1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "utilities-5")
(%interactive)
(%autoadmit submapp1)
(%autoprove submapp1-when-not-consp
(%restrict default submapp1 (equal domain 'domain)))
(%autoprove submapp1-of-cons
(%restrict default submapp1 (equal domain '(cons a domain))))
(%autoprove booleanp-of-submapp1
(%cdr-induction domain))
(%autoprove equal-of-lookups-when-memberp-of-submapp1-domain
(%cdr-induction domain))
(%autoprove lookup-when-memberp-of-submapp1
(%use (%instance (%thm equal-of-lookups-when-memberp-of-submapp1-domain))))
(%autoadmit submapp1-badguy)
(%autoprove submapp1-badguy-when-not-consp
(%restrict default submapp1-badguy (equal domain 'domain)))
(%autoprove submapp1-badguy-of-cons
(%restrict default submapp1-badguy (equal domain '(cons a domain))))
(%autoprove submapp1-badguy-membership-property
(%cdr-induction domain)
(%enable default submapp1-badguy-when-not-consp submapp1-badguy-of-cons))
(%autoprove submapp1-badguy-under-iff
(%cdr-induction domain)
(%enable default submapp1-badguy-when-not-consp submapp1-badguy-of-cons))
(%autoprove submapp1-when-submapp1-of-domain-superset-one
(%use (%instance (%thm submapp1-badguy-membership-property) (domain domain1) (x x) (y y))))
(%autoprove submapp1-when-submapp1-of-domain-superset-two
(%use (%instance (%thm submapp1-when-submapp1-of-domain-superset-one))))
(%autoprove submapp1-of-list-fix-one)
(%autoprove submapp1-of-list-fix-two
(%cdr-induction domain))
(%autoprove submapp1-of-list-fix-three
(%cdr-induction domain))
(%autoadmit submapp)
(%autoprove booleanp-of-submapp
(%enable default submapp))
(%autoprove submapp-of-list-fix-one
(%enable default submapp))
(%autoprove submapp-of-list-fix-two
(%enable default submapp))
(%autoprove equal-of-lookups-when-submapp
(%enable default submapp))
(%autoprove equal-of-cdrs-of-lookups-when-submapp
(%disable default equal-of-lookups-when-submapp)
(%use (%instance (%thm equal-of-lookups-when-submapp))))
(%autoprove lookup-when-lookup-in-submapp-one
(%enable default submapp))
(%autoprove lookup-when-lookup-in-submapp-two
(%use (%instance (%thm lookup-when-lookup-in-submapp-one))))
(%autoadmit submapp-badguy)
(%autoprove submapp-badguy-membership-property
(%enable default submapp-badguy)
(%use (%instance (%thm submapp1-badguy-membership-property)
(domain (domain x)))))
(%autoprove submapp-badguy-under-iff
(%enable default submapp submapp-badguy))
(%autoprove subsetp-of-domains-when-submap
(%use (%instance (%thm subsetp-badguy-membership-property) (x (domain x)) (y (domain y)))))
(%autoprove submapp-reflexive
(%use (%instance (%thm submapp-badguy-membership-property) (x x) (y x))))
(%autoprove submapp-transitive
(%use (%instance (%thm submapp-badguy-membership-property) (x x) (y z)))
(%waterfall default 40)
(%disable default equal-of-lookups-when-submapp)
(%use (%instance (%thm equal-of-lookups-when-submapp) (a (cdr (submapp-badguy x z))) (x x) (y y)))
(%use (%instance (%thm equal-of-lookups-when-submapp) (a (cdr (submapp-badguy x z))) (x y) (y z)))
(%waterfall default 40))
(%autoprove submapp-transitive-alt)
(%autoprove lemma-for-submapp1-of-app
(%use (%instance (%thm submapp1-badguy-membership-property) (domain (app d1 d2)) (x a) (y b))))
(%autoprove submapp1-of-app
(%enable default lemma-for-submapp1-of-app))
(%autoprove lemma-for-submapp-of-cons-onto-map
(%cdr-induction x))
(%autoprove submapp-of-cons-onto-map
(%cdr-induction map)
(%enable default lemma-for-submapp-of-cons-onto-map submapp))
(%autoprove lemma-for-submapp-when-unique-domains-and-subsetp
(%cdr-induction x))
(%autoprove lemma2-for-submapp-when-unique-domains-and-subsetp
(%enable default lemma-for-submapp-when-unique-domains-and-subsetp)
(%cdr-induction x))
(%autoprove submapp-when-unique-domains-and-subsetp
(%enable default lemma2-for-submapp-when-unique-domains-and-subsetp)
(%use (%instance (%thm submapp-badguy-membership-property) (x x) (y y))))
(%autoprove lemma-for-submapp-of-app-when-submapp
(%cdr-induction dom))
(%autoprove submapp-of-app-when-submapp
(%enable default submapp lemma-for-submapp-of-app-when-submapp))
(%autoprove submapp-of-rev-when-uniquep
(%enable default domain-of-rev)
(%disable default [outside]rev-of-domain rev-of-domain))
|