1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "primitives-1")
(%interactive)
;; BOZO reorganize these properly
(%autoprove natp-of-nfix
(%enable default nfix))
(%autoprove nfix-when-natp-cheap
(%enable default nfix))
(%autoprove nfix-when-not-natp-cheap
(%enable default nfix))
(%autoprove equal-of-nfix-of-self)
(defsection [outside]equal-of-nfix-of-self-alt
;; Can't rely on term-order for outside-in.
(%prove (%rule [outside]equal-of-nfix-of-self-alt
:type outside
:lhs (equal (nfix x) x)
:rhs (natp x)))
(%auto)
(%qed)
(%enable default [outside]equal-of-nfix-of-self-alt))
(%autoprove equal-of-zero-and-nfix
(%enable default nfix zp))
(defsection [outside]equal-of-zero-and-nfix-alt
;; Can't rely on term-order for outside-in.
(%prove (%rule [outside]equal-of-zero-and-nfix-alt
:type outside
:lhs (equal (nfix x) 0)
:rhs (zp x)))
(%auto)
(%qed)
(%enable default [outside]equal-of-zero-and-nfix-alt))
(%autoprove zp-when-natp-cheap
(%enable default zp))
(%autoprove zp-when-not-natp-cheap
(%enable default zp))
(%autoprove zp-of-nfix
(%enable default nfix))
(%autoprove nfix-of-nfix)
(%autoprove natp-when-not-zp-cheap)
(%autoprove natp-when-zp-cheap)
(%autoprove nfix-when-zp-cheap)
(%autoprove equal-of-nfix-with-positive-constant
(%enable default nfix))
;; Addition.
(%autoprove natp-of-plus
(%use (build.axiom (axiom-natp-of-plus))))
(%autoprove plus-under-iff
(%disable default natp-of-plus [outside]natp-of-plus)
(%use (%thm natp-of-plus)))
(%autoprove commutativity-of-+
(%use (build.axiom (axiom-commutativity-of-+))))
(%autoprove associativity-of-+
(%use (build.axiom (axiom-associativity-of-+))))
(%disable default [outside]associativity-of-+) ;; Interferes with constant gathering
(%autoprove commutativity-of-+-two
(%use (%instance (build.axiom (axiom-commutativity-of-+)) (b (+ b c)))))
(%autoprove gather-constants-from-plus-of-plus)
(%autoprove plus-completion-left
(%use (build.axiom (axiom-plus-when-not-natp-left)))
(%use (build.instantiation (build.axiom (axiom-plus-of-zero-when-natural))
(list (cons 'a 'b))))
(%use (build.axiom (axiom-plus-when-not-natp-left)))
(%use (build.instantiation (build.axiom (axiom-plus-when-not-natp-left))
(list (cons 'a 'b)
(cons 'b ''0)))))
(%autoprove plus-completion-right
(%disable default nfix plus-completion-left)
(%use (%instance (%thm plus-completion-left) (a b) (b a))))
(%autoprove plus-of-zero-right
(%enable default plus-completion-right)
(%use (build.axiom (axiom-plus-of-zero-when-natural))))
(%autoprove plus-of-zero-left
(%use (%instance (%thm commutativity-of-+) (a 0) (b a))))
(%autoprove plus-when-zp-left-cheap
(%use (%thm plus-completion-left)))
(%autoprove plus-when-zp-right-cheap
(%use (%thm plus-completion-right)))
(%autoprove plus-of-nfix-left
(%enable default nfix))
(%autoprove plus-of-nfix-right
(%enable default nfix))
;; Less-Than Relation.
(%autoprove booleanp-of-<
(%use (build.axiom (axiom-<-nil-or-t))))
(%autoprove irreflexivity-of-<
(%use (build.axiom (axiom-irreflexivity-of-<))))
(%autoprove less-of-zero-right
(%use (build.axiom (axiom-less-of-zero-right))))
(%autoprove less-completion-right
(%use (build.axiom (axiom-less-completion-right))))
(%autoprove less-when-zp-right-cheap
(%use (%thm less-completion-right)))
(%autoprove less-of-zero-left
(%use (build.axiom (axiom-less-of-zero-left-when-natp))))
(%autoprove less-completion-left
(%use (build.axiom (axiom-less-completion-left))))
(%autoprove less-when-zp-left-cheap
(%use (%thm less-completion-left)))
(%autoprove less-of-nfix-left
(%enable default nfix))
(%autoprove less-of-nfix-right
(%enable default nfix))
(%autoprove transitivity-of-<
(%use (build.axiom (axiom-transitivity-of-<))))
(%autoprove antisymmetry-of-<
(%disable default transitivity-of-<)
(%use (%instance (%thm transitivity-of-<) (a a) (b b) (c a))))
(%autoprove trichotomy-of-<
(%use (build.axiom (axiom-trichotomy-of-<-when-natp))))
(%autoprove one-plus-trick
(%use (build.axiom (axiom-one-plus-trick))))
(%autoprove less-of-one-right
(%use (build.axiom (axiom-natural-less-than-one-is-zero))))
(%autoprove less-of-one-left
(%enable default zp))
(%autoprove transitivity-of-<-two
(%enable default nfix)
(%disable default trichotomy-of-<)
(%use (%instance (%thm trichotomy-of-<) (a b) (b c))))
(%autoprove transitivity-of-<-three)
(%autoprove transitivity-of-<-four)
|