File: utilities-2.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (143 lines) | stat: -rw-r--r-- 5,058 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
;   Kookamara LLC
;   11410 Windermere Meadows
;   Austin, TX 78759, USA
;   http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
;   Permission is hereby granted, free of charge, to any person obtaining a
;   copy of this software and associated documentation files (the "Software"),
;   to deal in the Software without restriction, including without limitation
;   the rights to use, copy, modify, merge, publish, distribute, sublicense,
;   and/or sell copies of the Software, and to permit persons to whom the
;   Software is furnished to do so, subject to the following conditions:
;
;   The above copyright notice and this permission notice shall be included in
;   all copies or substantial portions of the Software.
;
;   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
;   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
;   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
;   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
;   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
;   FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
;   DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>

(in-package "MILAWA")
(include-book "utilities-1")
(%interactive)

(defsection equal-of-cdr-and-self
  ;; BOZO I don't have this rule in ACL2.  Maybe I should add it?
  ;; BOZO Move this to primitives somewhere
  (%prove (%rule equal-of-cdr-and-self
                 :lhs (equal x (cdr x))
                 :rhs (not x)))
  (local (%disable default rank-of-cdr [outside]rank-of-cdr))
  (%use (%instance (%thm rank-of-cdr)))
  (%auto)
  (%qed)
  (%enable default equal-of-cdr-and-self))

(%autoadmit app)

(%autoprove app-when-not-consp
            (%restrict default app (equal x 'x)))

(%autoprove app-of-cons
            (%restrict default app (equal x '(cons a x))))

(%autoprove app-of-list-fix-one
            (%cdr-induction x))

(%autoprove app-of-list-fix-two
            (%cdr-induction x))

(%autoprove app-when-not-consp-two
            (%cdr-induction x))

(%autoprove app-of-singleton-list-cheap)

(%autoprove true-listp-of-app
            (%cdr-induction x))

(%autoprove app-of-app
            (%cdr-induction x))

(%autoprove memberp-of-app
            (%cdr-induction x))

(%autoprove consp-of-app)

(%autoprove app-under-iff)

(%autoprove len-of-app
            (%cdr-induction x))

(%autoprove subsetp-of-app-one
            (%cdr-induction x))

(%autoprove subsetp-of-app-two
            (%use (%instance (%thm subsetp-badguy-membership-property) (x x) (y (app x y)))))

(%autoprove subsetp-of-app-three
            (%use (%instance (%thm subsetp-badguy-membership-property) (x y) (y (app x y)))))

(%autoprove subsetp-of-app-when-subsets
            (%use (%instance (%thm subsetp-badguy-membership-property) (x (app x w)) (y (app y z)))))

(%autoprove subsetp-of-symmetric-apps
            (%use (%instance (%thm subsetp-badguy-membership-property) (x (app x y)) (y (app y x)))))

(%autoprove weirdo-rule-for-subsetp-of-app-one)
(%autoprove weirdo-rule-for-subsetp-of-app-two)

(%autoprove cdr-of-app-when-x-is-consp)
(%autoprove car-of-app-when-x-is-consp)
(%autoprove memberp-of-app-onto-singleton)

(%autoprove subsetp-of-app-onto-singleton-with-cons
            (%use (%instance (%thm subsetp-badguy-membership-property) (x (app x (list a))) (y (cons a x)))))

(%autoprove subsetp-of-cons-with-app-onto-singleton
            (%use (%instance (%thm subsetp-badguy-membership-property) (x (cons a x)) (y (app x (list a))))))

(%autoprove subsetp-of-cons-of-app-of-app-one
            (%use (%instance (%thm subsetp-badguy-membership-property) (x x) (y (cons b (app y (app x z)))))))

(%autoprove subsetp-of-cons-of-app-of-app-two
            (%use (%instance (%thm subsetp-badguy-membership-property) (x x) (y (cons a (app y (app z x)))))))

(%autoprove subsetp-of-app-of-app-when-subsetp-one
            (%use (%instance (%thm subsetp-badguy-membership-property) (x x) (y (app a (app y b))))))

(%autoprove subsetp-of-app-of-app-when-subsetp-two
            (%use (%instance (%thm subsetp-badguy-membership-property) (x x) (y (app a (app b y))))))

(%autoprove app-of-cons-of-list-fix-right
            (%cdr-induction x))

(%autoprove app-of-cons-when-not-consp-right
            (%cdr-induction x))

(%autoprove equal-of-app-and-app-when-equal-lens
            (%cdr-cdr-induction a c))

(%autoprove lemma-for-equal-of-app-and-self
            (%cdr-induction x))

(%autoprove equal-of-app-and-self
            (%cdr-induction x)
            (%enable default lemma-for-equal-of-app-and-self)
            (%auto :strategy (cleanup urewrite split crewrite)) ;; elim uglies it up
            (%use (%instance (%thm len-of-app)))
            (%use (%instance (%thm len-of-app) (x (cdr x))))
            (%disable default len-of-app [outside]len-of-app))