1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "utilities-1")
(%interactive)
(defsection equal-of-cdr-and-self
;; BOZO I don't have this rule in ACL2. Maybe I should add it?
;; BOZO Move this to primitives somewhere
(%prove (%rule equal-of-cdr-and-self
:lhs (equal x (cdr x))
:rhs (not x)))
(local (%disable default rank-of-cdr [outside]rank-of-cdr))
(%use (%instance (%thm rank-of-cdr)))
(%auto)
(%qed)
(%enable default equal-of-cdr-and-self))
(%autoadmit app)
(%autoprove app-when-not-consp
(%restrict default app (equal x 'x)))
(%autoprove app-of-cons
(%restrict default app (equal x '(cons a x))))
(%autoprove app-of-list-fix-one
(%cdr-induction x))
(%autoprove app-of-list-fix-two
(%cdr-induction x))
(%autoprove app-when-not-consp-two
(%cdr-induction x))
(%autoprove app-of-singleton-list-cheap)
(%autoprove true-listp-of-app
(%cdr-induction x))
(%autoprove app-of-app
(%cdr-induction x))
(%autoprove memberp-of-app
(%cdr-induction x))
(%autoprove consp-of-app)
(%autoprove app-under-iff)
(%autoprove len-of-app
(%cdr-induction x))
(%autoprove subsetp-of-app-one
(%cdr-induction x))
(%autoprove subsetp-of-app-two
(%use (%instance (%thm subsetp-badguy-membership-property) (x x) (y (app x y)))))
(%autoprove subsetp-of-app-three
(%use (%instance (%thm subsetp-badguy-membership-property) (x y) (y (app x y)))))
(%autoprove subsetp-of-app-when-subsets
(%use (%instance (%thm subsetp-badguy-membership-property) (x (app x w)) (y (app y z)))))
(%autoprove subsetp-of-symmetric-apps
(%use (%instance (%thm subsetp-badguy-membership-property) (x (app x y)) (y (app y x)))))
(%autoprove weirdo-rule-for-subsetp-of-app-one)
(%autoprove weirdo-rule-for-subsetp-of-app-two)
(%autoprove cdr-of-app-when-x-is-consp)
(%autoprove car-of-app-when-x-is-consp)
(%autoprove memberp-of-app-onto-singleton)
(%autoprove subsetp-of-app-onto-singleton-with-cons
(%use (%instance (%thm subsetp-badguy-membership-property) (x (app x (list a))) (y (cons a x)))))
(%autoprove subsetp-of-cons-with-app-onto-singleton
(%use (%instance (%thm subsetp-badguy-membership-property) (x (cons a x)) (y (app x (list a))))))
(%autoprove subsetp-of-cons-of-app-of-app-one
(%use (%instance (%thm subsetp-badguy-membership-property) (x x) (y (cons b (app y (app x z)))))))
(%autoprove subsetp-of-cons-of-app-of-app-two
(%use (%instance (%thm subsetp-badguy-membership-property) (x x) (y (cons a (app y (app z x)))))))
(%autoprove subsetp-of-app-of-app-when-subsetp-one
(%use (%instance (%thm subsetp-badguy-membership-property) (x x) (y (app a (app y b))))))
(%autoprove subsetp-of-app-of-app-when-subsetp-two
(%use (%instance (%thm subsetp-badguy-membership-property) (x x) (y (app a (app b y))))))
(%autoprove app-of-cons-of-list-fix-right
(%cdr-induction x))
(%autoprove app-of-cons-when-not-consp-right
(%cdr-induction x))
(%autoprove equal-of-app-and-app-when-equal-lens
(%cdr-cdr-induction a c))
(%autoprove lemma-for-equal-of-app-and-self
(%cdr-induction x))
(%autoprove equal-of-app-and-self
(%cdr-induction x)
(%enable default lemma-for-equal-of-app-and-self)
(%auto :strategy (cleanup urewrite split crewrite)) ;; elim uglies it up
(%use (%instance (%thm len-of-app)))
(%use (%instance (%thm len-of-app) (x (cdr x))))
(%disable default len-of-app [outside]len-of-app))
|