File: disjoined-subset.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (1149 lines) | stat: -rw-r--r-- 53,416 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
;   Kookamara LLC
;   11410 Windermere Meadows
;   Austin, TX 78759, USA
;   http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
;   Permission is hereby granted, free of charge, to any person obtaining a
;   copy of this software and associated documentation files (the "Software"),
;   to deal in the Software without restriction, including without limitation
;   the rights to use, copy, modify, merge, publish, distribute, sublicense,
;   and/or sell copies of the Software, and to permit persons to whom the
;   Software is furnished to do so, subject to the following conditions:
;
;   The above copyright notice and this permission notice shall be included in
;   all copies or substantial portions of the Software.
;
;   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
;   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
;   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
;   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
;   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
;   FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
;   DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>

(in-package "MILAWA")
(include-book "prop-list")
(set-verify-guards-eagerness 2)
(set-case-split-limitations nil)
(set-well-founded-relation ord<)
(set-measure-function rank)

(dd.open "disjoined-subset.tex")


;; We introduce builders to prove B1 v ... v Bm from A1 v ... v An, where
;; [A1,...,An] is a subset of [B1,...,Bm].
;;
;; We actually introduce several such builders.  The first of these is called
;; build.generic-subset, and can construct the proof in the general case.  But
;; it is not very efficient.  To address this, we introduce some variants for
;; the special purposes of proving list reversals, ordered subsets, and the
;; like.  In the end, we create an "adaptive" builder which tries to
;; semi-intelligently choose an efficient proof method.


(defund@ build.multi-or-expansion-step (base as)
  ;; Derive P v A1 v ... v An from P v Ai
  ;; Note: this is basically like Shankar's function M2-Proof-Step
  (declare (xargs :guard (and (logic.appealp base)
                              (logic.formula-listp as)
                              (@match (proof base (v P Ai)))
                              (memberp (@formula Ai) as))
                  :verify-guards nil))
  (@extend ((formula (car as) A1))
           (if (and (consp as)
                    (consp (cdr as)))
               (cond ((equal (@formula A1) (@formula Ai))
                      (@derive ((v P A1)                         (@given base))
                               ((v P (v A1 (v A2 (v dots An))))  (build.disjoined-right-expansion @- (logic.disjoin-formulas (cdr as))))))
                     (t
                      (@derive ((v P (v A2 (v dots An)))         (build.multi-or-expansion-step base (cdr as)))
                               ((v P (v A1 (v A2 (v dots An))))  (build.disjoined-left-expansion @- (@formula A1))))))
             ;; Else there is only one A, so it must be Ai
             (@derive ((v P Ai) (logic.appeal-identity base))))))

(encapsulate
 ()
 (local (in-theory (enable build.multi-or-expansion-step)))

 (defthm build.multi-or-expansion-step-under-iff
   (iff (build.multi-or-expansion-step base as)
        t))

 (defthm@ lemma-for-forcing-logic.appealp-of-build.multi-or-expansion-step
  ;; BOZO add to disjoined-subset.lisp
  (implies (and (logic.appealp base)
                (logic.formula-listp as)
                (@match (proof base (v P Ai)))
                (memberp (@formula Ai) as))
           (and (logic.appealp (build.multi-or-expansion-step base as))
                (equal (logic.conclusion (build.multi-or-expansion-step base as))
                       (logic.por (@formula P) (logic.disjoin-formulas as)))))
  :rule-classes nil)

 (defthm@ forcing-logic.appealp-of-build.multi-or-expansion-step
   (implies (force (and (logic.appealp base)
                        (logic.formula-listp as)
                        (@match (proof base (v P Ai)))
                        (memberp (@formula Ai) as)))
            (equal (logic.appealp (build.multi-or-expansion-step base as))
                   t))
   :hints(("Goal" :use ((:instance lemma-for-forcing-logic.appealp-of-build.multi-or-expansion-step)))))

 (defthm@ forcing-logic.conclusion-of-build.multi-or-expansion-step
   (implies (force (and (logic.appealp base)
                        (logic.formula-listp as)
                        (@match (proof base (v P Ai)))
                        (memberp (@formula Ai) as)))
            (equal (logic.conclusion (build.multi-or-expansion-step base as))
                   (logic.por (@formula P) (logic.disjoin-formulas as))))
   :rule-classes ((:rewrite :backchain-limit-lst 0))
   :hints(("Goal" :use ((:instance lemma-for-forcing-logic.appealp-of-build.multi-or-expansion-step)))))

 (verify-guards build.multi-or-expansion-step)

 (defthm@ forcing-logic.proofp-of-build.multi-or-expansion-step
   (implies (force (and (logic.appealp base)
                        (logic.formula-listp as)
                        (@match (proof base (v P Ai)))
                        (memberp (@formula Ai) as)
                        ;; ---
                        (logic.formula-list-atblp as atbl)
                        (logic.proofp base axioms thms atbl)))
            (equal (logic.proofp (build.multi-or-expansion-step base as) axioms thms atbl)
                   t))))





(defund@ build.multi-or-expansion (base as)
  ;; Derive A1 v ... v An from Ai v Aj for any 1 <= i,j <= n
  ;; Note: this is basically like Shankar's function "M2-Proof"
  (declare (xargs :guard (and (logic.appealp base)
                              (logic.formula-listp as)
                              (@match (proof base (v Ai Aj)))
                              (memberp (@formula Ai) as)
                              (memberp (@formula Aj) as))))

  (if (consp as)
      (@extend ((formula (car as) A1))
        (cond ((equal (@formula Ai) (@formula Aj))
               (@derive ((v Ai Ai)                  (@given base))
                        (Ai                         (build.contraction @-))
                        ((v A1 (v dots An))         (build.multi-expansion @- as))))
              ((equal (@formula Ai) (@formula A1))
               (@derive ((v A1 Aj)                  (@given base))
                        ((v A1 (v dots An))         (build.multi-or-expansion-step @- (cdr as)))))
              ((equal (@formula Aj) (@formula A1))
               (@derive ((v Ai A1)                  (@given base))
                        ((v A1 Ai)                  (build.commute-or @-))
                        ((v A1 (v dots An))         (build.multi-or-expansion-step @- (cdr as)))))
              (t
               (@derive ((v A2 (v dots An))         (build.multi-or-expansion base (cdr as)))
                        ((v A1 (v A2 (v dots An)))  (build.expansion (@formula A1) @-))))))
    ;; Degenerate case.
    (logic.appeal-identity base)))

