File: extended-subsets.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (174 lines) | stat: -rw-r--r-- 9,536 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
;   Kookamara LLC
;   11410 Windermere Meadows
;   Austin, TX 78759, USA
;   http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
;   Permission is hereby granted, free of charge, to any person obtaining a
;   copy of this software and associated documentation files (the "Software"),
;   to deal in the Software without restriction, including without limitation
;   the rights to use, copy, modify, merge, publish, distribute, sublicense,
;   and/or sell copies of the Software, and to permit persons to whom the
;   Software is furnished to do so, subject to the following conditions:
;
;   The above copyright notice and this permission notice shall be included in
;   all copies or substantial portions of the Software.
;
;   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
;   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
;   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
;   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
;   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
;   FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
;   DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>

(in-package "MILAWA")
(include-book "deflist")
(include-book "cons-listp")
(include-book "remove-duplicates-list")
(%interactive)


(%autoadmit superset-of-somep)
(%autoprove superset-of-somep-when-not-consp         (%restrict default superset-of-somep (equal x 'x)))
(%autoprove superset-of-somep-of-cons                (%restrict default superset-of-somep (equal x '(cons b x))))
(%autoprove booleanp-of-superset-of-somep            (%cdr-induction x))
(%autoprove superset-of-somep-of-list-fix-one        (%cdr-induction x))
(%autoprove superset-of-somep-of-list-fix-two        (%cdr-induction x))
(%autoprove superset-of-somep-of-app                 (%cdr-induction x))
(%autoprove superset-of-somep-of-rev                 (%cdr-induction x))
(%autoprove memberp-when-not-superset-of-somep-cheap (%cdr-induction x))
(%autoprove superset-of-somep-when-obvious           (%cdr-induction x))
(%autoprove superset-of-somep-when-obvious-alt)


(%autoadmit find-subset)
(%autoprove find-subset-when-not-consp         (%restrict default find-subset (equal x 'x)))
(%autoprove find-subset-of-cons                (%restrict default find-subset (equal x '(cons b x))))
(%autoprove find-subset-of-list-fix-one        (%cdr-induction x))
(%autoprove find-subset-of-list-fix-two        (%cdr-induction x))
(%autoprove find-subset-of-rev-one             (%cdr-induction x))
(%autoprove subsetp-of-find-subset             (%cdr-induction x))
(%autoprove memberp-of-find-subset             (%cdr-induction x))
(%autoprove superset-of-somep-when-find-subset (%cdr-induction x))
(%autoprove find-subset-of-app                 (%cdr-induction x))
(%autoprove find-subset-when-subsetp-two       (%cdr-induction x))

(%autoprove superset-of-somep-when-subsetp-two
            (%disable default superset-of-somep-when-obvious superset-of-somep-when-obvious-alt)
            (%use (%instance (%thm superset-of-somep-when-obvious)
                             (a a)
                             (e (find-subset a x))
                             (x y))))

(%autoprove superset-of-somep-when-subsetp-two-alt)
(%autoprove superset-of-somep-when-superset-of-somep-of-smaller     (%cdr-induction x))
(%autoprove superset-of-somep-when-superset-of-somep-of-smaller-alt (%cdr-induction x))


(%deflist all-superset-of-somep (x ys)
          (superset-of-somep x ys))

(%autoprove all-superset-of-somep-of-list-fix-two               (%cdr-induction x))
(%autoprove all-superset-of-somep-of-cons-two                   (%cdr-induction x))
(%autoprove all-superset-of-somep-of-all-two                    (%cdr-induction x))
(%autoprove all-superset-of-somep-of-all-two-alt                (%cdr-induction x))
(%autoprove all-superset-of-somep-of-rev-two                    (%cdr-induction x))
(%autoprove all-superset-of-somep-when-subsetp-two              (%cdr-induction x))
(%autoprove all-superset-of-somep-when-subsetp-two-alt          (%cdr-induction x))
(%autoprove all-superset-of-somep-of-cons-two-when-irrelevant   (%cdr-induction x))
(%autoprove all-superset-of-somep-of-app-two-when-irrelevant    (%cdr-induction y))
(%autoprove superset-of-somep-when-all-superset-of-somep        (%cdr-induction x))
(%autoprove superset-of-somep-when-all-superset-of-somep-alt)
(%autoprove all-superset-of-somep-is-reflexive                  (%cdr-induction x))
(%autoprove all-superset-of-somep-is-transitive                 (%cdr-induction x))
(%autoprove all-superset-of-somep-of-remove-duplicates-list     (%cdr-induction x))
(%autoprove all-superset-of-somep-of-remove-duplicates-list-gen (%cdr-induction x))


(%autoadmit remove-supersets1)

