
(ACL2::table tactic-harness 'goalworld ',initial-world)
(ACL2::table tactic-harness 'world ',initial-world)
(local (ACL2::table tactic-harness 'skeleton (tactic.initial-skeleton (list ',(rw.rule-clause rule)))))
; This is basically like %autoprove. We get the hints that were given when the
; proof was submitted, preceded by any extra hints that we might want to give
; to fix up theories, etc., then finally give %auto.
(ACL2::value-triple (ACL2::cw "[%Reprove]> Trying to replay the proof.~%"))
(acl2::value-triple (start-timer))
(local (ACL2::progn ,@rhints ,@hints (%auto)))
(acl2::value-triple (end-timer))
(ACL2::value-triple (ACL2::cw "[%Reprove]> Checking for success and saving skeleton.~%"))
(ACL2::make-event (%reprove-save-skelly-fn ACL2::state))))))
(defun %reprove-save-skelly-fn (ACL2::state)
(declare (xargs :mode :program :stobjs ACL2::state))
; Here we save the skeleton, world, and definitions that were used during the
; proof. We will need these in order to compile the skeleton and build the
; level-N proof.
(let* ((world (ACL2::w ACL2::state))
(skeleton (tactic.harness->skeleton world))
(goals (tactic.skeleton->goals skeleton))
(goalrule (tactic.harness->goalrule world))
(goalworld (tactic.harness->goalworld world))
(name (rw.rule->name goalrule)))
(if (consp goals)
(ACL2::er soft '%reprove "Outstanding goals remain for ~s0.~%" name)
(ACL2::mv nil
`(ACL2::progn
(ACL2::table reprove 'skeletons
(cons (cons ',name ',skeleton) (reprove->skeletons ACL2::world)))
(ACL2::table reprove 'goalworlds
(cons (cons ',name ',goalworld) (reprove->goalworlds ACL2::world))))
ACL2::state))))
(defmacro %reprove-compile (name)
`(ACL2::progn
(local (ACL2::memoize 'rank))
(ACL2::make-event (ACL2::time$ (%reprove-compile-fn ',name ACL2::state)))
(local (ACL2::unmemoize 'rank))
(local (ACL2::value-triple (ACL2::clear-memoize-tables)))))
(defun static-analysis (proof)
;; We return (STATIC-RANK . DYNAMIC-RANK) where these count the static and dynamic
;; sizes of the proof.
(declare (xargs :mode :program))
(let ((method (logic.method proof))
(extras (logic.extras proof)))
(acl2::prog2$
(acl2::cw "static analysis for proof of type ~x0. total rank is ~x1. #extras = ~x2~%"
method
(rank proof)
(len extras))
(let ((result (cond ((equal method 'level8.proofp)
(acl2::prog2$
(or (equal (len extras) 2)
(acl2::er hard? 'static-analysis "level8 format changed?"))
(list (rank (first extras)) (rank (second extras)))))
((or (equal method 'level9.proofp)
(equal method 'level10.proofp)
(equal method 'level11.proofp))
(acl2::prog2$
(or (equal (len extras) 3)
(acl2::er hard? 'static-analysis "level9-11 format changed?"))
(list (+ (rank (first extras)) (rank (second extras)))
(rank (third extras)))))
(t
(list 0 (rank proof))))))
(acl2::prog2$
(acl2::cw "static analysis yields: ~x0.~%" result)
result)))))
(defun %time-and-check-proof (proofp-name thm-name proof axioms thms atbl)
(declare (xargs :guard t)
(ignore proofp-name thm-name proof axioms thms atbl))
(acl2::cw "%time-and-check-proof has not been redefined!~%"))
(defun %time-proof-building (proofp-name thm-name skelly init-world)
(declare (xargs :guard t)
(ignore proofp-name thm-name skelly init-world))
(acl2::cw "%time-proof-building has not been redefined!~%"))
(acl2::defttag time-and-check-proof)
(ACL2::progn!