(encapsulate
 ()
 (local (in-theory (enable build.multi-or-expansion)))

 (defthm build.multi-or-expansion-under-iff
   (iff (build.multi-or-expansion base as)
        t))

 (defthm@ forcing-logic.appealp-of-build.multi-or-expansion
   (implies (force (and (logic.appealp base)
                        (logic.formula-listp as)
                        (@match (proof base (v Ai Aj)))
                        (memberp (@formula Ai) as)
                        (memberp (@formula Aj) as)))
            (equal (logic.appealp (build.multi-or-expansion base as))
                   t)))

 (defthm@ forcing-logic.conclusion-of-build.multi-or-expansion
   (implies (force (and (logic.appealp base)
                        (logic.formula-listp as)
                        (@match (proof base (v Ai Aj)))
                        (memberp (@formula Ai) as)
                        (memberp (@formula Aj) as)))
            (equal (logic.conclusion (build.multi-or-expansion base as))
                   (logic.disjoin-formulas as)))
   :rule-classes ((:rewrite :backchain-limit-lst 0)))

 (defthm@ forcing-logic.proofp-of-build.multi-or-expansion
   (implies (force (and (logic.appealp base)
                        (logic.formula-listp as)
                        (@match (proof base (v Ai Aj)))
                        (memberp (@formula Ai) as)
                        (memberp (@formula Aj) as)
                        ;; ---
                        (force (logic.formula-list-atblp as atbl))
                        (force (logic.proofp base axioms thms atbl))))
            (equal (logic.proofp (build.multi-or-expansion base as) axioms thms atbl)
                   t))))



(defderiv build.generic-subset-step-lemma-1
  :from   ((proof x (v (v P A) P)))
  :derive (v P A)
  :proof  (@derive ((v (v P A) P)  (@given x))
                   ((v P (v P A))  (build.commute-or @-))
                   ((v (v P P) A)  (build.associativity @-))
                   ((v A (v P P))  (build.commute-or @-))
                   ((v A P)        (build.disjoined-contraction @-))
                   ((v P A)        (build.commute-or @-))))

(defund@ build.generic-subset-step (proof as)
  ;; Derive A1 v ... v An from (Ai v Aj) v (A1 v ... v An)
  ;;
  ;; I originally based this on Shankar's M3-Proof function, but since then
  ;; I've tweaked it slightly and it no now uses multi-or-expansion-step
  ;; instead of multi-or-expansion.  This seems to save about 4-5% off of
  ;; proofs of the generic subset builder.
  (declare (xargs :guard (and (logic.formula-listp as)
                              (logic.appealp proof)
                              (@match (proof proof (v (v Ai Aj) A1-An)))
                              (memberp (@formula Ai) as)
                              (memberp (@formula Aj) as)
                              (equal (@formula A1-An) (logic.disjoin-formulas as)))))
  (@derive
   ((v (v Ai Aj) A1-An)     (@given proof))
   ((v A1-An (v Ai Aj))     (build.commute-or @-))
   ((v (v A1-An Ai) Aj)     (build.associativity @-))
   ((v (v A1-An Ai) A1-An)  (build.multi-or-expansion-step @- as))
   ((v A1-An Ai)            (build.generic-subset-step-lemma-1 @-))
   ((v A1-An A1-An)         (build.multi-or-expansion-step @- as))
   (A1-An                   (build.contraction @-))))

(encapsulate
 ()
 (local (in-theory (enable build.generic-subset-step)))

 (defthm build.generic-subset-step-under-iff
   (iff (build.generic-subset-step proof as)
        t))

 (defthm@ forcing-logic.appealp-of-build.generic-subset-step
   (implies (force (and (logic.formula-listp as)
                        (logic.appealp proof)
                        (@match (proof proof (v (v Ai Aj) A1-An)))
                        (memberp (@formula Ai) as)
                        (memberp (@formula Aj) as)
                        (equal (@formula A1-An) (logic.disjoin-formulas as))))
            (equal (logic.appealp (build.generic-subset-step proof as))
                   t)))

 (verify-guards build.generic-subset-step)

 (defthm@ forcing-logic.conclusion-of-build.generic-subset-step
   (implies (force (and (logic.formula-listp as)
                        (logic.appealp proof)
                        (@match (proof proof (v (v Ai Aj) A1-An)))
                        (memberp (@formula Ai) as)
                        (memberp (@formula Aj) as)
                        (equal (@formula A1-An) (logic.disjoin-formulas as))))
            (equal (logic.conclusion (build.generic-subset-step proof as))
                   (logic.disjoin-formulas as)))
   :rule-classes ((:rewrite :backchain-limit-lst 0)))

 (defthm@ forcing-logic.proofp-of-build.generic-subset-step
   (implies (force (and (logic.formula-listp as)
                        (logic.appealp proof)
                        (@match (proof proof (v (v Ai Aj) A1-An)))
                        (memberp (@formula Ai) as)
                        (memberp (@formula Aj) as)
                        (equal (@formula A1-An) (logic.disjoin-formulas as))
                        ;; ---
                        (logic.formula-list-atblp as atbl)
                        (logic.proofp proof axioms thms atbl)))
            (equal (logic.proofp (build.generic-subset-step proof as) axioms thms atbl)
                   t))))




;: build.generic-subset                               Cost: 12(n^2) + x
;: Derive B1 v ... v Bm
;:   from A1 v ... v An,
;:   where {A1 ... An} is a subset of {B1 ... Bm}
;:
;; Derivation. (defined by induction on n)
;;
;; Base Case:   n = 1                                     Cost: n + x
;;   1. Ai                Given
;;   2. B1 v ... v Bm     Multi Expansion
;;
;; Base Case:   n = 2                                     Cost: 6n + x
;;   1. Ai v Aj
;;   2. B1 v ... v Bm     Multi Or Expansion
;;
;; Induction Case:  n >= 3                                Cost: 12n + x
;;   Let F = (A1 v A2).
;;   F v (A3 v (A4 v ... v An)) is a disjunction of n-1 formulas.
;;   Inductively assume we can prove F v (B1 v ... v Bm) from a proof
;;   of F v (A3 v ... v An).
;;
;; Derivation.
;;   1.   A1 v (A2 v ... v An)         Given
;;   2.   (A1 v A2) v (A3 v ... v An)  Associativity
;;   2'.  F v (A3 v ... v An)          (By the definition of F)
;;   3.   F v (B1 v ... v Bm)          Inductive Hypothesis
;;   3'.  (A1 v A2) v (B1 v ... v Bm)  (By the definition of F)
;;   4.   B1 v B2 v ... v Bm           Disjoined-Subset-Step
;;
;;
;; Note: This is basically like Shankar's function "M-Proof."  We take two
;; lists of formulas, (A1 ... An) and (B1 ... Bm), where each A occurs in the
;; list of B's.  We also take, as another input, a proof of A1 v A2 v ... v An.
;; We construct a proof of B1 v B2 v ... v Bm.  Note that both n,m must be >=
;; 1; i.e., we must have non-empty lists of formulas.

