1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "deflist")
(include-book "cons-listp")
(%interactive)
(%deflist member-of-nonep (e x)
(memberp e x)
:negatedp t)
(%autoadmit lists-lookup)
(%autoprove lists-lookup-when-not-consp (%restrict default lists-lookup (equal xs 'xs)))
(%autoprove lists-lookup-of-cons (%restrict default lists-lookup (equal xs '(cons x xs))))
(%autoprove lists-lookup-of-list-fix (%cdr-induction xs))
(%autoprove lists-lookup-of-app (%cdr-induction xs))
(%autoprove consp-of-lists-lookup (%cdr-induction xs))
(%autoprove lists-lookup-under-iff (%cdr-induction xs))
(%autoprove lists-lookup-of-rev-under-iff (%cdr-induction xs))
(%autoprove memberp-of-element-in-lists-lookup (%cdr-induction xs))
(%autoprove memberp-of-in-lists-lookup-in-lists (%cdr-induction xs))
(%deflist none-consp (x)
(consp x)
:negatedp t)
(%deflist disjoint-from-allp (e x)
(disjointp e x))
(%autoprove disjoint-from-allp-when-not-consp-left (%cdr-induction x))
(%autoprove disjoint-from-allp-of-cons-left (%cdr-induction x))
(%autoprove disjoint-from-allp-of-cdr-left)
(%autoprove member-of-nonep-when-memberp-of-disjoint-from-allp (%cdr-induction x))
(%autoprove member-of-nonep-when-memberp-of-disjoint-from-allp-alt)
(%autoprove disjointp-when-memberp-of-disjoint-from-allp-one (%cdr-induction ys))
(%autoprove disjointp-when-memberp-of-disjoint-from-allp-two (%cdr-induction ys))
(%autoprove disjointp-when-memberp-of-disjoint-from-allp-three)
(%autoprove disjointp-when-memberp-of-disjoint-from-allp-four)
(%autoprove disjoint-from-allp-when-subsetp-of-disjoint-from-allp-one (%cdr-induction x))
(%autoprove disjoint-from-allp-when-subsetp-of-disjoint-from-allp-two)
(%autoprove disjoint-from-allp-when-subsetp-of-disjoint-from-allp-three (%cdr-induction ys))
(%autoprove disjoint-from-allp-when-subsetp-of-disjoint-from-allp-four)
(%autoprove disjoint-from-allp-when-memberp (%cdr-induction ys))
(%autoprove disjoint-from-allp-of-list-fix-left)
(%autoprove disjoint-from-allp-of-app-left (%cdr-induction x))
(%autoprove disjoint-from-allp-of-rev-left (%cdr-induction x))
(%autoprove remove-all-when-disjoint-from-allp-and-cons-listp (%cdr-induction x))
(%autoadmit all-disjoint-from-allp)
(%autoprove all-disjoint-from-allp-when-not-consp-one (%restrict default all-disjoint-from-allp (equal xs 'xs)))
(%autoprove all-disjoint-from-allp-of-cons-one (%restrict default all-disjoint-from-allp (equal xs '(cons x xs))))
(%autoprove all-disjoint-from-allp-when-not-consp-two (%cdr-induction xs))
(%autoprove all-disjoint-from-allp-of-cons-two (%cdr-induction xs))
(%autoprove booleanp-of-all-disjoint-from-allp (%cdr-induction xs))
(%autoprove symmetry-of-all-disjoint-from-allp (%cdr-induction xs))
(%autoprove all-disjoint-from-allp-of-list-fix-two (%cdr-induction ys))
(%autoprove all-disjoint-from-allp-of-list-fix-one)
(%autoprove all-disjoint-from-allp-of-app-two (%cdr-induction ys))
(%autoprove all-disjoint-from-allp-of-app-one)
(%autoprove all-disjoint-from-allp-of-rev-two (%cdr-induction ys))
(%autoprove all-disjoint-from-allp-of-rev-one)
(%autoprove all-disjoint-from-allp-when-subsetp-of-other-one (%cdr-induction xs))
(%autoprove all-disjoint-from-allp-when-subsetp-of-other-two)
(%autoprove disjoint-from-allp-when-memberp-of-all-disjoint-from-allp-one (%cdr-induction xs))
(%autoprove disjoint-from-allp-when-memberp-of-all-disjoint-from-allp-two (%cdr-induction ys))
(%autoprove disjointp-when-members-of-all-disjoint-from-allp (%cdr-induction xs))
(%autoprove all-disjoint-from-allp-when-subsetp-of-all-disjoint-one (%cdr-induction xs))
