1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "prop-list")
(set-verify-guards-eagerness 2)
(set-case-split-limitations nil)
(set-well-founded-relation ord<)
(set-measure-function rank)
(dd.open "disjoined-subset.tex")
;; We introduce builders to prove B1 v ... v Bm from A1 v ... v An, where
;; [A1,...,An] is a subset of [B1,...,Bm].
;;
;; We actually introduce several such builders. The first of these is called
;; build.generic-subset, and can construct the proof in the general case. But
;; it is not very efficient. To address this, we introduce some variants for
;; the special purposes of proving list reversals, ordered subsets, and the
;; like. In the end, we create an "adaptive" builder which tries to
;; semi-intelligently choose an efficient proof method.
(defund@ build.multi-or-expansion-step (base as)
;; Derive P v A1 v ... v An from P v Ai
;; Note: this is basically like Shankar's function M2-Proof-Step
(declare (xargs :guard (and (logic.appealp base)
(logic.formula-listp as)
(@match (proof base (v P Ai)))
(memberp (@formula Ai) as))
:verify-guards nil))
(@extend ((formula (car as) A1))
(if (and (consp as)
(consp (cdr as)))
(cond ((equal (@formula A1) (@formula Ai))
(@derive ((v P A1) (@given base))
((v P (v A1 (v A2 (v dots An)))) (build.disjoined-right-expansion @- (logic.disjoin-formulas (cdr as))))))
(t
(@derive ((v P (v A2 (v dots An))) (build.multi-or-expansion-step base (cdr as)))
((v P (v A1 (v A2 (v dots An)))) (build.disjoined-left-expansion @- (@formula A1))))))
;; Else there is only one A, so it must be Ai
(@derive ((v P Ai) (logic.appeal-identity base))))))
(encapsulate
()
(local (in-theory (enable build.multi-or-expansion-step)))
(defthm build.multi-or-expansion-step-under-iff
(iff (build.multi-or-expansion-step base as)
t))
(defthm@ lemma-for-forcing-logic.appealp-of-build.multi-or-expansion-step
;; BOZO add to disjoined-subset.lisp
(implies (and (logic.appealp base)
(logic.formula-listp as)
(@match (proof base (v P Ai)))
(memberp (@formula Ai) as))
(and (logic.appealp (build.multi-or-expansion-step base as))
(equal (logic.conclusion (build.multi-or-expansion-step base as))
(logic.por (@formula P) (logic.disjoin-formulas as)))))
:rule-classes nil)
(defthm@ forcing-logic.appealp-of-build.multi-or-expansion-step
(implies (force (and (logic.appealp base)
(logic.formula-listp as)
(@match (proof base (v P Ai)))
(memberp (@formula Ai) as)))
(equal (logic.appealp (build.multi-or-expansion-step base as))
t))
:hints(("Goal" :use ((:instance lemma-for-forcing-logic.appealp-of-build.multi-or-expansion-step)))))
(defthm@ forcing-logic.conclusion-of-build.multi-or-expansion-step
(implies (force (and (logic.appealp base)
(logic.formula-listp as)
(@match (proof base (v P Ai)))
(memberp (@formula Ai) as)))
(equal (logic.conclusion (build.multi-or-expansion-step base as))
(logic.por (@formula P) (logic.disjoin-formulas as))))
:rule-classes ((:rewrite :backchain-limit-lst 0))
:hints(("Goal" :use ((:instance lemma-for-forcing-logic.appealp-of-build.multi-or-expansion-step)))))
(verify-guards build.multi-or-expansion-step)
(defthm@ forcing-logic.proofp-of-build.multi-or-expansion-step
(implies (force (and (logic.appealp base)
(logic.formula-listp as)
(@match (proof base (v P Ai)))
(memberp (@formula Ai) as)
;; ---
(logic.formula-list-atblp as atbl)
(logic.proofp base axioms thms atbl)))
(equal (logic.proofp (build.multi-or-expansion-step base as) axioms thms atbl)
t))))
(defund@ build.multi-or-expansion (base as)
;; Derive A1 v ... v An from Ai v Aj for any 1 <= i,j <= n
;; Note: this is basically like Shankar's function "M2-Proof"
(declare (xargs :guard (and (logic.appealp base)
(logic.formula-listp as)
(@match (proof base (v Ai Aj)))
(memberp (@formula Ai) as)
(memberp (@formula Aj) as))))
(if (consp as)
(@extend ((formula (car as) A1))
(cond ((equal (@formula Ai) (@formula Aj))
(@derive ((v Ai Ai) (@given base))
(Ai (build.contraction @-))
((v A1 (v dots An)) (build.multi-expansion @- as))))
((equal (@formula Ai) (@formula A1))
(@derive ((v A1 Aj) (@given base))
((v A1 (v dots An)) (build.multi-or-expansion-step @- (cdr as)))))
((equal (@formula Aj) (@formula A1))
(@derive ((v Ai A1) (@given base))
((v A1 Ai) (build.commute-or @-))
((v A1 (v dots An)) (build.multi-or-expansion-step @- (cdr as)))))
(t
(@derive ((v A2 (v dots An)) (build.multi-or-expansion base (cdr as)))
((v A1 (v A2 (v dots An))) (build.expansion (@formula A1) @-))))))
;; Degenerate case.