(ACL2::set-raw-mode t)
(acl2::defparameter *time-and-check-table* nil)
(acl2::defparameter *time-building-table* nil)
(acl2::defparameter *timer-for-start/end-timer* 0)
(acl2::defun start-timer ()
(acl2::setf *timer-for-start/end-timer* (acl2::get-internal-real-time)))
(acl2::defun end-timer ()
(let* ((start *timer-for-start/end-timer*)
(end (acl2::get-internal-real-time))
(elapsed (ACL2::/ (ACL2::coerce (ACL2::- end start) 'ACL2::float)
ACL2::internal-time-units-per-second)))
(acl2::progn
(ACL2::format t "Elapsed time from start/end-timer: ~a.~%" elapsed)
nil)))
(acl2::defun %time-and-check-proof (proofp-name thm-name proof axioms thms atbl)
(let* ((start-time (ACL2::get-internal-real-time))
(result (%current-proofp proof axioms thms atbl))
(end-time (ACL2::get-internal-real-time))
(elapsed (ACL2::/ (ACL2::coerce (ACL2::- end-time start-time) 'ACL2::float)
ACL2::internal-time-units-per-second)))
(ACL2::progn
(ACL2::format t "~a checks ~a in ~a seconds.~%" proofp-name thm-name elapsed)
(acl2::push (list proofp-name thm-name elapsed) *time-and-check-table*)
result)))
(acl2::defun %time-proof-building (proofp-name thm-name skelly init-world)
(let* ((start-time (ACL2::get-internal-real-time))
(worlds (ACL2::prog2$
(ACL2::cw "; Compiling worlds for ~x0...~%" thm-name)
(tactic.compile-worlds skelly init-world)))
(proof (%current-adapter
(ACL2::prog2$ (ACL2::cw "Compiling skeleton for ~x0.~%" thm-name)
(car (ACL2::time$ (tactic.compile-skeleton skelly worlds nil))))
(tactic.world->defs init-world)
init-world
worlds))
(end-time (ACL2::get-internal-real-time))
(elapsed (ACL2::/ (ACL2::coerce (ACL2::- end-time start-time) 'ACL2::float)
ACL2::internal-time-units-per-second)))
(ACL2::progn
(ACL2::format t "built ~a for ~a in ~a seconds.~%" thm-name proofp-name elapsed)
(acl2::push (list proofp-name thm-name elapsed) *time-building-table*)
proof))))
(defun %reprove-compile-fn (name ACL2::state)
(declare (xargs :mode :program :stobjs ACL2::state))
(let* ((world (ACL2::w ACL2::state))
(skelly (cdr (lookup name (reprove->skeletons world))))
(init-world (cdr (lookup name (reprove->goalworlds world)))))
(if (not skelly)
(ACL2::er soft '%reprove-compile "Unable to find skeleton for ~s0.~%" name)
; This is basically like %qed-check-fn. We have the goalworld and skeleton,
; and we just need to compile it and apply the adapter.
(let* ((proof (%time-proof-building (tactic.harness->current-proofp world)
name
skelly
init-world))
(check (ACL2::prog2$
(ACL2::cw "Checking the proof...~%")
(or (%time-and-check-proof (tactic.harness->current-proofp world)
name
proof
(tactic.harness->axioms world)
(tactic.harness->thms world)
(tactic.harness->atbl world))
(ACL2::er hard? '%reprove-compile-fn "Proof was rejected.~%")))))
(declare (ignore check))
(ACL2::prog2$
(ACL2::cw "Total size: ~s0~s1 conses~s2.~%" *blue* (STR::pretty-number (rank proof)) *black*)
(ACL2::mv nil
`(ACL2::table reprove 'sizes
(cons (list (tactic.harness->current-proofp ACL2::world)
',name
',(static-analysis proof))
(reprove->sizes ACL2::world)))
ACL2::state))))))
(include-book "level2/level2")
(include-book "level3/level3")
(include-book "level4/level4")
(include-book "level5/level5")
(include-book "level6/level6")
(include-book "level7/level7")
(include-book "level8/level8")
(include-book "level9/level9")
(include-book "level10/level10")
(i-am-here)
;; reprove fresh here for fast-urewrite
(include-book "level10/level10")
;; reprove fresh here for fast-crewrite
(include-book "level11/level11")
;; probably reprove fresh here for good measure
(%reprove forcing-logic.proofp-of-build.disjoined-transitivity-of-iff
(%enable default
theorem-transitivity-of-iff
theorem-transitivity-of-iff
theorem-transitivity-of-iff
build.disjoined-transitivity-of-iff))
(%reprove-compile forcing-logic.proofp-of-build.disjoined-transitivity-of-iff)
8 compile
6 static-checks
2 skeletonp
147 skeleton-okp
288s atblp -- this is the one to fix, suppose 10s
0s env-okp
---------
(+ 8 6 2 147) 163
(set-verify-guards-eagerness 2)
(set-case-split-limitations nil)
(set-well-founded-relation ord<)
(set-measure-function rank)
:redef
(defund tactic.compile-skeleton-okp (x worlds axioms thms atbl)
(declare (xargs :guard (and (logic.appealp x)
(tactic.world-listp worlds)
(logic.formula-listp axioms)
(logic.formula-listp thms)
(logic.arity-tablep atbl))))
(let ((method (logic.method x))
(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))
(and (equal method 'tactic.compile-skeleton)
(acl2::time$ (tactic.skeletonp extras))
(acl2::time$ (tactic.skeleton-okp extras worlds))
(acl2::time$ (tactic.fast-skeleton-atblp extras atbl))
(acl2::time$ (tactic.skeleton-env-okp extras worlds axioms thms atbl))
(memberp conclusion
(clause.clause-list-formulas (tactic.original-conclusions extras)))
(equal (logic.strip-conclusions subproofs)
(clause.clause-list-formulas (tactic.skeleton->goals extras))))))
(%reprove lemma-for-forcing-logic.proofp-of-generic-evaluator-bldr
;(%enable default iff iff iff)
)
(%reprove-compile lemma-for-forcing-logic.proofp-of-generic-evaluator-bldr)
;; --- we are missing some rules from this, somehow ??