(defund@ build.generic-subset (as bs proof)
  ;; Derive B1 v ... v Bm from A1 v ... v An, where as are a subset of bs
  ;; Note: this is basically like Shankar's function "M-Proof"
  (declare (xargs :guard (and (logic.formula-listp bs)
                              (subsetp as bs)
                              (consp as)
                              (logic.appealp proof)
                              (equal (logic.conclusion proof) (logic.disjoin-formulas as)))
                  :measure (len as)
                  :verify-guards nil))
  (@extend ((formula (first as) A1)
            (formula (second as) A2)
            (formula (third as) A3))
    (cond ((not (consp as))
           ;; Degenerate case -- this isn't even allowed by our guard
           (logic.appeal-identity proof))

          ((not (consp (cdr as)))
           ;; as = [A1]
           (@derive (A1                   (@given proof))
                    ((v B1 (v dots Bn))   (build.multi-expansion @- bs))))

          ((not (consp (cdr (cdr as))))
           ;; as = [A1 A2]
           (@derive ((v A1 A2)            (@given proof))
                    ((v B1 (v dots Bn))   (build.multi-or-expansion @- bs))))

          (t
           ;; as = [A1 A2 A3 ...]
           (@derive ((v A1 (v A2 (v A3 (v dots An))))   (@given proof))
                    ((v (v A1 A2) (v A3 (v dots An)))   (build.associativity @-))
                    ((v (v A1 A2) (v B1 (v dots Bm)))   (build.generic-subset (cons (@formula (v A1 A2)) (cdr (cdr as)))
                                                                              (cons (@formula (v A1 A2)) bs)
                                                                              @-))
                    ((v B1 (v dots Bm))                 (build.generic-subset-step @- bs)))))))

(encapsulate
 ()
 (local (in-theory (enable build.generic-subset)))

 (defthm build.generic-subset-under-iff
   (iff (build.generic-subset as bs proof)
        t))

 (defthm lemma-for-forcing-logic.appealp-of-build.generic-subset
   (implies (and (logic.formula-listp bs)
                 (subsetp as bs)
                 (consp as)
                 (logic.appealp proof)
                 (equal (logic.conclusion proof) (logic.disjoin-formulas as)))
            (and (logic.appealp (build.generic-subset as bs proof))
                 (equal (logic.conclusion (build.generic-subset as bs proof))
                        (logic.disjoin-formulas bs))))
   :rule-classes nil)

 (defthm forcing-logic.appealp-of-build.generic-subset
   (implies (force (and (logic.formula-listp bs)
                        (logic.appealp proof)
                        (subsetp as bs)
                        (consp as)
                        (equal (logic.conclusion proof) (logic.disjoin-formulas as))))
            (equal (logic.appealp (build.generic-subset as bs proof))
                   t))
   :hints(("Goal" :use ((:instance lemma-for-forcing-logic.appealp-of-build.generic-subset)))))

 (defthm forcing-logic.conclusion-of-build.generic-subset
   (implies (force (and (logic.formula-listp bs)
                        (logic.appealp proof)
                        (subsetp as bs)
                        (consp as)
                        (equal (logic.conclusion proof) (logic.disjoin-formulas as))))
            (equal (logic.conclusion (build.generic-subset as bs proof))
                   (logic.disjoin-formulas bs)))
   :rule-classes ((:rewrite :backchain-limit-lst 0))
   :hints(("Goal" :use ((:instance lemma-for-forcing-logic.appealp-of-build.generic-subset)))))

 (verify-guards build.generic-subset)

 (defthm forcing-logic.proofp-of-build.generic-subset
   (implies (force (and (logic.formula-listp bs)
                        (logic.appealp proof)
                        (subsetp as bs)
                        (consp as)
                        (equal (logic.conclusion proof) (logic.disjoin-formulas as))
                        ;; ---
                        (logic.formula-list-atblp bs atbl)
                        (logic.proofp proof axioms thms atbl)))
            (equal (logic.proofp (build.generic-subset as bs proof) axioms thms atbl)
                   t))))






;; We now introduce build.rev-disjunction, which efficiently builds a proof of
;; (an v ... v a1) from a proof of (a1 v ... v an).  We could already build
;; such proofs with our generic subset builder, but this builder is much more
;; efficient.  For simple tests of the variety shown at the end of this
;; section, we obtain the following savings in terms of "rank":
;;
;;    n   generic-subset   rev-disjunction    savings
;;   ----------------------------------------------------
;;     1             5                 5           0%
;;     2            38                38           0%
;;     3         1,864               771          59%
;;     5        15,194             3,605          76%
;;    10       176,269            18,670          89%
;;    20     2,042,969            83,000          96%
;;    30     8,936,569           192,930          98%
;;   ----------------------------------------------------
;;
;; Our proof construction mirrors the "revappend" function, and is implemented
;; as build.revappend-disjunction.  Most users should call build.rev-disjunction
;; instead, which hides the accumulator.

