1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "deflist")
(include-book "cons-listp")
(include-book "remove-duplicates-list")
(%interactive)
(%autoadmit superset-of-somep)
(%autoprove superset-of-somep-when-not-consp (%restrict default superset-of-somep (equal x 'x)))
(%autoprove superset-of-somep-of-cons (%restrict default superset-of-somep (equal x '(cons b x))))
(%autoprove booleanp-of-superset-of-somep (%cdr-induction x))
(%autoprove superset-of-somep-of-list-fix-one (%cdr-induction x))
(%autoprove superset-of-somep-of-list-fix-two (%cdr-induction x))
(%autoprove superset-of-somep-of-app (%cdr-induction x))
(%autoprove superset-of-somep-of-rev (%cdr-induction x))
(%autoprove memberp-when-not-superset-of-somep-cheap (%cdr-induction x))
(%autoprove superset-of-somep-when-obvious (%cdr-induction x))
(%autoprove superset-of-somep-when-obvious-alt)
(%autoadmit find-subset)
(%autoprove find-subset-when-not-consp (%restrict default find-subset (equal x 'x)))
(%autoprove find-subset-of-cons (%restrict default find-subset (equal x '(cons b x))))
(%autoprove find-subset-of-list-fix-one (%cdr-induction x))
(%autoprove find-subset-of-list-fix-two (%cdr-induction x))
(%autoprove find-subset-of-rev-one (%cdr-induction x))
(%autoprove subsetp-of-find-subset (%cdr-induction x))
(%autoprove memberp-of-find-subset (%cdr-induction x))
(%autoprove superset-of-somep-when-find-subset (%cdr-induction x))
(%autoprove find-subset-of-app (%cdr-induction x))
(%autoprove find-subset-when-subsetp-two (%cdr-induction x))
(%autoprove superset-of-somep-when-subsetp-two
(%disable default superset-of-somep-when-obvious superset-of-somep-when-obvious-alt)
(%use (%instance (%thm superset-of-somep-when-obvious)
(a a)
(e (find-subset a x))
(x y))))
(%autoprove superset-of-somep-when-subsetp-two-alt)
(%autoprove superset-of-somep-when-superset-of-somep-of-smaller (%cdr-induction x))
(%autoprove superset-of-somep-when-superset-of-somep-of-smaller-alt (%cdr-induction x))
(%deflist all-superset-of-somep (x ys)
(superset-of-somep x ys))
(%autoprove all-superset-of-somep-of-list-fix-two (%cdr-induction x))
(%autoprove all-superset-of-somep-of-cons-two (%cdr-induction x))
(%autoprove all-superset-of-somep-of-all-two (%cdr-induction x))
(%autoprove all-superset-of-somep-of-all-two-alt (%cdr-induction x))
(%autoprove all-superset-of-somep-of-rev-two (%cdr-induction x))
(%autoprove all-superset-of-somep-when-subsetp-two (%cdr-induction x))
(%autoprove all-superset-of-somep-when-subsetp-two-alt (%cdr-induction x))
(%autoprove all-superset-of-somep-of-cons-two-when-irrelevant (%cdr-induction x))
(%autoprove all-superset-of-somep-of-app-two-when-irrelevant (%cdr-induction y))
(%autoprove superset-of-somep-when-all-superset-of-somep (%cdr-induction x))
(%autoprove superset-of-somep-when-all-superset-of-somep-alt)
(%autoprove all-superset-of-somep-is-reflexive (%cdr-induction x))
(%autoprove all-superset-of-somep-is-transitive (%cdr-induction x))
(%autoprove all-superset-of-somep-of-remove-duplicates-list (%cdr-induction x))
(%autoprove all-superset-of-somep-of-remove-duplicates-list-gen (%cdr-induction x))
(%autoadmit remove-supersets1)
(%autoprove remove-supersets1-when-not-consp (%restrict default remove-supersets1 (equal todo 'x)))
(%autoprove remove-supersets1-of-cons (%restrict default remove-supersets1 (equal todo '(cons a x))))
(%autoprove true-listp-of-remove-supersets1 (%autoinduct remove-supersets1 x done))
(%autoprove uniquep-of-remove-supersets1 (%autoinduct remove-supersets1 todo done))