(logic.appeal-identity base)))
(encapsulate
()
(local (in-theory (enable build.multi-or-expansion)))
(defthm build.multi-or-expansion-under-iff
(iff (build.multi-or-expansion base as)
t))
(defthm@ forcing-logic.appealp-of-build.multi-or-expansion
(implies (force (and (logic.appealp base)
(logic.formula-listp as)
(@match (proof base (v Ai Aj)))
(memberp (@formula Ai) as)
(memberp (@formula Aj) as)))
(equal (logic.appealp (build.multi-or-expansion base as))
t)))
(defthm@ forcing-logic.conclusion-of-build.multi-or-expansion
(implies (force (and (logic.appealp base)
(logic.formula-listp as)
(@match (proof base (v Ai Aj)))
(memberp (@formula Ai) as)
(memberp (@formula Aj) as)))
(equal (logic.conclusion (build.multi-or-expansion base as))
(logic.disjoin-formulas as)))
:rule-classes ((:rewrite :backchain-limit-lst 0)))
(defthm@ forcing-logic.proofp-of-build.multi-or-expansion
(implies (force (and (logic.appealp base)
(logic.formula-listp as)
(@match (proof base (v Ai Aj)))
(memberp (@formula Ai) as)
(memberp (@formula Aj) as)
;; ---
(force (logic.formula-list-atblp as atbl))
(force (logic.proofp base axioms thms atbl))))
(equal (logic.proofp (build.multi-or-expansion base as) axioms thms atbl)
t))))
(defderiv build.generic-subset-step-lemma-1
:from ((proof x (v (v P A) P)))
:derive (v P A)
:proof (@derive ((v (v P A) P) (@given x))
((v P (v P A)) (build.commute-or @-))
((v (v P P) A) (build.associativity @-))
((v A (v P P)) (build.commute-or @-))
((v A P) (build.disjoined-contraction @-))
((v P A) (build.commute-or @-))))
(defund@ build.generic-subset-step (proof as)
;; Derive A1 v ... v An from (Ai v Aj) v (A1 v ... v An)
;;
;; I originally based this on Shankar's M3-Proof function, but since then
;; I've tweaked it slightly and it no now uses multi-or-expansion-step
;; instead of multi-or-expansion. This seems to save about 4-5% off of
;; proofs of the generic subset builder.
(declare (xargs :guard (and (logic.formula-listp as)
(logic.appealp proof)
(@match (proof proof (v (v Ai Aj) A1-An)))
(memberp (@formula Ai) as)
(memberp (@formula Aj) as)
(equal (@formula A1-An) (logic.disjoin-formulas as)))))
(@derive
((v (v Ai Aj) A1-An) (@given proof))
((v A1-An (v Ai Aj)) (build.commute-or @-))
((v (v A1-An Ai) Aj) (build.associativity @-))
((v (v A1-An Ai) A1-An) (build.multi-or-expansion-step @- as))
((v A1-An Ai) (build.generic-subset-step-lemma-1 @-))
((v A1-An A1-An) (build.multi-or-expansion-step @- as))
(A1-An (build.contraction @-))))
(encapsulate
()
(local (in-theory (enable build.generic-subset-step)))
(defthm build.generic-subset-step-under-iff
(iff (build.generic-subset-step proof as)
t))
(defthm@ forcing-logic.appealp-of-build.generic-subset-step
(implies (force (and (logic.formula-listp as)
(logic.appealp proof)
(@match (proof proof (v (v Ai Aj) A1-An)))
(memberp (@formula Ai) as)
(memberp (@formula Aj) as)
(equal (@formula A1-An) (logic.disjoin-formulas as))))
(equal (logic.appealp (build.generic-subset-step proof as))
t)))
(verify-guards build.generic-subset-step)
(defthm@ forcing-logic.conclusion-of-build.generic-subset-step
(implies (force (and (logic.formula-listp as)
(logic.appealp proof)
(@match (proof proof (v (v Ai Aj) A1-An)))
(memberp (@formula Ai) as)
(memberp (@formula Aj) as)
(equal (@formula A1-An) (logic.disjoin-formulas as))))
(equal (logic.conclusion (build.generic-subset-step proof as))
(logic.disjoin-formulas as)))
:rule-classes ((:rewrite :backchain-limit-lst 0)))
(defthm@ forcing-logic.proofp-of-build.generic-subset-step
(implies (force (and (logic.formula-listp as)
(logic.appealp proof)
(@match (proof proof (v (v Ai Aj) A1-An)))
(memberp (@formula Ai) as)
(memberp (@formula Aj) as)
(equal (@formula A1-An) (logic.disjoin-formulas as))
;; ---
(logic.formula-list-atblp as atbl)
(logic.proofp proof axioms thms atbl)))
(equal (logic.proofp (build.generic-subset-step proof as) axioms thms atbl)
t))))
;: build.generic-subset Cost: 12(n^2) + x
;: Derive B1 v ... v Bm
;: from A1 v ... v An,
;: where {A1 ... An} is a subset of {B1 ... Bm}
;:
;; Derivation. (defined by induction on n)
;;
;; Base Case: n = 1 Cost: n + x
;; 1. Ai Given
;; 2. B1 v ... v Bm Multi Expansion
;;
;; Base Case: n = 2 Cost: 6n + x
;; 1. Ai v Aj
;; 2. B1 v ... v Bm Multi Or Expansion
;;
;; Induction Case: n >= 3 Cost: 12n + x
;; Let F = (A1 v A2).