;(include-book "level10/crewrite-local-settings")
(encapsulate
()
(%rwn 1000)
(%cheapen default rw.trace-list-rhses-when-not-consp)
; (%cheapen default rw.crewrite-core-list-when-not-consp)
(%create-theory my-disables-for-extra-speed)
(%enable my-disables-for-extra-speed
consp-when-memberp-of-logic.sigmap
consp-when-memberp-of-logic.sigmap-alt
consp-when-memberp-of-logic.sigma-atblp
consp-when-memberp-of-logic.sigma-atblp-alt
consp-when-memberp-of-logic.arity-tablep
consp-when-memberp-of-logic.arity-tablep-alt
;;consp-when-memberp-of-logic.callmapp
;;consp-when-memberp-of-logic.callmapp-alt
;;consp-when-memberp-of-logic.callmap-atblp
;;consp-when-memberp-of-logic.callmap-atblp-alt
; consp-when-memberp-of-rw.cachemapp
; consp-when-memberp-of-rw.cachemapp-alt
consp-when-memberp-of-none-consp
consp-when-memberp-of-none-consp-alt
consp-when-memberp-of-cons-listp
consp-when-memberp-of-cons-listp-alt
same-length-prefixes-equal-cheap
car-when-not-consp
cdr-when-not-consp
consp-when-natp-cheap
forcing-logic.groundp-of-logic.substitute
consp-when-logic.lambdap-cheap
consp-when-logic.functionp-cheap
consp-when-nonempty-subset-cheap
consp-when-memberp-cheap
logic.substitute-when-malformed-cheap
logic.constant-listp-when-not-consp
subsetp-when-not-consp
subsetp-when-not-consp-two
cons-listp-when-not-consp
none-consp-when-not-consp
forcing-logic.substitute-of-empty-sigma
not-equal-when-less
trichotomy-of-<
natp-of-len-free
transitivity-of-<
transitivity-of-<-three
transitivity-of-<-two
less-completion-left
less-of-one-right)
(%disable default my-disables-for-extra-speed)
(%disable default zp min)
(%disable default
formula-decomposition
expensive-term/formula-inference
expensive-arithmetic-rules
expensive-arithmetic-rules-two
type-set-like-rules
unusual-consp-rules
unusual-memberp-rules
unusual-subsetp-rules
same-length-prefixes-equal-cheap
;; ---
lookup-when-not-consp
rw.trace-list-rhses-when-not-consp
forcing-logic.function-of-logic.function-name-and-logic.function-args-free)
(%disable default
logic.substitute-when-logic.lambdap-cheap
logic.substitute-when-logic.variablep
logic.substitute-when-logic.constantp
logic.substitute-when-logic.functionp-cheap
forcing-logic.substitute-list-of-empty-sigma
logic.substitute-list-when-not-consp
logic.substitute-list-of-cons-gross)
;; SPECIAL THEORIES FOR THE OPENING MOVE.
(%create-theory splitters)
(%enable splitters
;; These are all of the rules that introduce an "if" on the
;; right-hand side (and hence may cause case splits).
(gather from default (not (clause.simple-termp rhs))))
(%disable default splitters)
(%create-theory special-disables-for-fast-pruning)
(%enable special-disables-for-fast-pruning
;; These are rules which %profile said were useless and
;; expensive during the initial phase. Disabling them helps to
;; speed up the rewriting.