(%autoprove all-superset-of-somep-of-remove-supersets1 (%autoinduct remove-supersets1 todo done))
(%autoprove cons-listp-when-not-superset-of-some-is-non-consp (%cdr-induction x))
(%autoprove cons-listp-of-remove-supersets1 (%autoinduct remove-supersets1 todo done))
(%autoadmit remove-supersets)
(%autoprove true-listp-of-remove-supersets (%enable default remove-supersets))
(%autoprove all-superset-of-somep-of-remove-supersets (%enable default remove-supersets))
(%autoprove all-superset-of-somep-of-remove-supersets-gen (%enable default remove-supersets))
(%autoprove cons-listp-of-remove-supersets (%enable default remove-supersets))
(%autoadmit subset-of-somep)
(%autoprove subset-of-somep-when-not-consp (%restrict default subset-of-somep (equal x 'x)))
(%autoprove subset-of-somep-of-cons (%restrict default subset-of-somep (equal x '(cons b x))))
(%autoprove booleanp-of-subset-of-somep (%cdr-induction x))
(%autoprove subset-of-somep-of-list-fix-one (%cdr-induction x))
(%autoprove subset-of-somep-of-list-fix-two (%cdr-induction x))
(%autoprove subset-of-somep-of-app (%cdr-induction x))
(%autoprove subset-of-somep-of-rev (%cdr-induction x))
(%autoprove memberp-when-not-subset-of-somep-cheap (%cdr-induction x))
(%autoprove subset-of-somep-when-obvious (%cdr-induction x))
(%autoprove subset-of-somep-when-obvious-alt)
(%autoadmit find-superset)
(%autoprove find-superset-when-not-consp (%restrict default find-superset (equal x 'x)))
(%autoprove find-superset-of-cons (%restrict default find-superset (equal x '(cons b x))))
(%autoprove find-superset-of-list-fix-one (%cdr-induction x))
(%autoprove find-superset-of-list-fix-two (%cdr-induction x))
(%autoprove find-superset-of-rev-one (%cdr-induction x))
(%autoprove subsetp-of-find-superset (%cdr-induction x))
(%autoprove memberp-of-find-superset (%cdr-induction x))
(%autoprove subset-of-somep-when-find-superset (%cdr-induction x))
(%autoprove find-superset-when-subsetp-two (%cdr-induction x))
(%autoprove subset-of-somep-when-subsetp-two
(%disable default subset-of-somep-when-obvious subset-of-somep-when-obvious-alt)
(%use (%instance (%thm subset-of-somep-when-obvious)
(a a)
(e (find-superset a x))
(x y))))
(%autoprove subset-of-somep-when-subsetp-two-alt)
(%autoprove subset-of-somep-when-subset-of-somep-of-smaller (%cdr-induction x))
(%autoprove subset-of-somep-when-subset-of-somep-of-smaller-alt (%cdr-induction x))
(%deflist all-subset-of-somep (x ys)
(subset-of-somep x ys))
(%autoprove all-subset-of-somep-of-list-fix-two (%cdr-induction x))
(%autoprove all-subset-of-somep-of-cons-two (%cdr-induction x))
(%autoprove all-subset-of-somep-of-all-two (%cdr-induction x))
(%autoprove all-subset-of-somep-of-all-two-alt (%cdr-induction x))
(%autoprove all-subset-of-somep-of-rev-two (%cdr-induction x))
(%autoprove all-subset-of-somep-when-subsetp-two (%cdr-induction x))
(%autoprove all-subset-of-somep-when-subsetp-two-alt (%cdr-induction x))
(%autoprove all-subset-of-somep-of-cons-two-when-irrelevant (%cdr-induction x))
(%autoprove all-subset-of-somep-of-app-two-when-irrelevant (%cdr-induction y))
(%autoprove subset-of-somep-when-all-subset-of-somep (%cdr-induction x))
(%autoprove subset-of-somep-when-all-subset-of-somep-alt)
(%autoprove all-subset-of-somep-is-reflexive (%cdr-induction x))
(%autoprove all-subset-of-somep-is-transitive (%cdr-induction x))
(%autoprove all-subset-of-somep-of-remove-duplicates-list (%cdr-induction x))
(%autoprove all-subset-of-somep-of-remove-duplicates-list-gen (%cdr-induction x))
(%ensure-exactly-these-rules-are-missing "../../utilities/extended-subsets")
|