;; F v (A3 v (A4 v ... v An)) is a disjunction of n-1 formulas.
;; Inductively assume we can prove F v (B1 v ... v Bm) from a proof
;; of F v (A3 v ... v An).
;;
;; Derivation.
;; 1. A1 v (A2 v ... v An) Given
;; 2. (A1 v A2) v (A3 v ... v An) Associativity
;; 2'. F v (A3 v ... v An) (By the definition of F)
;; 3. F v (B1 v ... v Bm) Inductive Hypothesis
;; 3'. (A1 v A2) v (B1 v ... v Bm) (By the definition of F)
;; 4. B1 v B2 v ... v Bm Disjoined-Subset-Step
;;
;;
;; Note: This is basically like Shankar's function "M-Proof." We take two
;; lists of formulas, (A1 ... An) and (B1 ... Bm), where each A occurs in the
;; list of B's. We also take, as another input, a proof of A1 v A2 v ... v An.
;; We construct a proof of B1 v B2 v ... v Bm. Note that both n,m must be >=
;; 1; i.e., we must have non-empty lists of formulas.
(defund@ build.generic-subset (as bs proof)
;; Derive B1 v ... v Bm from A1 v ... v An, where as are a subset of bs
;; Note: this is basically like Shankar's function "M-Proof"
(declare (xargs :guard (and (logic.formula-listp bs)
(subsetp as bs)
(consp as)
(logic.appealp proof)
(equal (logic.conclusion proof) (logic.disjoin-formulas as)))
:measure (len as)
:verify-guards nil))
(@extend ((formula (first as) A1)
(formula (second as) A2)
(formula (third as) A3))
(cond ((not (consp as))
;; Degenerate case -- this isn't even allowed by our guard
(logic.appeal-identity proof))
((not (consp (cdr as)))
;; as = [A1]
(@derive (A1 (@given proof))
((v B1 (v dots Bn)) (build.multi-expansion @- bs))))
((not (consp (cdr (cdr as))))
;; as = [A1 A2]
(@derive ((v A1 A2) (@given proof))
((v B1 (v dots Bn)) (build.multi-or-expansion @- bs))))
(t
;; as = [A1 A2 A3 ...]
(@derive ((v A1 (v A2 (v A3 (v dots An)))) (@given proof))
((v (v A1 A2) (v A3 (v dots An))) (build.associativity @-))
((v (v A1 A2) (v B1 (v dots Bm))) (build.generic-subset (cons (@formula (v A1 A2)) (cdr (cdr as)))
(cons (@formula (v A1 A2)) bs)
@-))
((v B1 (v dots Bm)) (build.generic-subset-step @- bs)))))))
(encapsulate
()
(local (in-theory (enable build.generic-subset)))
(defthm build.generic-subset-under-iff
(iff (build.generic-subset as bs proof)
t))
(defthm lemma-for-forcing-logic.appealp-of-build.generic-subset
(implies (and (logic.formula-listp bs)
(subsetp as bs)
(consp as)
(logic.appealp proof)
(equal (logic.conclusion proof) (logic.disjoin-formulas as)))
(and (logic.appealp (build.generic-subset as bs proof))
(equal (logic.conclusion (build.generic-subset as bs proof))
(logic.disjoin-formulas bs))))
:rule-classes nil)
(defthm forcing-logic.appealp-of-build.generic-subset
(implies (force (and (logic.formula-listp bs)
(logic.appealp proof)
(subsetp as bs)
(consp as)
(equal (logic.conclusion proof) (logic.disjoin-formulas as))))
(equal (logic.appealp (build.generic-subset as bs proof))
t))
:hints(("Goal" :use ((:instance lemma-for-forcing-logic.appealp-of-build.generic-subset)))))
(defthm forcing-logic.conclusion-of-build.generic-subset
(implies (force (and (logic.formula-listp bs)
(logic.appealp proof)
(subsetp as bs)
(consp as)
(equal (logic.conclusion proof) (logic.disjoin-formulas as))))
(equal (logic.conclusion (build.generic-subset as bs proof))
(logic.disjoin-formulas bs)))
:rule-classes ((:rewrite :backchain-limit-lst 0))
:hints(("Goal" :use ((:instance lemma-for-forcing-logic.appealp-of-build.generic-subset)))))
(verify-guards build.generic-subset)
(defthm forcing-logic.proofp-of-build.generic-subset
(implies (force (and (logic.formula-listp bs)
(logic.appealp proof)
(subsetp as bs)
(consp as)
(equal (logic.conclusion proof) (logic.disjoin-formulas as))
;; ---
(logic.formula-list-atblp bs atbl)
(logic.proofp proof axioms thms atbl)))
(equal (logic.proofp (build.generic-subset as bs proof) axioms thms atbl)
t))))
;; We now introduce build.rev-disjunction, which efficiently builds a proof of
;; (an v ... v a1) from a proof of (a1 v ... v an). We could already build
;; such proofs with our generic subset builder, but this builder is much more
;; efficient. For simple tests of the variety shown at the end of this
;; section, we obtain the following savings in terms of "rank":
;;
;; n generic-subset rev-disjunction savings
;; ----------------------------------------------------
;; 1 5 5 0%
;; 2 38 38 0%
;; 3 1,864 771 59%
;; 5 15,194 3,605 76%
;; 10 176,269 18,670 89%
;; 20 2,042,969 83,000 96%
;; 30 8,936,569 192,930 98%
;; ----------------------------------------------------
;;
;; Our proof construction mirrors the "revappend" function, and is implemented
;; as build.revappend-disjunction. Most users should call build.rev-disjunction
;; instead, which hides the accumulator.