(defund@ build.revappend-disjunction (todo done proof)
  ;; Derive tn v ... v t1 v d1 v ... v dm from (t1 v ... v tn) v (d1 v ... v dm)
  (declare (xargs :guard (and (logic.formula-listp todo)
                              (logic.formula-listp done)
                              (or (consp todo) (consp done))
                              (logic.appealp proof)
                              (equal (logic.conclusion proof)
                                     (cond ((and (consp todo)
                                                 (consp done))
                                            (logic.por (logic.disjoin-formulas todo)
                                                 (logic.disjoin-formulas done)))
                                           ((consp todo)
                                            (logic.disjoin-formulas todo))
                                           (t
                                            (logic.disjoin-formulas done)))))
                  :verify-guards nil))
  (if (and (consp todo)
           (consp (cdr todo)))
      (if (consp done)
          (@derive
           ((v (v t1 t2-tn) d1-dm)     (@given proof))
           ((v d1-dm (v t1 t2-tn))     (build.commute-or @-))
           ((v (v d1-dm t1) t2-tn)     (build.associativity @-))
           ((v t2-tn (v d1-dm t1))     (build.commute-or @-))
           ((v t2-tn (v t1 d1-dm))     (build.disjoined-commute-or @-))
           ((v tn-t1 dm-d1)            (build.revappend-disjunction (cdr todo) (cons (car todo) done) @-)))
        (@derive
         ((v t1 t2-n)                  (@given proof))
         ((v t2-n t1)                  (build.commute-or @-))
         (tn-t1                        (build.revappend-disjunction (cdr todo) (list (car todo)) @-))))
    ;; Otherwise, the todo list is only one long, so we already have the proof
    ;; we were looking for.
    (logic.appeal-identity proof)))


(encapsulate
 ()
 (local (in-theory (enable build.revappend-disjunction)))

 (defthm build.revappend-disjunction-under-iff
   (iff (build.revappend-disjunction todo done proof)
        t))

 (local (defthm lemma
          (implies (and (logic.formula-listp todo)
                        (logic.formula-listp done)
                        (or (consp todo) (consp done))
                        (logic.appealp proof)
                        (equal (logic.conclusion proof)
                               (cond ((and (consp todo)
                                           (consp done))
                                      (logic.por (logic.disjoin-formulas todo)
                                                 (logic.disjoin-formulas done)))
                                     ((consp todo)
                                      (logic.disjoin-formulas todo))
                                     (t
                                      (logic.disjoin-formulas done)))))
                   (and (logic.appealp (build.revappend-disjunction todo done proof))
                        (equal (logic.conclusion (build.revappend-disjunction todo done proof))
                               (logic.disjoin-formulas (app (rev todo) done)))))))

 (defthm forcing-logic.appealp-of-build.revappend-disjunction
   (implies (force (and (logic.formula-listp todo)
                        (logic.formula-listp done)
                        (or (consp todo) (consp done))
                        (logic.appealp proof)
                        (equal (logic.conclusion proof)
                               (cond ((and (consp todo)
                                           (consp done))
                                      (logic.por (logic.disjoin-formulas todo)
                                                 (logic.disjoin-formulas done)))
                                     ((consp todo)
                                      (logic.disjoin-formulas todo))
                                     (t
                                      (logic.disjoin-formulas done))))))
            (equal (logic.appealp (build.revappend-disjunction todo done proof))
                   t)))

 (defthm forcing-logic.conclusion-of-build.revappend-disjunction
   (implies (force (and (logic.formula-listp todo)
                        (logic.formula-listp done)
                        (or (consp todo) (consp done))
                        (logic.appealp proof)
                        (equal (logic.conclusion proof)
                               (cond ((and (consp todo)
                                           (consp done))
                                      (logic.por (logic.disjoin-formulas todo)
                                                 (logic.disjoin-formulas done)))
                                     ((consp todo)
                                      (logic.disjoin-formulas todo))
                                     (t
                                      (logic.disjoin-formulas done))))))
            (equal (logic.conclusion (build.revappend-disjunction todo done proof))
                   (logic.disjoin-formulas (app (rev todo) done))))
   :rule-classes ((:rewrite :backchain-limit-lst 0)))

 (verify-guards build.revappend-disjunction)

 (defthm forcing-logic.proofp-of-build.revappend-disjunction
   (implies (force (and (logic.formula-listp todo)
                        (logic.formula-listp done)
                        (or (consp todo) (consp done))
                        (logic.appealp proof)
                        (equal (logic.conclusion proof)
                               (cond ((and (consp todo)
                                           (consp done))
                                      (logic.por (logic.disjoin-formulas todo)
                                                 (logic.disjoin-formulas done)))
                                     ((consp todo)
                                      (logic.disjoin-formulas todo))
                                     (t
                                      (logic.disjoin-formulas done))))
                        ;; ---
                        (logic.proofp proof axioms thms atbl)))
            (equal (logic.proofp (build.revappend-disjunction todo done proof) axioms thms atbl)
                   t))))



(defund build.rev-disjunction (x proof)
  ;; Derive tn v ... v t1 from t1 v ... v tn
  (declare (xargs :guard (and (consp x)
                              (logic.formula-listp x)
                              (logic.appealp proof)
                              (equal (logic.conclusion proof) (logic.disjoin-formulas x)))
                  ;; As far as Milawa is concerned, build.rev-disjunction is going to be
                  ;; an alias for build.generic-subset.  This way we don't have to write
                  ;; any proofs about it, we can just let it expand.
                  :export (build.generic-subset x (fast-rev x) proof)))
  (build.revappend-disjunction x nil proof))

(encapsulate
 ()
 (local (in-theory (enable build.rev-disjunction)))

 (defthm build.rev-disjunction-under-iff
   (iff (build.rev-disjunction x proof)
        t))

 (defthm forcing-logic.appealp-of-build.rev-disjunction
   (implies (force (and (consp x)
                        (logic.formula-listp x)
                        (logic.appealp proof)
                        (equal (logic.conclusion proof) (logic.disjoin-formulas x))))
            (equal (logic.appealp (build.rev-disjunction x proof))
                   t)))

 (defthm forcing-logic.conclusion-of-build.rev-disjunction
   (implies (force (and (consp x)
                        (logic.formula-listp x)
                        (logic.appealp proof)
                        (equal (logic.conclusion proof) (logic.disjoin-formulas x))))
            (equal (logic.conclusion (build.rev-disjunction x proof))
                   (logic.disjoin-formulas (rev x))))
   :rule-classes ((:rewrite :backchain-limit-lst 0)))

 (defthm forcing-logic.proofp-of-build.rev-disjunction
   (implies (force (and (consp x)
                        (logic.formula-listp x)
                        (logic.appealp proof)
                        (equal (logic.conclusion proof) (logic.disjoin-formulas x))
                        ;; ---
                        (logic.proofp proof axioms thms atbl)))
            (equal (logic.proofp (build.rev-disjunction x proof) axioms thms atbl)
                   t))))