rw.trace-list-rhses-when-not-consp
logic.termp-when-not-consp-cheap
rank-when-not-consp
rw.trace-listp-when-not-consp
; forcing-rw.assmsp-of-rw.assume-left
logic.term-listp-when-not-consp
ord<-when-naturals
logic.sigmap-when-not-consp
logic.constant-listp-of-logic.function-args-when-logic.base-evaluablep
forcing-logic.term-listp-of-rw.trace-list-rhses
cdr-when-true-listp-with-len-free-past-the-end
forcing-logic.groundp-when-logic.constant-listp-of-logic.function-args
minus-when-zp-left-cheap
minus-when-zp-right-cheap
minus-when-not-less
forcing-logic.groundp-when-logic.constant-listp-of-logic.lambda-actuals
logic.variable-listp-of-cdr-when-logic.variable-listp
forcing-logic.termp-of-logic.substitute
logic.variablep-of-car-when-logic.variable-listp
rw.rule-listp-of-cdr-when-rw.rule-listp
cdr-of-cdr-when-true-listp-with-len-free-past-the-end
cdr-of-cdr-with-len-free-past-the-end
logic.groundp-when-logic.constantp
forcing-logic.function-args-of-logic.substitute
forcing-logic.lambda-actuals-of-logic.substitute
logic.constant-listp-of-cdr-when-logic.constant-listp
; rw.typed-rulemapp-when-not-consp
memberp-when-not-consp ordp-when-natp
memberp-when-memberp-of-cdr
rw.rulep-of-car-when-rw.rule-listp
logic.sigmap-of-car-when-logic.sigma-listp
; forcing-rw.cachep-of-rw.set-blockedp
logic.sigma-listp-of-cdr-when-logic.sigma-listp
)
(%disable default special-disables-for-fast-pruning)
)
(%reprove lemma-for-rw.trace-fast-image-of-rw.crewrite-core)
; You can now choose a theorem to try. It gets the previous hints
; automatically, but you can give more hints to set up whatever local
; environment you need, e.g., with theories, etc.
; I choose a few proofs by running
;
; grep -B 2 "Proof size" *.pcert.out
;
; in each directory and looking for large proofs. (Actually you can
; automatically choose only the multi-million cons proofs like this):
;
; grep -B 2 "Proof size" *.pcert.out | grep -B 2 "[0-9][0-9][0-9],[0-9][0-9][0-9],[0-9][0-9][0-9]"
;
; I picked a few proofs from each directory. I tried to get some level of
; diversity in the type of proof.
(acl2::trace$ (TACTIC.CREWRITE-ALL-TAC
:entry (list :theoryname (second acl2::arglist)
:fastp (third acl2::arglist))))
(acl2::trace$ rw.fast-transitivity-trace)
(%reprove forcing-logic.proofp-of-build.disjoined-transitivity-of-iff
(%enable default
theorem-transitivity-of-iff
build.disjoined-transitivity-of-iff))
(%reprove forcing-logic.proofp-of-build.disjoined-negative-lit-from-pequal-nil
(%enable default
build.disjoined-negative-lit-from-pequal-nil
theorem-not-when-nil))
(%reprove forcing-logic.proofp-of-clause.aux-split-double-negate
(%splitlimit 8) ;; from level5/level5
(%enable default
logic.term-formula
clause.aux-split-goal
clause.aux-split-double-negate))
(%reprove build.disjoined-equal-by-args-aux-okp-removal)
(%reprove forcing-logic.proofp-of-clause.disjoined-substitute-iff-into-literal-bldr
(%enable default clause.disjoined-substitute-iff-into-literal-bldr))
(%reprove forcing-logic.conclusion-of-clause.disjoined-aux-split-negative-bldr
(%enable default
clause.disjoined-aux-split-negative-bldr
clause.theorem-aux-split-negative))
(%reprove lemma-for-forcing-logic.appealp-of-clause.aux-update-clause-bldr)
e
(%reprove lemma-for-forcing-logic.proofp-of-generic-evaluator-bldr)
(%reprove lemma-for-forcing-logic.appealp-of-clause.factor-bldr)
; The reprove command above creates the skeleton, but doesn't compile
; it. We can now compile it with the %reprove-compile command.
(defmacro do-compilations ()
`(acl2::progn
(%reprove-compile forcing-logic.proofp-of-build.disjoined-transitivity-of-iff)
(%reprove-compile forcing-logic.proofp-of-build.disjoined-negative-lit-from-pequal-nil)
(%reprove-compile forcing-logic.proofp-of-clause.aux-split-double-negate)
(%reprove-compile build.disjoined-equal-by-args-aux-okp-removal)
(%reprove-compile forcing-logic.proofp-of-clause.disjoined-substitute-iff-into-literal-bldr)
(%reprove-compile forcing-logic.conclusion-of-clause.disjoined-aux-split-negative-bldr)
(%reprove-compile lemma-for-forcing-logic.appealp-of-clause.aux-update-clause-bldr)
(%reprove-compile lemma-for-forcing-logic.proofp-of-generic-evaluator-bldr)
(%reprove-compile lemma-for-forcing-logic.appealp-of-clause.factor-bldr)
))
(do-compilations)
; To see what the proof is like at later levels, we can include-book the
; next level up and call reprove-compile again. This time the compilation
; is done using the newly-switched builders.
