1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "utilities")
(include-book "total-order")
(%interactive)
(%autoprove mapp-of-rev
(%cdr-induction x))
(%autoadmit halve-list-aux)
(%autoadmit halve-list)
(%autoprove halve-list-aux-when-not-consp
(%autoinduct halve-list-aux)
(%restrict default halve-list-aux (equal x 'x)))
(%autoprove halve-list-aux-when-not-consp-of-cdr
(%autoinduct halve-list-aux)
(%restrict default halve-list-aux (equal x 'x)))
(%autoprove halve-list-aux-append-property
(%autoinduct halve-list-aux)
(%restrict default halve-list-aux (equal x 'x)))
(%autoprove halve-list-aux-len-1
(%autoinduct halve-list-aux)
(%restrict default halve-list-aux (equal x 'x)))
(%autoprove halve-list-aux-len-2
(%autoinduct halve-list-aux)
(%restrict default halve-list-aux (equal x 'x)))
(%autoprove halve-list-correct
(%enable default halve-list))
(%autoprove halve-list-len-1
(%enable default halve-list)
(%disable default halve-list-aux-len-1)
(%use (%instance (%thm halve-list-aux-len-1)
(mid x) (x x) (acc nil))))
(%autoprove halve-list-len-2
(%enable default halve-list))
(%autoprove halve-list-membership-property
(%disable default memberp-of-app)
(%use (%instance (%thm memberp-of-app)
(x (rev (car (halve-list x))))
(y (cdr (halve-list x))))))
(%autoprove halve-list-lookup-property
(%disable default lookup-of-app)
(%use (%instance (%thm lookup-of-app)
(x (rev (car (halve-list x))))
(y (cdr (halve-list x))))))
(%autoprove mapp-of-first-of-halve-list-aux-1
(%autoinduct halve-list-aux)
(%restrict default halve-list-aux (equal x 'x)))
(%autoprove mapp-of-first-of-halve-list-aux-2
(%autoinduct halve-list-aux)
(%restrict default halve-list-aux (equal x 'x)))
(%autoprove mapp-of-first-of-halve-list-1
(%enable default halve-list))
(%autoprove mapp-of-first-of-halve-list-2
(%enable default halve-list))
(%autoadmit ordered-listp)
(%autoprove ordered-listp-when-not-consp
(%restrict default ordered-listp (equal x 'x)))
(%autoprove ordered-listp-when-not-consp-of-cdr
(%restrict default ordered-listp (equal x 'x)))
(%autoprove ordered-listp-of-cons
(%restrict default ordered-listp (equal x '(cons a x))))
(%autoprove booleanp-of-ordered-listp
(%cdr-induction x))
(%autoprove lemma-for-uniquep-when-ordered-listp
(%cdr-induction x))
(%autoprove uniquep-when-ordered-listp
(%cdr-induction x)
(%enable default lemma-for-uniquep-when-ordered-listp))
(%autoadmit merge-lists)
(%autoprove merge-lists-when-not-consp-left
(%restrict default merge-lists (and (equal x 'x) (equal y 'y))))
(%autoprove merge-lists-when-not-consp-right
(%restrict default merge-lists (and (equal x 'x) (equal y 'y))))
(%autoprove merge-lists-of-cons-and-cons
(%restrict default merge-lists (and (or (equal x '(cons a x))
(equal x '(cons b x)))
(or (equal y '(cons a y))
(equal y '(cons b y))))))
(%autoprove consp-of-merge-lists
(%autoinduct merge-lists)
(%restrict default merge-lists (and (equal x 'x) (equal y 'y))))
(%autoprove smaller-than-merge-lists
(%autoinduct merge-lists)
(%restrict default merge-lists (and (equal x 'x) (equal y 'y))))
(%autoprove ordered-listp-of-merge-lists
(%autoinduct merge-lists)
(%restrict default merge-lists (and (equal x 'x) (equal y 'y))))
(%autoprove memberp-of-merge-lists
(%autoinduct merge-lists)
(%restrict default merge-lists (and (equal x 'x) (equal y 'y))))
(%autoadmit mergesort)
(%autoprove mergesort-when-not-consp
(%restrict default mergesort (equal x 'x)))
(%autoprove mergesort-when-not-consp-of-cdr
(%restrict default mergesort (equal x 'x)))
(%autoprove ordered-listp-of-mergesort
(%autoinduct mergesort)
(%restrict default mergesort (equal x 'x)))
(%autoprove uniquep-of-mergesort
(%enable default uniquep-when-ordered-listp))
(%autoprove lemma-for-memberp-of-mergesort
(%use (%instance (%thm halve-list-membership-property))))
(%autoprove lemma-2-for-memberp-of-mergesort
(%use (%instance (%thm halve-list-membership-property))))
(%autoprove memberp-of-mergesort
(%autoinduct mergesort)
(%restrict default mergesort (equal x 'x))
(%auto :strategy (cleanup split urewrite crewrite))
(%enable default
lemma-for-memberp-of-mergesort
lemma-2-for-memberp-of-mergesort))
(%autoprove subsetp-of-mergesort-left
(%use (%instance (%thm subsetp-badguy-membership-property)
(x (mergesort x))
(y y)))
(%use (%instance (%thm subsetp-badguy-membership-property)
(x x)
(y y))))
(%autoprove subsetp-of-mergesort-right
(%use (%instance (%thm subsetp-badguy-membership-property)
(x x)
(y (mergesort y)))))
(%autoadmit ordered-list-subsetp)
(%autoprove booleanp-of-ordered-list-subsetp
(%autoinduct ordered-list-subsetp)
(%restrict default ordered-list-subsetp (and (equal x 'x) (equal y 'y))))
(%autoprove lemma-1-for-ordered-list-subsetp-property)
(%autoprove lemma-2-for-ordered-list-subsetp-property)
(%autoprove lemma-3-for-ordered-list-subsetp-property
(%cdr-induction x)
(%enable default
lemma-2-for-ordered-list-subsetp-property
lemma-for-uniquep-when-ordered-listp))
(%autoprove lemma-4-for-ordered-list-subsetp-property
(%autoinduct ordered-listp x)
(%enable default
lemma-1-for-ordered-list-subsetp-property
lemma-2-for-ordered-list-subsetp-property
lemma-3-for-ordered-list-subsetp-property))
(%autoprove ordered-list-subsetp-property
(%autoinduct ordered-list-subsetp x y)
(%restrict default ordered-list-subsetp (and (equal x 'x) (equal y 'y)))
(%enable default
lemma-1-for-ordered-list-subsetp-property
lemma-2-for-ordered-list-subsetp-property
lemma-3-for-ordered-list-subsetp-property
lemma-4-for-ordered-list-subsetp-property))
|