;; Our test data above was obtained by just running this let expression and
;; commenting out the appropriate number of lines.
;;
;; (let* ((formulas (list
;;                   (logic.pequal 'a1 'a1-prime)
;;                   (logic.pequal 'a2 'a2-prime)
;;                   (logic.pequal 'a3 'a3-prime)
;;                   (logic.pequal 'a4 'a4-prime)
;;                   (logic.pequal 'a5 'a5-prime)
;;                   (logic.pequal 'a6 'a6-prime)
;;                   (logic.pequal 'a7 'a7-prime)
;;                   (logic.pequal 'a8 'a8-prime)
;;                   (logic.pequal 'a9 'a9-prime)
;;                   (logic.pequal 'a10 'a10-prime)
;;                   ;(logic.pequal 'a11 'a11-prime)
;;                   ;(logic.pequal 'a12 'a12-prime)
;;                   ;(logic.pequal 'a13 'a13-prime)
;;                   ;(logic.pequal 'a14 'a14-prime)
;;                   ;(logic.pequal 'a15 'a15-prime)
;;                   ;(logic.pequal 'a16 'a16-prime)
;;                   ;(logic.pequal 'a17 'a17-prime)
;;                   ;(logic.pequal 'a18 'a18-prime)
;;                   ;(logic.pequal 'a19 'a19-prime)
;;                   ;(logic.pequal 'a20 'a20-prime)
;;                   ;(logic.pequal 'a21 'a21-prime)
;;                   ;(logic.pequal 'a22 'a22-prime)
;;                   ;(logic.pequal 'a23 'a23-prime)
;;                   ;(logic.pequal 'a24 'a24-prime)
;;                   ;(logic.pequal 'a25 'a25-prime)
;;                   ;(logic.pequal 'a26 'a26-prime)
;;                   ;(logic.pequal 'a27 'a27-prime)
;;                   ;(logic.pequal 'a28 'a28-prime)
;;                   ;(logic.pequal 'a29 'a29-prime)
;;                   ;(logic.pequal 'a30 'a30-prime)
;;                   ))
;;        (axiom  (build.axiom (logic.disjoin-formulas formulas)))
;;        (proof1 (build.generic-subset formulas (rev formulas) axiom))
;;        (proof2 (build.rev-disjunction formulas axiom)))
;;   (list (list 'OK (equal (logic.conclusion proof1)
;;                          (logic.conclusion proof2)))
;;         (list 'generic-rank (rank proof1))
;;         (list 'rev-rank (rank proof2))))






;; We now introduce the ordered subset bldr, which is more efficient than the
;; generic builder when applied to large, ordered subsets (such as are obtained
;; by applying remove-duplicates or remove-all to a list).  Note that for small
;; lists, the generic builder is actually better.
;;
;;   n     generic-subset       ordered-subset       savings
;; ----------------------------------------------------------------
;;    1              64                 818           Lose
;;    2             523               6,626           Lose
;;    3           8,557              17,378           Lose
;;    4          25,380              33,074           Lose
;;    5          53,714              55,555           Lose
;;    6         103,552              79,298           23%
;;   10         579,540             231,074           60%
;;   15       2,306,725             532,034           77%
;;   20       6,263,860             956,594           85%
;;
;; Note that our test data comes from the experiment shown at the end of this
;; section.

(defund@ build.ordered-subset-aux (sub sup done proof)
  ;; Derive [bm,...,b1,d1,...,dk] from [d1,...,dk] v [a1,...,an]
  ;; where [a1,...,an] is an ordered subset of [b1,...,bm]
  (declare (xargs :guard (and (logic.formula-listp sup)
                              (ordered-subsetp sub sup)
                              (logic.formula-listp done)
                              (or (consp sub) (consp done))
                              (logic.appealp proof)
                              (equal (logic.conclusion proof)
                                     (cond ((and (consp sub) (consp done))
                                            (logic.por (logic.disjoin-formulas done)
                                                       (logic.disjoin-formulas sub)))
                                           ((consp sub)
                                            (logic.disjoin-formulas sub))
                                           (t
                                            (logic.disjoin-formulas done)))))
                  :verify-guards nil
                  :measure (+ (rank sub) (rank sup))))
  (@extend ((formula (car sub) A1)
            (formula (car sup) B1))
    (cond ((and (consp sub)
                (consp sup))
           (if (consp done)
               (if (equal (@formula A1) (@formula B1))
                   (if (consp (cdr sub))
                       (@derive
                        ;; Case 1: [a1,a2...], [b1=a1,...], [d1,...]
                        ;; Step Goal: [a1,d1,...,dk] v [a2,...,an]
                        ((v D1-Dk (v A1 A2-An))  (@given proof))
                        ((v D1-Dk (v A2-An A1))  (build.disjoined-commute-or @-))
                        ((v (v D1-Dk A2-An) A1)  (build.associativity @-))
                        ((v A1 (v D1-Dk A2-An))  (build.commute-or @-))
                        ((v (v A1 D1-Dk) A2-An)  (build.associativity @-))
                        ((v Bm-B1 D1-Dk)         (build.ordered-subset-aux (cdr sub) (cdr sup) (cons (car sup) done) @-)))
                     (@derive
                      ;; Case 2: [a1], [b1=a1,...], [d1,...]
                      ;; Step Goal: [a1,d1,...,dk]
                      ((v D1-Dk A1)     (@given proof))
                      ((v A1 D1-Dk)     (build.commute-or @-))
                      ((v Bm-B1 D1-Dk)  (build.ordered-subset-aux (cdr sub) (cdr sup) (cons (car sup) done) @-))))
                 ;; Case 3: [a1,...], [b1!=a1,...], [d1,...]
                 ;; Step Goal: [b1,d1,...,dk] v [a1,...,an]
                 (@derive
                  ((v D1-Dk A1-An)         (@given proof))
                  ((v B1 (v D1-Dk A1-An))  (build.expansion (@formula B1) @-))
                  ((v (v B1 D1-Dk) A1-An)  (build.associativity @-))
                  ((v Bm-B1 D1-Dk)         (build.ordered-subset-aux sub (cdr sup) (cons (car sup) done) @-))))
             (if (equal (@formula A1) (@formula B1))
                 ;; Case 4: [a1,...], [b1=a1,...], done = empty
                 ;; Step Goal: a1..n
                 (@derive
                  (A1-An  (@given proof))
                  (Bm-B1  (build.ordered-subset-aux (cdr sub) (cdr sup) (cons (car sup) done) @-)))
               ;; Case 5: [a1,...], [b1!=a1,...], done = empty
               ;; Step Goal: b1 v (a1..n)
               (@derive
                (A1-An         (@given proof))
                ((v B1 A1-An)  (build.expansion (@formula B1) @-))
                (Bm-B1         (build.ordered-subset-aux sub (cdr sup) (cons (car sup) done) @-))))))
          ((consp sup)
           ;; Case 6: sub = empty, [b1,...], done = [d1,...]  (done is nonempty via our guard)
           ;; Step Goal: [b1,d1,...,dk]
           (@derive
            (D1-Dk            (@given proof))
            ((v B1 D1-Dk)     (build.expansion (@formula B1) @-))
            ((v Bm-B1 D1-Dk)  (build.ordered-subset-aux sub (cdr sup) (cons (car sup) done) @-))))
          (t
           ;; Case 7: sup = empty
           (logic.appeal-identity proof)))))