(include-book "level2/level2")
(do-compilations)
; And so on, for the other levels. The sizes for the proofs are saved
; into a the reprove->sizes table, so you can summarize them at the end.
(include-book "level3/level3")
(do-compilations)
(include-book "level4/level4")
(do-compilations)
(include-book "level5/level5")
(do-compilations)
(include-book "level6/level6")
(do-compilations)
(include-book "level7/level7")
(do-compilations)
(include-book "level8/level8")
(do-compilations)
(include-book "level9/level9")
(do-compilations)
(include-book "level10/level10")
(do-compilations)
(include-book "level11/level11")
(do-compilations)
; To see a summary, we run reprove->sizes.
(reprove->sizes (ACL2::w ACL2::state))
(include-book "level2/level2")
(include-book "level3/level3")
(include-book "level4/level4")
(include-book "level5/level5")
(include-book "level6/level6")
(include-book "level7/level7")
(include-book "level8/level8")
(include-book "level9/level9")
(include-book "level10/level10")
(do-compilations)
(include-book "level10/level10")
(do-compilations)
(include-book "level11/level11")
(i-am-here)
:q
(acl2::cw "~x0~%"
(acl2::sort (reprove->sizes (acl2::w acl2::*the-live-state*))
(lambda (x y)
(or (symbol-< (second x) (second y))
(and (equal (second x) (second y))
(symbol-< (first x) (first y)))))))
(acl2::dolist (elem (acl2::sort *time-and-check-table*
(lambda (x y)
(or (symbol-< (second x) (second y))
(and (equal (second x) (second y))
(symbol-< (first x) (first y)))))))
(acl2::format t "~a~%" elem))
;; ((LEVEL10.PROOFP BUILD.DISJOINED-EQUAL-BY-ARGS-AUX-OKP-REMOVAL
;; 404290)
;; (LEVEL11.PROOFP BUILD.DISJOINED-EQUAL-BY-ARGS-AUX-OKP-REMOVAL
;; 394081)
;; (LEVEL2.PROOFP BUILD.DISJOINED-EQUAL-BY-ARGS-AUX-OKP-REMOVAL
;; 4487648)
;; (LEVEL3.PROOFP BUILD.DISJOINED-EQUAL-BY-ARGS-AUX-OKP-REMOVAL
;; 2376969)
;; (LEVEL4.PROOFP BUILD.DISJOINED-EQUAL-BY-ARGS-AUX-OKP-REMOVAL
;; 1212457)
;; (LEVEL5.PROOFP BUILD.DISJOINED-EQUAL-BY-ARGS-AUX-OKP-REMOVAL
;; 929253)
;; (LEVEL6.PROOFP BUILD.DISJOINED-EQUAL-BY-ARGS-AUX-OKP-REMOVAL
;; 782922)
;; (LEVEL7.PROOFP BUILD.DISJOINED-EQUAL-BY-ARGS-AUX-OKP-REMOVAL
;; 705301)
;; (LEVEL8.PROOFP BUILD.DISJOINED-EQUAL-BY-ARGS-AUX-OKP-REMOVAL
;; 406863)
;; (LEVEL9.PROOFP BUILD.DISJOINED-EQUAL-BY-ARGS-AUX-OKP-REMOVAL
;; 403202)
;; (LOGIC.PROOFP BUILD.DISJOINED-EQUAL-BY-ARGS-AUX-OKP-REMOVAL
;; 37671049)
;; (LEVEL10.PROOFP
;; FORCING-LOGIC.CONCLUSION-OF-CLAUSE.DISJOINED-AUX-SPLIT-NEGATIVE-BLDR