(defund@ build.revappend-disjunction (todo done proof)
;; Derive tn v ... v t1 v d1 v ... v dm from (t1 v ... v tn) v (d1 v ... v dm)
(declare (xargs :guard (and (logic.formula-listp todo)
(logic.formula-listp done)
(or (consp todo) (consp done))
(logic.appealp proof)
(equal (logic.conclusion proof)
(cond ((and (consp todo)
(consp done))
(logic.por (logic.disjoin-formulas todo)
(logic.disjoin-formulas done)))
((consp todo)
(logic.disjoin-formulas todo))
(t
(logic.disjoin-formulas done)))))
:verify-guards nil))
(if (and (consp todo)
(consp (cdr todo)))
(if (consp done)
(@derive
((v (v t1 t2-tn) d1-dm) (@given proof))
((v d1-dm (v t1 t2-tn)) (build.commute-or @-))
((v (v d1-dm t1) t2-tn) (build.associativity @-))
((v t2-tn (v d1-dm t1)) (build.commute-or @-))
((v t2-tn (v t1 d1-dm)) (build.disjoined-commute-or @-))
((v tn-t1 dm-d1) (build.revappend-disjunction (cdr todo) (cons (car todo) done) @-)))
(@derive
((v t1 t2-n) (@given proof))
((v t2-n t1) (build.commute-or @-))
(tn-t1 (build.revappend-disjunction (cdr todo) (list (car todo)) @-))))
;; Otherwise, the todo list is only one long, so we already have the proof
;; we were looking for.
(logic.appeal-identity proof)))
(encapsulate
()
(local (in-theory (enable build.revappend-disjunction)))
(defthm build.revappend-disjunction-under-iff
(iff (build.revappend-disjunction todo done proof)
t))
(local (defthm lemma
(implies (and (logic.formula-listp todo)
(logic.formula-listp done)
(or (consp todo) (consp done))
(logic.appealp proof)
(equal (logic.conclusion proof)
(cond ((and (consp todo)
(consp done))
(logic.por (logic.disjoin-formulas todo)
(logic.disjoin-formulas done)))
((consp todo)
(logic.disjoin-formulas todo))
(t
(logic.disjoin-formulas done)))))
(and (logic.appealp (build.revappend-disjunction todo done proof))
(equal (logic.conclusion (build.revappend-disjunction todo done proof))
(logic.disjoin-formulas (app (rev todo) done)))))))
(defthm forcing-logic.appealp-of-build.revappend-disjunction
(implies (force (and (logic.formula-listp todo)
(logic.formula-listp done)
(or (consp todo) (consp done))
(logic.appealp proof)
(equal (logic.conclusion proof)
(cond ((and (consp todo)
(consp done))
(logic.por (logic.disjoin-formulas todo)
(logic.disjoin-formulas done)))
((consp todo)
(logic.disjoin-formulas todo))
(t
(logic.disjoin-formulas done))))))
(equal (logic.appealp (build.revappend-disjunction todo done proof))
t)))
(defthm forcing-logic.conclusion-of-build.revappend-disjunction
(implies (force (and (logic.formula-listp todo)
(logic.formula-listp done)
(or (consp todo) (consp done))
(logic.appealp proof)
(equal (logic.conclusion proof)
(cond ((and (consp todo)
(consp done))
(logic.por (logic.disjoin-formulas todo)
(logic.disjoin-formulas done)))
((consp todo)
(logic.disjoin-formulas todo))
(t
(logic.disjoin-formulas done))))))
(equal (logic.conclusion (build.revappend-disjunction todo done proof))
(logic.disjoin-formulas (app (rev todo) done))))
:rule-classes ((:rewrite :backchain-limit-lst 0)))
(verify-guards build.revappend-disjunction)
(defthm forcing-logic.proofp-of-build.revappend-disjunction
(implies (force (and (logic.formula-listp todo)
(logic.formula-listp done)
(or (consp todo) (consp done))
(logic.appealp proof)
(equal (logic.conclusion proof)
(cond ((and (consp todo)
(consp done))
(logic.por (logic.disjoin-formulas todo)
(logic.disjoin-formulas done)))
((consp todo)
(logic.disjoin-formulas todo))
(t
(logic.disjoin-formulas done))))
;; ---
(logic.proofp proof axioms thms atbl)))
(equal (logic.proofp (build.revappend-disjunction todo done proof) axioms thms atbl)
t))))
(defund build.rev-disjunction (x proof)
;; Derive tn v ... v t1 from t1 v ... v tn
(declare (xargs :guard (and (consp x)
(logic.formula-listp x)
(logic.appealp proof)
(equal (logic.conclusion proof) (logic.disjoin-formulas x)))
;; As far as Milawa is concerned, build.rev-disjunction is going to be
;; an alias for build.generic-subset. This way we don't have to write
;; any proofs about it, we can just let it expand.