(encapsulate
 ()
 (local (in-theory (enable build.ordered-subset-aux)))

 (defthm build.ordered-subset-aux-under-iff
   (iff (build.ordered-subset-aux sub sup done proof)
        t))

 (defthm forcing-logic.appealp-of-build.ordered-subset-aux
   (implies (force (and (logic.formula-listp sup)
                        (ordered-subsetp sub sup)
                        (logic.formula-listp done)
                        (or (consp sub) (consp done))
                        (logic.appealp proof)
                        (equal (logic.conclusion proof)
                               (cond ((and (consp sub) (consp done))
                                      (logic.por (logic.disjoin-formulas done)
                                                 (logic.disjoin-formulas sub)))
                                     ((consp sub)
                                      (logic.disjoin-formulas sub))
                                     (t
                                      (logic.disjoin-formulas done))))))
            (equal (logic.appealp (build.ordered-subset-aux sub sup done proof))
                   t)))

 (defthm forcing-logic.conclusion-of-build.ordered-subset-aux
   (implies (force (and (logic.formula-listp sup)
                        (ordered-subsetp sub sup)
                        (logic.formula-listp done)
                        (or (consp sub) (consp done))
                        (logic.appealp proof)
                        (equal (logic.conclusion proof)
                               (cond ((and (consp sub) (consp done))
                                      (logic.por (logic.disjoin-formulas done)
                                                 (logic.disjoin-formulas sub)))
                                     ((consp sub)
                                      (logic.disjoin-formulas sub))
                                     (t
                                      (logic.disjoin-formulas done))))))
            (equal (logic.conclusion (build.ordered-subset-aux sub sup done proof))
                   (logic.disjoin-formulas (app (rev sup) done)))))

 (verify-guards build.ordered-subset-aux)

 (defthm forcing-logic.proofp-of-build.ordered-subset-aux
   (implies (force (and (logic.formula-listp sup)
                        (ordered-subsetp sub sup)
                        (logic.formula-listp done)
                        (or (consp sub) (consp done))
                        (logic.appealp proof)
                        (equal (logic.conclusion proof)
                               (cond ((and (consp sub) (consp done))
                                      (logic.por (logic.disjoin-formulas done)
                                                 (logic.disjoin-formulas sub)))
                                     ((consp sub)
                                      (logic.disjoin-formulas sub))
                                     (t
                                      (logic.disjoin-formulas done))))
                        ;; ---
                        (logic.formula-list-atblp sup atbl)
                        (logic.proofp proof axioms thms atbl)))
            (equal (logic.proofp (build.ordered-subset-aux sub sup done proof) axioms thms atbl)
                   t))))



(defund build.ordered-subset (sub sup proof)
  (declare (xargs :guard (and (logic.formula-listp sup)
                              (logic.appealp proof)
                              (consp sub)
                              (ordered-subsetp sub sup)
                              (equal (logic.conclusion proof) (logic.disjoin-formulas sub)))))
  (build.rev-disjunction (fast-rev sup)
                         (build.ordered-subset-aux sub sup nil proof)))

(encapsulate
 ()
 (local (in-theory (enable build.ordered-subset)))

 (defthm build.ordered-subset-under-iff
   (iff (build.ordered-subset sub sup proof)
        t))

 (defthm forcing-logic.appealp-of-build.ordered-subset
   (implies (force (and (logic.formula-listp sup)
                        (logic.appealp proof)
                        (consp sub)
                        (ordered-subsetp sub sup)
                        (equal (logic.conclusion proof) (logic.disjoin-formulas sub))))
            (equal (logic.appealp (build.ordered-subset sub sup proof))
                   t)))

 (defthm forcing-logic.conclusion-of-build.ordered-subset
   (implies (force (and (logic.formula-listp sup)
                        (logic.appealp proof)
                        (consp sub)
                        (ordered-subsetp sub sup)
                        (equal (logic.conclusion proof) (logic.disjoin-formulas sub))))
            (equal (logic.conclusion (build.ordered-subset sub sup proof))
                   (logic.disjoin-formulas sup))))

 (defthm forcing-logic.proofp-of-build.ordered-subset
   (implies (force (and (logic.formula-listp sup)
                        (logic.appealp proof)
                        (consp sub)
                        (ordered-subsetp sub sup)
                        (equal (logic.conclusion proof) (logic.disjoin-formulas sub))
                        ;; ---
                        (logic.formula-list-atblp sup atbl)
                        (logic.proofp proof axioms thms atbl)))
            (equal (logic.proofp (build.ordered-subset sub sup proof) axioms thms atbl)
                   t))))




;; Test data for the build.ordered-subset was taken from running this let*
;; expression with the appropriate lines commented out.