;; 53612318)
;; (LEVEL11.PROOFP
;; FORCING-LOGIC.CONCLUSION-OF-CLAUSE.DISJOINED-AUX-SPLIT-NEGATIVE-BLDR
;; 52341246)
;; (LEVEL2.PROOFP
;; FORCING-LOGIC.CONCLUSION-OF-CLAUSE.DISJOINED-AUX-SPLIT-NEGATIVE-BLDR
;; 1126851329)
;; (LEVEL3.PROOFP
;; FORCING-LOGIC.CONCLUSION-OF-CLAUSE.DISJOINED-AUX-SPLIT-NEGATIVE-BLDR
;; 615153460)
;; (LEVEL4.PROOFP
;; FORCING-LOGIC.CONCLUSION-OF-CLAUSE.DISJOINED-AUX-SPLIT-NEGATIVE-BLDR
;; 104945672)
;; (LEVEL5.PROOFP
;; FORCING-LOGIC.CONCLUSION-OF-CLAUSE.DISJOINED-AUX-SPLIT-NEGATIVE-BLDR
;; 82338572)
;; (LEVEL6.PROOFP
;; FORCING-LOGIC.CONCLUSION-OF-CLAUSE.DISJOINED-AUX-SPLIT-NEGATIVE-BLDR
;; 37956239)
;; (LEVEL7.PROOFP
;; FORCING-LOGIC.CONCLUSION-OF-CLAUSE.DISJOINED-AUX-SPLIT-NEGATIVE-BLDR
;; 33735165)
;; (LEVEL8.PROOFP
;; FORCING-LOGIC.CONCLUSION-OF-CLAUSE.DISJOINED-AUX-SPLIT-NEGATIVE-BLDR
;; 53725739)
g;; (LEVEL9.PROOFP
;; FORCING-LOGIC.CONCLUSION-OF-CLAUSE.DISJOINED-AUX-SPLIT-NEGATIVE-BLDR
;; 53541935)
;; (LOGIC.PROOFP
;; FORCING-LOGIC.CONCLUSION-OF-CLAUSE.DISJOINED-AUX-SPLIT-NEGATIVE-BLDR
;; 9728218760)
;; (LEVEL10.PROOFP
;; FORCING-LOGIC.PROOFP-OF-BUILD.DISJOINED-NEGATIVE-LIT-FROM-PEQUAL-NIL
;; 586569)
;; (LEVEL11.PROOFP
;; FORCING-LOGIC.PROOFP-OF-BUILD.DISJOINED-NEGATIVE-LIT-FROM-PEQUAL-NIL
;; 600090)
;; (LEVEL2.PROOFP
;; FORCING-LOGIC.PROOFP-OF-BUILD.DISJOINED-NEGATIVE-LIT-FROM-PEQUAL-NIL
;; 1465619)
;; (LEVEL3.PROOFP
;; FORCING-LOGIC.PROOFP-OF-BUILD.DISJOINED-NEGATIVE-LIT-FROM-PEQUAL-NIL
;; 721025)
;; (LEVEL4.PROOFP
;; FORCING-LOGIC.PROOFP-OF-BUILD.DISJOINED-NEGATIVE-LIT-FROM-PEQUAL-NIL
;; 365949)
;; (LEVEL5.PROOFP
;; FORCING-LOGIC.PROOFP-OF-BUILD.DISJOINED-NEGATIVE-LIT-FROM-PEQUAL-NIL
;; 334504)
;; (LEVEL6.PROOFP
;; FORCING-LOGIC.PROOFP-OF-BUILD.DISJOINED-NEGATIVE-LIT-FROM-PEQUAL-NIL
;; 334504)
;; (LEVEL7.PROOFP
;; FORCING-LOGIC.PROOFP-OF-BUILD.DISJOINED-NEGATIVE-LIT-FROM-PEQUAL-NIL
;; 334504)
;; (LEVEL8.PROOFP
;; FORCING-LOGIC.PROOFP-OF-BUILD.DISJOINED-NEGATIVE-LIT-FROM-PEQUAL-NIL
;; 592816)
;; (LEVEL9.PROOFP
;; FORCING-LOGIC.PROOFP-OF-BUILD.DISJOINED-NEGATIVE-LIT-FROM-PEQUAL-NIL
;; 586376)
;; (LOGIC.PROOFP
;; FORCING-LOGIC.PROOFP-OF-BUILD.DISJOINED-NEGATIVE-LIT-FROM-PEQUAL-NIL
;; 10345413)
;; (LEVEL10.PROOFP FORCING-LOGIC.PROOFP-OF-BUILD.DISJOINED-TRANSITIVITY-OF-IFF
;; 58643629)
;; (LEVEL11.PROOFP FORCING-LOGIC.PROOFP-OF-BUILD.DISJOINED-TRANSITIVITY-OF-IFF
;; 58670026)
;; (LEVEL2.PROOFP FORCING-LOGIC.PROOFP-OF-BUILD.DISJOINED-TRANSITIVITY-OF-IFF
;; 408753676)