:export (build.generic-subset x (fast-rev x) proof)))
(build.revappend-disjunction x nil proof))
(encapsulate
()
(local (in-theory (enable build.rev-disjunction)))
(defthm build.rev-disjunction-under-iff
(iff (build.rev-disjunction x proof)
t))
(defthm forcing-logic.appealp-of-build.rev-disjunction
(implies (force (and (consp x)
(logic.formula-listp x)
(logic.appealp proof)
(equal (logic.conclusion proof) (logic.disjoin-formulas x))))
(equal (logic.appealp (build.rev-disjunction x proof))
t)))
(defthm forcing-logic.conclusion-of-build.rev-disjunction
(implies (force (and (consp x)
(logic.formula-listp x)
(logic.appealp proof)
(equal (logic.conclusion proof) (logic.disjoin-formulas x))))
(equal (logic.conclusion (build.rev-disjunction x proof))
(logic.disjoin-formulas (rev x))))
:rule-classes ((:rewrite :backchain-limit-lst 0)))
(defthm forcing-logic.proofp-of-build.rev-disjunction
(implies (force (and (consp x)
(logic.formula-listp x)
(logic.appealp proof)
(equal (logic.conclusion proof) (logic.disjoin-formulas x))
;; ---
(logic.proofp proof axioms thms atbl)))
(equal (logic.proofp (build.rev-disjunction x proof) axioms thms atbl)
t))))
;; Our test data above was obtained by just running this let expression and
;; commenting out the appropriate number of lines.
;;
;; (let* ((formulas (list
;; (logic.pequal 'a1 'a1-prime)
;; (logic.pequal 'a2 'a2-prime)
;; (logic.pequal 'a3 'a3-prime)
;; (logic.pequal 'a4 'a4-prime)
;; (logic.pequal 'a5 'a5-prime)
;; (logic.pequal 'a6 'a6-prime)
;; (logic.pequal 'a7 'a7-prime)
;; (logic.pequal 'a8 'a8-prime)
;; (logic.pequal 'a9 'a9-prime)
;; (logic.pequal 'a10 'a10-prime)
;; ;(logic.pequal 'a11 'a11-prime)
;; ;(logic.pequal 'a12 'a12-prime)
;; ;(logic.pequal 'a13 'a13-prime)
;; ;(logic.pequal 'a14 'a14-prime)
;; ;(logic.pequal 'a15 'a15-prime)
;; ;(logic.pequal 'a16 'a16-prime)
;; ;(logic.pequal 'a17 'a17-prime)
;; ;(logic.pequal 'a18 'a18-prime)
;; ;(logic.pequal 'a19 'a19-prime)
;; ;(logic.pequal 'a20 'a20-prime)
;; ;(logic.pequal 'a21 'a21-prime)
;; ;(logic.pequal 'a22 'a22-prime)
;; ;(logic.pequal 'a23 'a23-prime)
;; ;(logic.pequal 'a24 'a24-prime)
;; ;(logic.pequal 'a25 'a25-prime)
;; ;(logic.pequal 'a26 'a26-prime)
;; ;(logic.pequal 'a27 'a27-prime)
;; ;(logic.pequal 'a28 'a28-prime)
;; ;(logic.pequal 'a29 'a29-prime)
;; ;(logic.pequal 'a30 'a30-prime)
;; ))
;; (axiom (build.axiom (logic.disjoin-formulas formulas)))
;; (proof1 (build.generic-subset formulas (rev formulas) axiom))
;; (proof2 (build.rev-disjunction formulas axiom)))
;; (list (list 'OK (equal (logic.conclusion proof1)
;; (logic.conclusion proof2)))
;; (list 'generic-rank (rank proof1))
;; (list 'rev-rank (rank proof2))))
;; We now introduce the ordered subset bldr, which is more efficient than the
;; generic builder when applied to large, ordered subsets (such as are obtained
;; by applying remove-duplicates or remove-all to a list). Note that for small
;; lists, the generic builder is actually better.
;;
;; n generic-subset ordered-subset savings
;; ----------------------------------------------------------------
;; 1 64 818 Lose
;; 2 523 6,626 Lose
;; 3 8,557 17,378 Lose
;; 4 25,380 33,074 Lose
;; 5 53,714 55,555 Lose
;; 6 103,552 79,298 23%
;; 10 579,540 231,074 60%
;; 15 2,306,725 532,034 77%
;; 20 6,263,860 956,594 85%
;;
;; Note that our test data comes from the experiment shown at the end of this
;; section.