;; (let* ((sub (list
;;              (logic.pequal 'a1 'a1-prime)
;;              (logic.pequal 'a2 'a2-prime)
;;              (logic.pequal 'a3 'a3-prime)
;;              (logic.pequal 'a4 'a4-prime)
;;              (logic.pequal 'a5 'a5-prime)
;;              (logic.pequal 'a6 'a6-prime)
;;              (logic.pequal 'a7 'a7-prime)
;;              (logic.pequal 'a8 'a8-prime)
;;              (logic.pequal 'a9 'a9-prime)
;;              (logic.pequal 'a10 'a10-prime)
;;              (logic.pequal 'a11 'a11-prime)
;;              (logic.pequal 'a12 'a12-prime)
;;              (logic.pequal 'a13 'a13-prime)
;;              (logic.pequal 'a14 'a14-prime)
;;              (logic.pequal 'a15 'a15-prime)
;;              (logic.pequal 'a16 'a16-prime)
;;              (logic.pequal 'a17 'a17-prime)
;;              (logic.pequal 'a18 'a18-prime)
;;              (logic.pequal 'a19 'a19-prime)
;;              (logic.pequal 'a20 'a20-prime)
;;              ))
;;        (sup (list
;;              (logic.pequal 'c1 'c1-prime)
;;              (logic.pequal 'a1 'a1-prime)
;;              (logic.pequal 'b1 'b1-prime)
;;              (logic.pequal 'c2 'c2-prime)
;;              (logic.pequal 'a2 'a2-prime)
;;              (logic.pequal 'b2 'b2-prime)
;;              (logic.pequal 'c3 'c3-prime)
;;              (logic.pequal 'a3 'a3-prime)
;;              (logic.pequal 'b3 'b3-prime)
;;              (logic.pequal 'c4 'c4-prime)
;;              (logic.pequal 'a4 'a4-prime)
;;              (logic.pequal 'b4 'b4-prime)
;;              (logic.pequal 'c5 'c5-prime)
;;              (logic.pequal 'a5 'a5-prime)
;;              (logic.pequal 'b5 'b5-prime)
;;              (logic.pequal 'c6 'c6-prime)
;;              (logic.pequal 'a6 'a6-prime)
;;              (logic.pequal 'b6 'b6-prime)
;;              (logic.pequal 'c7 'c7-prime)
;;              (logic.pequal 'a7 'a7-prime)
;;              (logic.pequal 'b7 'b7-prime)
;;              (logic.pequal 'c8 'c8-prime)
;;              (logic.pequal 'a8 'a8-prime)
;;              (logic.pequal 'b8 'b8-prime)
;;              (logic.pequal 'c9 'c9-prime)
;;              (logic.pequal 'a9 'a9-prime)
;;              (logic.pequal 'b9 'b9-prime)
;;              (logic.pequal 'c10 'c10-prime)
;;              (logic.pequal 'a10 'a10-prime)
;;              (logic.pequal 'b10 'b10-prime)
;;              (logic.pequal 'c11 'c11-prime)
;;              (logic.pequal 'a11 'a11-prime)
;;              (logic.pequal 'b11 'b11-prime)
;;              (logic.pequal 'c12 'c12-prime)
;;              (logic.pequal 'a12 'a12-prime)
;;              (logic.pequal 'b12 'b12-prime)
;;              (logic.pequal 'c13 'c13-prime)
;;              (logic.pequal 'a13 'a13-prime)
;;              (logic.pequal 'b13 'b13-prime)
;;              (logic.pequal 'c14 'c14-prime)
;;              (logic.pequal 'a14 'a14-prime)
;;              (logic.pequal 'b14 'b14-prime)
;;              (logic.pequal 'c15 'c15-prime)
;;              (logic.pequal 'a15 'a15-prime)
;;              (logic.pequal 'b15 'b15-prime)
;;              (logic.pequal 'c16 'c16-prime)
;;              (logic.pequal 'a16 'a16-prime)
;;              (logic.pequal 'b16 'b16-prime)
;;              (logic.pequal 'c17 'c17-prime)
;;              (logic.pequal 'a17 'a17-prime)
;;              (logic.pequal 'b17 'b17-prime)
;;              (logic.pequal 'c18 'c18-prime)
;;              (logic.pequal 'a18 'a18-prime)
;;              (logic.pequal 'b18 'b18-prime)
;;              (logic.pequal 'c19 'c19-prime)
;;              (logic.pequal 'a19 'a19-prime)
;;              (logic.pequal 'b19 'b19-prime)
;;              (logic.pequal 'c20 'c20-prime)
;;              (logic.pequal 'a20 'a20-prime)
;;              (logic.pequal 'b20 'b20-prime)
;;              ))
;;        (proof (build.axiom (logic.disjoin-formulas sub)))
;;        (oproof (build.ordered-subset sub sup proof))
;;        (sproof (build.generic-subset sub sup proof)))
;;   (list
;;    (list 'ok (equal (logic.conclusion oproof) (logic.conclusion sproof)))
;;    (list 'rank-o (rank oproof))
;;    (list 'rank-s (rank sproof))))




;; Finally we introduce our "adaptive" builder.  We check for certain common
;; cases.

(defund build.disjoined-subset (as bs proof)
  (declare (xargs :guard (and (logic.formula-listp bs)
                              (subsetp as bs)
                              (logic.appealp proof)
                              (consp as)
                              (equal (logic.conclusion proof)
                                     (logic.disjoin-formulas as)))
                  :export (build.generic-subset as bs proof)))
  (cond ((equal bs as)
         ;; The best case: we can just reuse the proof verbatim.
         (logic.appeal-identity proof))
        ((equal bs (fast-rev as))
         ;; Another good case, we can use our reversal builder.
         (build.rev-disjunction as proof))
        ((ordered-subsetp as bs)
         ;; Here we may be able to optimize.  As a heuristic, if there are more
         ;; than 5 members in the subset or more than 10 in the superset, we
         ;; just use the ordered builder since the generic builder is probably
         ;; not as efficient.  Otherwise, we'll try both builders and just use
         ;; whichever proof turns out to be smaller.
         (if (or (< 5 (len as))
                 (< 10 (len bs)))
             (build.ordered-subset as bs proof)
           (let* ((proof1 (build.generic-subset as bs proof))
                  (proof2 (build.ordered-subset as bs proof))
                  (rank1  (rank proof1))
                  (rank2  (rank proof2)))
             (ACL2::prog2$
              (ACL2::cw "BDJS n,m,generic,ord = ~x0, ~x1, ~x2, ~x3~%"
                  (len as) (len bs) rank1 rank2)
              (if (< (rank proof1) (rank proof2))
                  proof1
                proof2)))))
        (t
         ;; If we get here, we have no special tricks to use.  We fall back to
         ;; using the generic subset builder.
         (build.generic-subset as bs proof))))

(encapsulate
 ()
 (local (in-theory (enable build.disjoined-subset)))