;; (LEVEL3.PROOFP FORCING-LOGIC.PROOFP-OF-BUILD.DISJOINED-TRANSITIVITY-OF-IFF
;; 218777972)
;; (LEVEL4.PROOFP FORCING-LOGIC.PROOFP-OF-BUILD.DISJOINED-TRANSITIVITY-OF-IFF
;; 52578550)
;; (LEVEL5.PROOFP FORCING-LOGIC.PROOFP-OF-BUILD.DISJOINED-TRANSITIVITY-OF-IFF
;; 44103994)
;; (LEVEL6.PROOFP FORCING-LOGIC.PROOFP-OF-BUILD.DISJOINED-TRANSITIVITY-OF-IFF
;; 29091881)
;; (LEVEL7.PROOFP FORCING-LOGIC.PROOFP-OF-BUILD.DISJOINED-TRANSITIVITY-OF-IFF
;; 27036162)
;; (LEVEL8.PROOFP FORCING-LOGIC.PROOFP-OF-BUILD.DISJOINED-TRANSITIVITY-OF-IFF
;; 58661507)
;; (LEVEL9.PROOFP FORCING-LOGIC.PROOFP-OF-BUILD.DISJOINED-TRANSITIVITY-OF-IFF
;; 58639725)
;; (LOGIC.PROOFP FORCING-LOGIC.PROOFP-OF-BUILD.DISJOINED-TRANSITIVITY-OF-IFF
;; 3491784272)
;; (LEVEL10.PROOFP FORCING-LOGIC.PROOFP-OF-CLAUSE.AUX-SPLIT-DOUBLE-NEGATE
;; 2002070)
;; (LEVEL11.PROOFP FORCING-LOGIC.PROOFP-OF-CLAUSE.AUX-SPLIT-DOUBLE-NEGATE
;; 1927685)
;; (LEVEL2.PROOFP FORCING-LOGIC.PROOFP-OF-CLAUSE.AUX-SPLIT-DOUBLE-NEGATE
;; 63495138)
;; (LEVEL3.PROOFP FORCING-LOGIC.PROOFP-OF-CLAUSE.AUX-SPLIT-DOUBLE-NEGATE
;; 33861782)
;; (LEVEL4.PROOFP FORCING-LOGIC.PROOFP-OF-CLAUSE.AUX-SPLIT-DOUBLE-NEGATE
;; 6806516)
;; (LEVEL5.PROOFP FORCING-LOGIC.PROOFP-OF-CLAUSE.AUX-SPLIT-DOUBLE-NEGATE
;; 4845556)
;; (LEVEL6.PROOFP FORCING-LOGIC.PROOFP-OF-CLAUSE.AUX-SPLIT-DOUBLE-NEGATE
;; 2257161)
;; (LEVEL7.PROOFP FORCING-LOGIC.PROOFP-OF-CLAUSE.AUX-SPLIT-DOUBLE-NEGATE
;; 2024643)
;; (LEVEL8.PROOFP FORCING-LOGIC.PROOFP-OF-CLAUSE.AUX-SPLIT-DOUBLE-NEGATE
;; 2029213)
;; (LEVEL9.PROOFP FORCING-LOGIC.PROOFP-OF-CLAUSE.AUX-SPLIT-DOUBLE-NEGATE
;; 1988318)
;; (LOGIC.PROOFP FORCING-LOGIC.PROOFP-OF-CLAUSE.AUX-SPLIT-DOUBLE-NEGATE
;; 548911438)
;; (LEVEL10.PROOFP
;; FORCING-LOGIC.PROOFP-OF-CLAUSE.DISJOINED-SUBSTITUTE-IFF-INTO-LITERAL-BLDR
;; 10548888)
;; (LEVEL11.PROOFP
;; FORCING-LOGIC.PROOFP-OF-CLAUSE.DISJOINED-SUBSTITUTE-IFF-INTO-LITERAL-BLDR
;; 10490631)
;; (LEVEL2.PROOFP
;; FORCING-LOGIC.PROOFP-OF-CLAUSE.DISJOINED-SUBSTITUTE-IFF-INTO-LITERAL-BLDR
;; 1537111835)
;; (LEVEL3.PROOFP
;; FORCING-LOGIC.PROOFP-OF-CLAUSE.DISJOINED-SUBSTITUTE-IFF-INTO-LITERAL-BLDR
;; 862118740)
;; (LEVEL4.PROOFP
;; FORCING-LOGIC.PROOFP-OF-CLAUSE.DISJOINED-SUBSTITUTE-IFF-INTO-LITERAL-BLDR
;; 135627663)
;; (LEVEL5.PROOFP
;; FORCING-LOGIC.PROOFP-OF-CLAUSE.DISJOINED-SUBSTITUTE-IFF-INTO-LITERAL-BLDR
;; 103002504)
;; (LEVEL6.PROOFP
;; FORCING-LOGIC.PROOFP-OF-CLAUSE.DISJOINED-SUBSTITUTE-IFF-INTO-LITERAL-BLDR
;; 33821445)
;; (LEVEL7.PROOFP