(defund@ build.ordered-subset-aux (sub sup done proof)
;; Derive [bm,...,b1,d1,...,dk] from [d1,...,dk] v [a1,...,an]
;; where [a1,...,an] is an ordered subset of [b1,...,bm]
(declare (xargs :guard (and (logic.formula-listp sup)
(ordered-subsetp sub sup)
(logic.formula-listp done)
(or (consp sub) (consp done))
(logic.appealp proof)
(equal (logic.conclusion proof)
(cond ((and (consp sub) (consp done))
(logic.por (logic.disjoin-formulas done)
(logic.disjoin-formulas sub)))
((consp sub)
(logic.disjoin-formulas sub))
(t
(logic.disjoin-formulas done)))))
:verify-guards nil
:measure (+ (rank sub) (rank sup))))
(@extend ((formula (car sub) A1)
(formula (car sup) B1))
(cond ((and (consp sub)
(consp sup))
(if (consp done)
(if (equal (@formula A1) (@formula B1))
(if (consp (cdr sub))
(@derive
;; Case 1: [a1,a2...], [b1=a1,...], [d1,...]
;; Step Goal: [a1,d1,...,dk] v [a2,...,an]
((v D1-Dk (v A1 A2-An)) (@given proof))
((v D1-Dk (v A2-An A1)) (build.disjoined-commute-or @-))
((v (v D1-Dk A2-An) A1) (build.associativity @-))
((v A1 (v D1-Dk A2-An)) (build.commute-or @-))
((v (v A1 D1-Dk) A2-An) (build.associativity @-))
((v Bm-B1 D1-Dk) (build.ordered-subset-aux (cdr sub) (cdr sup) (cons (car sup) done) @-)))
(@derive
;; Case 2: [a1], [b1=a1,...], [d1,...]
;; Step Goal: [a1,d1,...,dk]
((v D1-Dk A1) (@given proof))
((v A1 D1-Dk) (build.commute-or @-))
((v Bm-B1 D1-Dk) (build.ordered-subset-aux (cdr sub) (cdr sup) (cons (car sup) done) @-))))
;; Case 3: [a1,...], [b1!=a1,...], [d1,...]
;; Step Goal: [b1,d1,...,dk] v [a1,...,an]
(@derive
((v D1-Dk A1-An) (@given proof))
((v B1 (v D1-Dk A1-An)) (build.expansion (@formula B1) @-))
((v (v B1 D1-Dk) A1-An) (build.associativity @-))
((v Bm-B1 D1-Dk) (build.ordered-subset-aux sub (cdr sup) (cons (car sup) done) @-))))
(if (equal (@formula A1) (@formula B1))
;; Case 4: [a1,...], [b1=a1,...], done = empty
;; Step Goal: a1..n
(@derive
(A1-An (@given proof))
(Bm-B1 (build.ordered-subset-aux (cdr sub) (cdr sup) (cons (car sup) done) @-)))
;; Case 5: [a1,...], [b1!=a1,...], done = empty
;; Step Goal: b1 v (a1..n)
(@derive
(A1-An (@given proof))
((v B1 A1-An) (build.expansion (@formula B1) @-))
(Bm-B1 (build.ordered-subset-aux sub (cdr sup) (cons (car sup) done) @-))))))
((consp sup)
;; Case 6: sub = empty, [b1,...], done = [d1,...] (done is nonempty via our guard)
;; Step Goal: [b1,d1,...,dk]
(@derive
(D1-Dk (@given proof))
((v B1 D1-Dk) (build.expansion (@formula B1) @-))
((v Bm-B1 D1-Dk) (build.ordered-subset-aux sub (cdr sup) (cons (car sup) done) @-))))
(t
;; Case 7: sup = empty
(logic.appeal-identity proof)))))
(encapsulate
()
(local (in-theory (enable build.ordered-subset-aux)))
(defthm build.ordered-subset-aux-under-iff
(iff (build.ordered-subset-aux sub sup done proof)
t))
(defthm forcing-logic.appealp-of-build.ordered-subset-aux
(implies (force (and (logic.formula-listp sup)
(ordered-subsetp sub sup)
(logic.formula-listp done)
(or (consp sub) (consp done))
(logic.appealp proof)
(equal (logic.conclusion proof)
(cond ((and (consp sub) (consp done))
(logic.por (logic.disjoin-formulas done)
(logic.disjoin-formulas sub)))
((consp sub)
(logic.disjoin-formulas sub))
(t
(logic.disjoin-formulas done))))))
(equal (logic.appealp (build.ordered-subset-aux sub sup done proof))
t)))
(defthm forcing-logic.conclusion-of-build.ordered-subset-aux
(implies (force (and (logic.formula-listp sup)
(ordered-subsetp sub sup)
(logic.formula-listp done)
(or (consp sub) (consp done))
(logic.appealp proof)
(equal (logic.conclusion proof)
(cond ((and (consp sub) (consp done))
(logic.por (logic.disjoin-formulas done)
(logic.disjoin-formulas sub)))
((consp sub)
(logic.disjoin-formulas sub))
(t
(logic.disjoin-formulas done))))))
(equal (logic.conclusion (build.ordered-subset-aux sub sup done proof))
(logic.disjoin-formulas (app (rev sup) done)))))
(verify-guards build.ordered-subset-aux)
(defthm forcing-logic.proofp-of-build.ordered-subset-aux
(implies (force (and (logic.formula-listp sup)
(ordered-subsetp sub sup)