 (defthm build.disjoined-subset-under-iff
   (iff (build.disjoined-subset as bs proof)
        t))

 (defthm forcing-logic.appealp-of-build.disjoined-subset
   (implies (force (and (logic.formula-listp bs)
                        (subsetp as bs)
                        (logic.appealp proof)
                        (consp as)
                        (equal (logic.conclusion proof)
                               (logic.disjoin-formulas as))))
            (equal (logic.appealp (build.disjoined-subset as bs proof))
                   t)))

 (defthm forcing-logic.conclusion-of-build.disjoined-subset
   (implies (force (and (logic.formula-listp bs)
                        (subsetp as bs)
                        (logic.appealp proof)
                        (consp as)
                        (equal (logic.conclusion proof)
                               (logic.disjoin-formulas as))))
            (equal (logic.conclusion (build.disjoined-subset as bs proof))
                   (logic.disjoin-formulas bs)))
   :rule-classes ((:rewrite :backchain-limit-lst 0)))

 (defthm forcing-logic.proofp-of-build.disjoined-subset
   (implies (force (and (logic.formula-listp bs)
                        (subsetp as bs)
                        (logic.appealp proof)
                        (consp as)
                        (equal (logic.conclusion proof)
                               (logic.disjoin-formulas as))
                        ;; ---
                        (logic.formula-list-atblp bs atbl)
                        (logic.proofp proof axioms thms atbl)))
            (equal (logic.proofp (build.disjoined-subset as bs proof) axioms thms atbl)
                   t))))




;; We can now also talk about building a lists of proofs X1,...,Xn from another
;; list of proofs Y1,...,Ym, where "each Xi is a superset of some Yi".

(defund build.all-superset-of-some (x y proofs)
  (declare (xargs :guard (and (logic.formula-list-listp x)
                              (logic.formula-list-listp y)
                              (cons-listp y)
                              (all-superset-of-somep x y)
                              (logic.appeal-listp proofs)
                              (subsetp (logic.disjoin-each-formula-list y)
                                       (logic.strip-conclusions proofs)))))
  (if (consp x)
      (let* ((subset (find-subset (car x) y))
             (proof  (logic.find-proof (logic.disjoin-formulas subset) proofs)))
        ;; Proof is now a proof of subset, which is a subset of (car x).
        ;; We can just expand the proof to get a proof of (car x).
        (cons (build.disjoined-subset subset (car x) proof)
              (build.all-superset-of-some (cdr x) y proofs)))
    nil))

(encapsulate
 ()
 (local (in-theory (enable build.all-superset-of-some)))

 (defthm forcing-logic.appeal-listp-of-build.all-superset-of-some
   (implies (force (and (logic.formula-list-listp x)
                        (logic.formula-list-listp y)
                        (cons-listp y)
                        (all-superset-of-somep x y)
                        (logic.appeal-listp proofs)
                        (subsetp (logic.disjoin-each-formula-list y)
                                 (logic.strip-conclusions proofs))))
            (equal (logic.appeal-listp (build.all-superset-of-some x y proofs))
                   t)))

 (defthm forcing-logic.strip-conclusions-of-build.all-superset-of-some
   (implies (force (and (logic.formula-list-listp x)
                        (logic.formula-list-listp y)
                        (cons-listp y)
                        (all-superset-of-somep x y)
                        (logic.appeal-listp proofs)
                        (subsetp (logic.disjoin-each-formula-list y)
                                 (logic.strip-conclusions proofs))))
            (equal (logic.strip-conclusions (build.all-superset-of-some x y proofs))
                   (logic.disjoin-each-formula-list x)))
   :rule-classes ((:rewrite :backchain-limit-lst 0)))

 (defthm forcing-logic.proof-listp-of-build.all-superset-of-some
   (implies (force (and (logic.formula-list-listp x)
                        (logic.formula-list-listp y)
                        (cons-listp y)
                        (all-superset-of-somep x y)
                        (logic.appeal-listp proofs)
                        (subsetp (logic.disjoin-each-formula-list y)
                                 (logic.strip-conclusions proofs))
                        ;; ---
                        (logic.formula-list-list-atblp x atbl)
                        (logic.proof-listp proofs axioms thms atbl)))
            (equal (logic.proof-listp (build.all-superset-of-some x y proofs) axioms thms atbl)
                   t))))



(defund build.generic-subset-okp (x atbl)
  (declare (xargs :guard (and (logic.appealp x)
                              (logic.arity-tablep atbl))))
  (let ((method     (logic.method x))
        (conclusion (logic.conclusion x))
        (subproofs  (logic.subproofs x))
        (extras     (logic.extras x)))
    (and (equal method 'build.generic-subset)
         (equal (len subproofs) 1)
         (tuplep 2 extras)
         (let ((as (first extras))
               (bs (second extras)))
           (and (logic.formula-listp bs)
                (logic.formula-list-atblp bs atbl)
                (subsetp as bs)
                (consp as)
                (equal conclusion (logic.disjoin-formulas bs))
                (equal (logic.conclusion (first subproofs))
                       (logic.disjoin-formulas as)))))))


(encapsulate
 ()
 (local (in-theory (enable build.generic-subset-okp)))

 (defthm booleanp-of-build.generic-subset-okp
   (equal (booleanp (build.generic-subset-okp x atbl))
          t)
   :hints(("goal" :in-theory (disable forcing-true-listp-of-logic.subproofs))))

 (defthm build.generic-subset-okp-of-logic.appeal-identity
   (equal (build.generic-subset-okp (logic.appeal-identity x) atbl)
          (build.generic-subset-okp x atbl))
   :hints(("goal" :in-theory (disable forcing-true-listp-of-logic.subproofs))))

 (defthm forcing-soundness-of-build.generic-subset-okp
   (implies (and (build.generic-subset-okp x atbl)
                 (force (and (logic.appealp x)
                             (logic.provable-listp (logic.strip-conclusions (logic.subproofs x)) axioms thms atbl))))
            (equal (logic.provablep (logic.conclusion x) axioms thms atbl)
                   t))
   :hints (("Goal"
            :use ((:instance forcing-logic.provablep-when-logic.proofp
                             (x (build.generic-subset
                                 (first (logic.extras x))
                                 (second (logic.extras x))
                                 (logic.provable-witness (logic.conclusion (car (logic.subproofs x)))
                                                         axioms thms atbl)))))))))



(dd.close)