;; FORCING-LOGIC.PROOFP-OF-CLAUSE.DISJOINED-SUBSTITUTE-IFF-INTO-LITERAL-BLDR
;; 25821804)
;; (LEVEL8.PROOFP
;; FORCING-LOGIC.PROOFP-OF-CLAUSE.DISJOINED-SUBSTITUTE-IFF-INTO-LITERAL-BLDR
;; 10573491)
;; (LEVEL9.PROOFP
;; FORCING-LOGIC.PROOFP-OF-CLAUSE.DISJOINED-SUBSTITUTE-IFF-INTO-LITERAL-BLDR
;; 10535724)
;; (LOGIC.PROOFP
;; FORCING-LOGIC.PROOFP-OF-CLAUSE.DISJOINED-SUBSTITUTE-IFF-INTO-LITERAL-BLDR
;; 13175548486)
;; (LEVEL10.PROOFP
;; LEMMA-FOR-FORCING-LOGIC.APPEALP-OF-CLAUSE.AUX-UPDATE-CLAUSE-BLDR
;; 288974)
;; (LEVEL11.PROOFP
;; LEMMA-FOR-FORCING-LOGIC.APPEALP-OF-CLAUSE.AUX-UPDATE-CLAUSE-BLDR
;; 269611)
;; (LEVEL2.PROOFP
;; LEMMA-FOR-FORCING-LOGIC.APPEALP-OF-CLAUSE.AUX-UPDATE-CLAUSE-BLDR
;; 11644)
;; (LEVEL3.PROOFP
;; LEMMA-FOR-FORCING-LOGIC.APPEALP-OF-CLAUSE.AUX-UPDATE-CLAUSE-BLDR
;; 2233102)
;; (LEVEL4.PROOFP
;; LEMMA-FOR-FORCING-LOGIC.APPEALP-OF-CLAUSE.AUX-UPDATE-CLAUSE-BLDR
;; 1044698)
;; (LEVEL5.PROOFP
;; LEMMA-FOR-FORCING-LOGIC.APPEALP-OF-CLAUSE.AUX-UPDATE-CLAUSE-BLDR
;; 831077)
;; (LEVEL6.PROOFP
;; LEMMA-FOR-FORCING-LOGIC.APPEALP-OF-CLAUSE.AUX-UPDATE-CLAUSE-BLDR
;; 603458)
;; (LEVEL7.PROOFP
;; LEMMA-FOR-FORCING-LOGIC.APPEALP-OF-CLAUSE.AUX-UPDATE-CLAUSE-BLDR
;; 420481)
;; (LEVEL8.PROOFP
;; LEMMA-FOR-FORCING-LOGIC.APPEALP-OF-CLAUSE.AUX-UPDATE-CLAUSE-BLDR
;; 320978)
;; (LEVEL9.PROOFP
;; LEMMA-FOR-FORCING-LOGIC.APPEALP-OF-CLAUSE.AUX-UPDATE-CLAUSE-BLDR
;; 288405)
;; (LOGIC.PROOFP
;; LEMMA-FOR-FORCING-LOGIC.APPEALP-OF-CLAUSE.AUX-UPDATE-CLAUSE-BLDR
;; 73072)
;; (LEVEL10.PROOFP LEMMA-FOR-FORCING-LOGIC.PROOFP-OF-GENERIC-EVALUATOR-BLDR
;; 359554)
;; (LEVEL11.PROOFP LEMMA-FOR-FORCING-LOGIC.PROOFP-OF-GENERIC-EVALUATOR-BLDR
;; 271017)
;; (LEVEL2.PROOFP LEMMA-FOR-FORCING-LOGIC.PROOFP-OF-GENERIC-EVALUATOR-BLDR
;; 19653560)
;; (LEVEL3.PROOFP LEMMA-FOR-FORCING-LOGIC.PROOFP-OF-GENERIC-EVALUATOR-BLDR
;; 9142242)
;; (LEVEL4.PROOFP LEMMA-FOR-FORCING-LOGIC.PROOFP-OF-GENERIC-EVALUATOR-BLDR
;; 3088482)
;; (LEVEL5.PROOFP LEMMA-FOR-FORCING-LOGIC.PROOFP-OF-GENERIC-EVALUATOR-BLDR
;; 2370091)
;; (LEVEL6.PROOFP LEMMA-FOR-FORCING-LOGIC.PROOFP-OF-GENERIC-EVALUATOR-BLDR
;; 1314330)
;; (LEVEL7.PROOFP LEMMA-FOR-FORCING-LOGIC.PROOFP-OF-GENERIC-EVALUATOR-BLDR
;; 462773)
;; (LEVEL8.PROOFP LEMMA-FOR-FORCING-LOGIC.PROOFP-OF-GENERIC-EVALUATOR-BLDR
;; 448562)
;; (LEVEL9.PROOFP LEMMA-FOR-FORCING-LOGIC.PROOFP-OF-GENERIC-EVALUATOR-BLDR
;; 359258)
;; (LOGIC.PROOFP LEMMA-FOR-FORCING-LOGIC.PROOFP-OF-GENERIC-EVALUATOR-BLDR
;; 164627444))
|