1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "utilities")
(%interactive)
(defun %defmap-fn (map key val key-list val-list val-of-nil)
(declare (xargs :mode :program))
(let ((mapp (car map))
(keyp (car key))
(valp (car val))
(key-listp (car key-list))
(val-listp (car val-list))
;(map-formals (cdr map))
;(key-formals (cdr key))
;(val-formals (cdr val))
;(key-list-formals (cdr key-list))
;(val-list-formals (cdr val-list))
)
`(defsection ,mapp
(local (%forcingp nil))
(%autoadmit ,mapp)
(%autoprove ,(ACL2::mksym mapp '-when-not-consp)
(%restrict default ,mapp (equal x 'x)))
(%autoprove ,(ACL2::mksym mapp '-of-cons)
(%restrict default ,mapp (equal x '(cons a x))))
(%autoprove ,(ACL2::mksym 'consp-when-memberp-of- mapp)
(%cdr-induction x))
(%autoprove ,(ACL2::mksym 'consp-when-memberp-of- mapp '-alt))
(local (%disable default
,(ACL2::mksym 'consp-when-memberp-of- mapp)
,(ACL2::mksym 'consp-when-memberp-of- mapp '-alt)))
(%autoprove ,(ACL2::mksym keyp '-of-car-when-memberp-of- mapp)
(%cdr-induction x))
(%autoprove ,(ACL2::mksym keyp '-when-lookup-in- mapp)
(%cdr-induction x))
(%autoprove ,(ACL2::mksym valp '-of-cdr-when-memberp-of- mapp)
(%cdr-induction x))
(%autoprove ,(ACL2::mksym 'booleanp-of- mapp)
(%cdr-induction x))
(%autoprove ,(ACL2::mksym mapp '-of-list-fix)
(%cdr-induction x))
(%autoprove ,(ACL2::mksym mapp '-of-app)
(%cdr-induction x))
(%autoprove ,(ACL2::mksym mapp '-of-rev)
(%cdr-induction x))
(%autoprove ,(ACL2::mksym mapp '-of-remove-all-when- mapp)
(%cdr-induction x))
(%autoprove ,(ACL2::mksym mapp '-of-remove-duplicates)
(%cdr-induction x)
(%enable default ,(ACL2::mksym 'consp-when-memberp-of- mapp)))
(%autoprove ,(ACL2::mksym mapp '-of-difference-when- mapp)
(%cdr-induction x))
(%autoprove ,(ACL2::mksym mapp '-of-subset-when- mapp)
(%cdr-induction x)
(%enable default ,(ACL2::mksym 'consp-when-memberp-of- mapp)))
(%autoprove ,(ACL2::mksym mapp '-of-subset-when- mapp '-alt))
,@(if (not key-list)
nil
`((%autoprove ,(ACL2::mksym key-listp '-of-domain-when- mapp)
(%cdr-induction x))))
,@(if (not val-list)
nil
`((%autoprove ,(ACL2::mksym val-listp '-of-range-when- mapp)
(%cdr-induction x))))
(%autoprove ,(ACL2::mksym 'mapp-when- mapp)
(%cdr-induction x))
(%autoprove ,(ACL2::mksym valp '-of-cdr-of-lookup-when- mapp)
(%cdr-induction x))
,@(if val-of-nil
nil
`((%autoprove ,(ACL2::mksym 'cdr-of-lookup-under-iff-when- mapp)
(%use (%instance (%thm ,(ACL2::mksym valp '-of-cdr-of-lookup-when- mapp))))
(%disable default ,(ACL2::mksym valp '-of-cdr-of-lookup-when- mapp)))))
)))
(defmacro %defmap (&key map key val key-list val-list (val-of-nil 't))
(declare (xargs :guard (and (ACL2::symbol-listp map)
(ACL2::symbol-listp key)
(ACL2::symbol-listp val)
(ACL2::symbol-listp key-list)
(ACL2::symbol-listp val-list)
(consp map)
(consp key)
(consp val)
(or (consp key-list) (not key-list))
(or (consp val-list) (not val-list))
;; Argument lists must all be unique
(uniquep (cdr map))
(uniquep (cdr key))
(uniquep (cdr val))
(uniquep (cdr key-list))
(uniquep (cdr val-list))
;; Argument lists must contain only the names in
;; the map formals
(subsetp (cdr key) (cdr map))
(subsetp (cdr val) (cdr map))
(or (not key-list)
(subsetp (cdr key-list) (cdr map)))
(or (not val-list)
(subsetp (cdr val-list) (cdr map)))
;; x must be in each argument list
;; a,b must not be found in any argument list
(memberp 'x (cdr map))
(not (memberp 'a (cdr map)))
(not (memberp 'y (cdr map))))))
(%defmap-fn map key val key-list val-list val-of-nil))
|