(logic.formula-listp done)
(or (consp sub) (consp done))
(logic.appealp proof)
(equal (logic.conclusion proof)
(cond ((and (consp sub) (consp done))
(logic.por (logic.disjoin-formulas done)
(logic.disjoin-formulas sub)))
((consp sub)
(logic.disjoin-formulas sub))
(t
(logic.disjoin-formulas done))))
;; ---
(logic.formula-list-atblp sup atbl)
(logic.proofp proof axioms thms atbl)))
(equal (logic.proofp (build.ordered-subset-aux sub sup done proof) axioms thms atbl)
t))))
(defund build.ordered-subset (sub sup proof)
(declare (xargs :guard (and (logic.formula-listp sup)
(logic.appealp proof)
(consp sub)
(ordered-subsetp sub sup)
(equal (logic.conclusion proof) (logic.disjoin-formulas sub)))))
(build.rev-disjunction (fast-rev sup)
(build.ordered-subset-aux sub sup nil proof)))
(encapsulate
()
(local (in-theory (enable build.ordered-subset)))
(defthm build.ordered-subset-under-iff
(iff (build.ordered-subset sub sup proof)
t))
(defthm forcing-logic.appealp-of-build.ordered-subset
(implies (force (and (logic.formula-listp sup)
(logic.appealp proof)
(consp sub)
(ordered-subsetp sub sup)
(equal (logic.conclusion proof) (logic.disjoin-formulas sub))))
(equal (logic.appealp (build.ordered-subset sub sup proof))
t)))
(defthm forcing-logic.conclusion-of-build.ordered-subset
(implies (force (and (logic.formula-listp sup)
(logic.appealp proof)
(consp sub)
(ordered-subsetp sub sup)
(equal (logic.conclusion proof) (logic.disjoin-formulas sub))))
(equal (logic.conclusion (build.ordered-subset sub sup proof))
(logic.disjoin-formulas sup))))
(defthm forcing-logic.proofp-of-build.ordered-subset
(implies (force (and (logic.formula-listp sup)
(logic.appealp proof)
(consp sub)
(ordered-subsetp sub sup)
(equal (logic.conclusion proof) (logic.disjoin-formulas sub))
;; ---
(logic.formula-list-atblp sup atbl)
(logic.proofp proof axioms thms atbl)))
(equal (logic.proofp (build.ordered-subset sub sup proof) axioms thms atbl)
t))))
;; Test data for the build.ordered-subset was taken from running this let*
;; expression with the appropriate lines commented out.
;; (let* ((sub (list
;; (logic.pequal 'a1 'a1-prime)
;; (logic.pequal 'a2 'a2-prime)
;; (logic.pequal 'a3 'a3-prime)
;; (logic.pequal 'a4 'a4-prime)
;; (logic.pequal 'a5 'a5-prime)
;; (logic.pequal 'a6 'a6-prime)
;; (logic.pequal 'a7 'a7-prime)
;; (logic.pequal 'a8 'a8-prime)
;; (logic.pequal 'a9 'a9-prime)
;; (logic.pequal 'a10 'a10-prime)
;; (logic.pequal 'a11 'a11-prime)
;; (logic.pequal 'a12 'a12-prime)
;; (logic.pequal 'a13 'a13-prime)
;; (logic.pequal 'a14 'a14-prime)
;; (logic.pequal 'a15 'a15-prime)
;; (logic.pequal 'a16 'a16-prime)
;; (logic.pequal 'a17 'a17-prime)
;; (logic.pequal 'a18 'a18-prime)
;; (logic.pequal 'a19 'a19-prime)
;; (logic.pequal 'a20 'a20-prime)
;; ))
;; (sup (list
;; (logic.pequal 'c1 'c1-prime)
;; (logic.pequal 'a1 'a1-prime)
;; (logic.pequal 'b1 'b1-prime)
;; (logic.pequal 'c2 'c2-prime)
;; (logic.pequal 'a2 'a2-prime)
;; (logic.pequal 'b2 'b2-prime)
;; (logic.pequal 'c3 'c3-prime)
;; (logic.pequal 'a3 'a3-prime)
;; (logic.pequal 'b3 'b3-prime)
;; (logic.pequal 'c4 'c4-prime)
;; (logic.pequal 'a4 'a4-prime)
;; (logic.pequal 'b4 'b4-prime)
;; (logic.pequal 'c5 'c5-prime)
;; (logic.pequal 'a5 'a5-prime)
;; (logic.pequal 'b5 'b5-prime)
;; (logic.pequal 'c6 'c6-prime)
;; (logic.pequal 'a6 'a6-prime)
;; (logic.pequal 'b6 'b6-prime)
;; (logic.pequal 'c7 'c7-prime)
;; (logic.pequal 'a7 'a7-prime)
;; (logic.pequal 'b7 'b7-prime)
;; (logic.pequal 'c8 'c8-prime)
;; (logic.pequal 'a8 'a8-prime)
;; (logic.pequal 'b8 'b8-prime)
;; (logic.pequal 'c9 'c9-prime)
;; (logic.pequal 'a9 'a9-prime)
;; (logic.pequal 'b9 'b9-prime)
;; (logic.pequal 'c10 'c10-prime)
;; (logic.pequal 'a10 'a10-prime)
;; (logic.pequal 'b10 'b10-prime)
;; (logic.pequal 'c11 'c11-prime)
;; (logic.pequal 'a11 'a11-prime)
;; (logic.pequal 'b11 'b11-prime)
;; (logic.pequal 'c12 'c12-prime)
;; (logic.pequal 'a12 'a12-prime)
;; (logic.pequal 'b12 'b12-prime)
;; (logic.pequal 'c13 'c13-prime)
;; (logic.pequal 'a13 'a13-prime)
