1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "extended-subsets")
(include-book "mergesort")
(%interactive)
(%deflist ordered-list-listp (x)
(ordered-listp x))
(%defprojection :list (mergesort-list x)
:element (mergesort x)
:nil-preservingp t)
(%autoprove ordered-list-listp-of-mergesort-list
(%cdr-induction x))
(%autoprove superset-of-somep-of-mergesort-left
(%cdr-induction x))
(%autoprove superset-of-somep-of-mergesort-list-right
(%cdr-induction x))
(%autoadmit fast-superset-of-somep)
(%autoprove fast-superset-of-somep-when-not-consp
(%restrict default fast-superset-of-somep (equal x 'x)))
(%autoprove fast-superset-of-somep-of-cons
(%restrict default fast-superset-of-somep (equal x '(cons b x))))
(%autoprove fast-superset-of-somep-removal
(%cdr-induction x)
(%enable default
fast-superset-of-somep-when-not-consp
fast-superset-of-somep-of-cons))
(%autoadmit fast-remove-supersets1)
(%autoprove fast-remove-supersets1-when-not-consp
(%restrict default fast-remove-supersets1 (equal todo-sorted 'todo-sorted)))
(%autoprove fast-remove-supersets1-of-cons
(%restrict default fast-remove-supersets1 (equal todo-sorted '(cons a todo-sorted))))
(%autoprove fast-remove-supersets1-removal
(%autoinduct remove-supersets1 todo done)
(%enable default
fast-remove-supersets1-when-not-consp
fast-remove-supersets1-of-cons))
(%autoadmit cdr-10-times)
(%autoadmit cdr-50-times)
(%autoadmit cdr-250-times)
(%autoadmit len-over-250p)
(%autoadmit some-len-over-250p)
(%autoadmit fast-remove-supersets)
(%autoprove fast-remove-supersets-removal
(%enable default
fast-remove-supersets
remove-supersets)
(%disable default
fast-remove-supersets1-removal
[outside]fast-remove-supersets1-removal)
(%use (%instance (%thm fast-remove-supersets1-removal)
(todo x)
(done nil))))
(%ensure-exactly-these-rules-are-missing "../../utilities/fast-remove-supersets")
|