(%autoprove all-disjoint-from-allp-when-subsetp-of-all-disjoint-two)
(%autoprove all-disjoint-from-allp-when-subsetp-of-all-disjoint-three (%cdr-induction ys))
(%autoprove all-disjoint-from-allp-when-subsetp-of-all-disjoint-four)
(%autoadmit mutually-disjointp)
(%autoprove mutually-disjointp-when-not-consp (%restrict default mutually-disjointp (equal xs 'xs)))
(%autoprove mutually-disjointp-of-cons (%restrict default mutually-disjointp (equal xs '(cons x xs))))
(%autoprove booleanp-of-mutually-disjointp (%cdr-induction xs))
(%autoprove mutually-disjointp-of-cdr-when-mutually-disjointp)
(%autoprove mutually-disjointp-of-list-fix (%cdr-induction x))
(%autoprove mutually-disjointp-of-app (%cdr-induction x))
(%autoprove mutually-disjointp-of-rev (%cdr-induction x))
(%autoprove mutually-disjointp-of-remove-all-when-mutually-disjointp (%cdr-induction x))
(%autoprove disjointp-when-both-membersp-of-mutually-disjointp (%cdr-induction xs))
(%autoadmit disjoint-from-allp-badguy)
(defsection disjoint-from-allp-badguy-property
;; BOZO the lemmas need to be unlocalized, and the defthm needs to be added to
;; :rule-classes nil instead of just using defthmd, since it screws up autoprove
;; to have dual conclusions. Actually, do we want to switch this the way that we
;; have done for subsetp-badguy and use the iff rule or whatever?
(%prove (%rule disjoint-from-allp-badguy-property
:hyps (list (%hyp (not (disjoint-from-allp x ys))))
:lhs (and (memberp (disjoint-from-allp-badguy x ys) ys)
(not (disjointp x (disjoint-from-allp-badguy x ys))))
:rhs t))
(%cdr-induction ys)
(%restrict default disjoint-from-allp-badguy (equal ys 'ys))
(%auto)
(%qed))
(%autoprove disjoint-from-allp-of-remove-all-when-memberp-of-mutually-disjointp
(%use (%instance (%thm disjoint-from-allp-badguy-property)
(x x)
(ys (remove-all x xs)))))
(%autoprove member-of-nonep-of-remove-all-when-mutually-disjointp
(%cdr-induction xs))
(%autoprove disjoint-from-allp-when-subsetp-of-remove-all-of-mutually-disjointp)
(%autoprove disjoint-from-allp-when-subsetp-of-remove-all-of-mutually-disjointp-two)
(%autoprove lists-lookup-of-rev-when-mutually-disjointp (%cdr-induction xs))
(%autoprove lists-lookup-when-memberp-in-lists-lookup-when-mutually-disjointp (%cdr-induction xs))
(%autoprove lists-lookup-of-remove-all-from-mutually-disjointp
(%cdr-induction xs))
(%autoprove lists-lookup-when-mutually-disjointp
(%cdr-induction xs))
(%autoprove lists-lookup-of-car-of-lists-lookup
(%use (%instance (%thm lists-lookup-when-mutually-disjointp)
(x (lists-lookup a xs))
(b (car (lists-lookup a xs))))))
(%autoprove member-of-nonep-when-member-of-lists-lookup
(%cdr-induction xs))
(%autoprove member-of-nonep-when-member-of-cdr-of-lists-lookup
(%use (%thm member-of-nonep-when-member-of-lists-lookup)))
(%autoprove member-of-nonep-of-car-of-lists-lookup
(%cdr-induction xs))
(%autoprove member-of-lists-lookup-when-members-of-mutually-disjointp
(%auto)
(%fertilize (lists-lookup a xs) (lists-lookup c xs)))
(%deflist disjoint-from-nonep (e x)
(disjointp e x)
:negatedp t)
(%autoprove disjoint-from-nonep-when-not-consp-left (%cdr-induction x))
(%autoprove disjoint-from-nonep-of-cons-left (%cdr-induction x))
(%autoprove disjoint-from-nonep-of-list-fix-left (%cdr-induction x))
(%autoprove disjoint-from-nonep-of-app-left-one (%cdr-induction x))
(%autoprove disjoint-from-nonep-of-app-left-two (%cdr-induction x))
(%autoprove disjoint-from-nonep-of-rev-left (%cdr-induction x))
(%ensure-exactly-these-rules-are-missing "../../utilities/mutually-disjoint")
|