1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "primitives-5")
(%interactive)
(%autoprove not-equal-when-less)
(%autoprove not-equal-when-less-two)
(%autoprove |a <= d, b+c <= e --> b+a+c <= d+e|)
(%autoprove |(< (+ a b) (+ c b d))|)
(%autoprove |(< (+ a b c)) (+ d c))|
(%disable default
|(< (+ b a c) (+ d a))|
|[OUTSIDE](< (+ b a c) (+ d a))|)
(%use (%instance (%thm |(< (+ b a c) (+ d a))|)
(a c) (b a) (c b) (d d))))
(%autoprove |a <= b, b <= c --> a < 1+c|)
(%autoprove |b <= c, a <= b --> a < 1+c|)
(%autoprove natp-of-max)
(%autoprove equal-of-max-and-zero)
(%autoprove max-of-zero-left)
(%autoprove max-of-zero-right)
(%autoprove natp-of-min)
(%autoprove equal-of-min-and-zero)
(%autoprove min-of-zero-left)
(%autoprove min-of-zero-right)
;; Special admission for ordp, ord<, and rank. We don't use %autoadmit, instead we add
;; their definitions as axioms, which we convert into theorems now.
(defsection ordp
(%prove (%rule ordp
:lhs (ordp x)
:rhs (if (not (consp x))
(natp x)
(and (consp (car x))
(ordp (car (car x)))
(not (equal (car (car x)) 0))
(< 0 (cdr (car x)))
(ordp (cdr x))
(if (consp (cdr x))
(ord< (car (car (cdr x))) (car (car x)))
t)))))
(%use (build.axiom (definition-of-ordp)))
(%cleanup)
(%qed)
;; Don't enable; definition
)
(defsection ord<
(%prove (%rule ord<
:lhs (ord< x y)
:rhs (cond ((not (consp x))
(if (consp y) t (< x y)))
((not (consp y)) nil)
((not (equal (car (car x)) (car (car y))))
(ord< (car (car x)) (car (car y))))
((not (equal (cdr (car x)) (cdr (car y))))
(< (cdr (car x)) (cdr (car y))))
(t (ord< (cdr x) (cdr y))))))
(%use (build.axiom (definition-of-ord<)))
(%cleanup)
(%qed)
;; Don't enable; definition
)
(defsection rank
(%prove (%rule rank
:lhs (rank x)
:rhs (if (consp x)
(+ 1 (+ (rank (car x))
(rank (cdr x))))
0)))
(%use (build.axiom (definition-of-rank)))
(%cleanup)
(%qed)
;; Don't enable; definition
)
;; NOTE: we had to move booleanp-of-ord< after the rank stuff.
;; NOTE: we had to move booleanp-of-ordp after the rank stuff.
(%autoprove ord<-when-naturals
(%restrict default ord< (equal x 'x)))
(%autoprove ordp-when-natp
(%restrict default ordp (equal x 'x)))
(%autoprove natp-of-rank
(%restrict default rank (equal x 'x)))
(%autoprove rank-when-not-consp
(%restrict default rank (equal x 'x)))
(%autoprove rank-of-cons
(%restrict default rank (equal x '(cons x y))))
(%autoprove |(< 0 (rank x))|
(%restrict default rank (equal x 'x)))
(%autoprove ordp-of-rank)
(%autoprove rank-of-car
(%restrict default rank (equal x 'x)))
(%autoprove rank-of-car-weak
(%restrict default rank (equal x 'x)))
(%autoprove rank-of-cdr
(%restrict default rank (equal x 'x)))
(%autoprove rank-of-cdr-weak
(%restrict default rank (equal x 'x)))
(%autoprove rank-of-second)
(%autoprove rank-of-second-weak
(%use (%instance (%thm transitivity-of-<-three)
(a (rank (car (cdr x))))
(b (rank (cdr x)))
(c (rank x)))))
(%autoprove rank-of-third)
(%autoprove rank-of-third-weak
(%use (%instance (%thm transitivity-of-<-three)
(a (rank (third x)))
(b (rank (cdr x)))
(c (rank x)))))
(%autoprove rank-of-fourth)
(%autoprove rank-of-fourth-weak
(%use (%instance (%thm transitivity-of-<-four)
(a (rank (fourth x)))
(b (rank (cdr x)))
(c (rank x)))))
(%autoprove booleanp-of-ord<
;; Note. This is a simpler induction scheme than ACL2 picks. Originally I
;; used ACL2's induction scheme, but with this simpler scheme the proof was
;; about 1/5 the size.
(%induct (rank x)
((not (consp x))
nil)
((consp x)
(((x (cdr x)) (y (cdr y)))
((x (car (car x))) (y (car (car y)))))))
(%split)
(%restrict default ord< (equal x 'x) (equal y 'y)))
(%autoprove booleanp-of-ordp
;; Again we use a simpler induction scheme than ACL2.
(%induct (rank x)
((not (consp x))
nil)
((consp x)
(((x (car (car x))))
((x (cdr x))))))
(%split)
(%restrict default ordp (equal x 'x)))
;; We don't need an equivalent of ord<-is-well-founded; that's just to instruct ACL2
;; about which well founded relation to use.
(%autoadmit two-nats-measure)
(%autoprove ordp-of-two-nats-measure
(%enable default two-nats-measure)
(%restrict default ordp (equal x '(CONS (CONS '1 (+ '1 A)) (NFIX B)))))
(%autoprove ord<-of-two-nats-measure
(%enable default two-nats-measure)
(%restrict default ord< (equal x '(CONS (CONS '1 (+ '1 A1)) (NFIX B1)))))
(%autoadmit three-nats-measure)
(%autoprove ordp-of-three-nats-measure
(%enable default three-nats-measure)
(%restrict default ordp (or (equal x '(CONS (CONS '2 (+ '1 A)) (CONS (CONS '1 (+ '1 B)) (NFIX C))))
(equal x '(CONS (CONS '1 (+ '1 B)) (NFIX C))))))
(%autoprove ord<-of-three-nats-measure
(%enable default three-nats-measure)
(%restrict default ord< (or (equal x '(CONS (CONS '2 (+ '1 A1)) (CONS (CONS '1 (+ '1 B1)) (NFIX C1))))
(equal x '(CONS (CONS '1 (+ '1 B1)) (NFIX C1))))))
|