(%autoprove remove-supersets1-when-not-consp                  (%restrict default remove-supersets1 (equal todo 'x)))
(%autoprove remove-supersets1-of-cons                         (%restrict default remove-supersets1 (equal todo '(cons a x))))
(%autoprove true-listp-of-remove-supersets1                   (%autoinduct remove-supersets1 x done))
(%autoprove uniquep-of-remove-supersets1                      (%autoinduct remove-supersets1 todo done))
(%autoprove all-superset-of-somep-of-remove-supersets1        (%autoinduct remove-supersets1 todo done))
(%autoprove cons-listp-when-not-superset-of-some-is-non-consp (%cdr-induction x))
(%autoprove cons-listp-of-remove-supersets1                   (%autoinduct remove-supersets1 todo done))



(%autoadmit remove-supersets)
(%autoprove true-listp-of-remove-supersets                (%enable default remove-supersets))
(%autoprove all-superset-of-somep-of-remove-supersets     (%enable default remove-supersets))
(%autoprove all-superset-of-somep-of-remove-supersets-gen (%enable default remove-supersets))
(%autoprove cons-listp-of-remove-supersets                (%enable default remove-supersets))



(%autoadmit subset-of-somep)
(%autoprove subset-of-somep-when-not-consp         (%restrict default subset-of-somep (equal x 'x)))
(%autoprove subset-of-somep-of-cons                (%restrict default subset-of-somep (equal x '(cons b x))))
(%autoprove booleanp-of-subset-of-somep            (%cdr-induction x))
(%autoprove subset-of-somep-of-list-fix-one        (%cdr-induction x))
(%autoprove subset-of-somep-of-list-fix-two        (%cdr-induction x))
(%autoprove subset-of-somep-of-app                 (%cdr-induction x))
(%autoprove subset-of-somep-of-rev                 (%cdr-induction x))
(%autoprove memberp-when-not-subset-of-somep-cheap (%cdr-induction x))
(%autoprove subset-of-somep-when-obvious           (%cdr-induction x))
(%autoprove subset-of-somep-when-obvious-alt)


(%autoadmit find-superset)

(%autoprove find-superset-when-not-consp       (%restrict default find-superset (equal x 'x)))
(%autoprove find-superset-of-cons              (%restrict default find-superset (equal x '(cons b x))))
(%autoprove find-superset-of-list-fix-one      (%cdr-induction x))
(%autoprove find-superset-of-list-fix-two      (%cdr-induction x))
(%autoprove find-superset-of-rev-one           (%cdr-induction x))
(%autoprove subsetp-of-find-superset           (%cdr-induction x))
(%autoprove memberp-of-find-superset           (%cdr-induction x))
(%autoprove subset-of-somep-when-find-superset (%cdr-induction x))
(%autoprove find-superset-when-subsetp-two     (%cdr-induction x))

(%autoprove subset-of-somep-when-subsetp-two
            (%disable default subset-of-somep-when-obvious subset-of-somep-when-obvious-alt)
            (%use (%instance (%thm subset-of-somep-when-obvious)
                             (a a)
                             (e (find-superset a x))
                             (x y))))

(%autoprove subset-of-somep-when-subsetp-two-alt)
(%autoprove subset-of-somep-when-subset-of-somep-of-smaller     (%cdr-induction x))
(%autoprove subset-of-somep-when-subset-of-somep-of-smaller-alt (%cdr-induction x))


(%deflist all-subset-of-somep (x ys)
          (subset-of-somep x ys))

(%autoprove all-subset-of-somep-of-list-fix-two               (%cdr-induction x))
(%autoprove all-subset-of-somep-of-cons-two                   (%cdr-induction x))
(%autoprove all-subset-of-somep-of-all-two                    (%cdr-induction x))
(%autoprove all-subset-of-somep-of-all-two-alt                (%cdr-induction x))
(%autoprove all-subset-of-somep-of-rev-two                    (%cdr-induction x))
(%autoprove all-subset-of-somep-when-subsetp-two              (%cdr-induction x))
(%autoprove all-subset-of-somep-when-subsetp-two-alt          (%cdr-induction x))
(%autoprove all-subset-of-somep-of-cons-two-when-irrelevant   (%cdr-induction x))
(%autoprove all-subset-of-somep-of-app-two-when-irrelevant    (%cdr-induction y))
(%autoprove subset-of-somep-when-all-subset-of-somep          (%cdr-induction x))
(%autoprove subset-of-somep-when-all-subset-of-somep-alt)
(%autoprove all-subset-of-somep-is-reflexive                  (%cdr-induction x))
(%autoprove all-subset-of-somep-is-transitive                 (%cdr-induction x))
(%autoprove all-subset-of-somep-of-remove-duplicates-list     (%cdr-induction x))
(%autoprove all-subset-of-somep-of-remove-duplicates-list-gen (%cdr-induction x))


(%ensure-exactly-these-rules-are-missing "../../utilities/extended-subsets")