;; (logic.pequal 'b13 'b13-prime)
;; (logic.pequal 'c14 'c14-prime)
;; (logic.pequal 'a14 'a14-prime)
;; (logic.pequal 'b14 'b14-prime)
;; (logic.pequal 'c15 'c15-prime)
;; (logic.pequal 'a15 'a15-prime)
;; (logic.pequal 'b15 'b15-prime)
;; (logic.pequal 'c16 'c16-prime)
;; (logic.pequal 'a16 'a16-prime)
;; (logic.pequal 'b16 'b16-prime)
;; (logic.pequal 'c17 'c17-prime)
;; (logic.pequal 'a17 'a17-prime)
;; (logic.pequal 'b17 'b17-prime)
;; (logic.pequal 'c18 'c18-prime)
;; (logic.pequal 'a18 'a18-prime)
;; (logic.pequal 'b18 'b18-prime)
;; (logic.pequal 'c19 'c19-prime)
;; (logic.pequal 'a19 'a19-prime)
;; (logic.pequal 'b19 'b19-prime)
;; (logic.pequal 'c20 'c20-prime)
;; (logic.pequal 'a20 'a20-prime)
;; (logic.pequal 'b20 'b20-prime)
;; ))
;; (proof (build.axiom (logic.disjoin-formulas sub)))
;; (oproof (build.ordered-subset sub sup proof))
;; (sproof (build.generic-subset sub sup proof)))
;; (list
;; (list 'ok (equal (logic.conclusion oproof) (logic.conclusion sproof)))
;; (list 'rank-o (rank oproof))
;; (list 'rank-s (rank sproof))))
;; Finally we introduce our "adaptive" builder. We check for certain common
;; cases.
(defund build.disjoined-subset (as bs proof)
(declare (xargs :guard (and (logic.formula-listp bs)
(subsetp as bs)
(logic.appealp proof)
(consp as)
(equal (logic.conclusion proof)
(logic.disjoin-formulas as)))
:export (build.generic-subset as bs proof)))
(cond ((equal bs as)
;; The best case: we can just reuse the proof verbatim.
(logic.appeal-identity proof))
((equal bs (fast-rev as))
;; Another good case, we can use our reversal builder.
(build.rev-disjunction as proof))
((ordered-subsetp as bs)
;; Here we may be able to optimize. As a heuristic, if there are more
;; than 5 members in the subset or more than 10 in the superset, we
;; just use the ordered builder since the generic builder is probably
;; not as efficient. Otherwise, we'll try both builders and just use
;; whichever proof turns out to be smaller.
(if (or (< 5 (len as))
(< 10 (len bs)))
(build.ordered-subset as bs proof)
(let* ((proof1 (build.generic-subset as bs proof))
(proof2 (build.ordered-subset as bs proof))
(rank1 (rank proof1))
(rank2 (rank proof2)))
(ACL2::prog2$
(ACL2::cw "BDJS n,m,generic,ord = ~x0, ~x1, ~x2, ~x3~%"
(len as) (len bs) rank1 rank2)
(if (< (rank proof1) (rank proof2))
proof1
proof2)))))
(t
;; If we get here, we have no special tricks to use. We fall back to
;; using the generic subset builder.
(build.generic-subset as bs proof))))
(encapsulate
()
(local (in-theory (enable build.disjoined-subset)))
(defthm build.disjoined-subset-under-iff
(iff (build.disjoined-subset as bs proof)
t))
(defthm forcing-logic.appealp-of-build.disjoined-subset
(implies (force (and (logic.formula-listp bs)
(subsetp as bs)
(logic.appealp proof)
(consp as)
(equal (logic.conclusion proof)
(logic.disjoin-formulas as))))
(equal (logic.appealp (build.disjoined-subset as bs proof))
t)))
(defthm forcing-logic.conclusion-of-build.disjoined-subset
(implies (force (and (logic.formula-listp bs)
(subsetp as bs)
(logic.appealp proof)
(consp as)
(equal (logic.conclusion proof)
(logic.disjoin-formulas as))))
(equal (logic.conclusion (build.disjoined-subset as bs proof))
(logic.disjoin-formulas bs)))
:rule-classes ((:rewrite :backchain-limit-lst 0)))
(defthm forcing-logic.proofp-of-build.disjoined-subset
(implies (force (and (logic.formula-listp bs)
(subsetp as bs)
(logic.appealp proof)
(consp as)
(equal (logic.conclusion proof)
(logic.disjoin-formulas as))
;; ---
(logic.formula-list-atblp bs atbl)
(logic.proofp proof axioms thms atbl)))
(equal (logic.proofp (build.disjoined-subset as bs proof) axioms thms atbl)
t))))
;; We can now also talk about building a lists of proofs X1,...,Xn from another
;; list of proofs Y1,...,Ym, where "each Xi is a superset of some Yi".
(defund build.all-superset-of-some (x y proofs)
(declare (xargs :guard (and (logic.formula-list-listp x)
(logic.formula-list-listp y)
(cons-listp y)
(all-superset-of-somep x y)
(logic.appeal-listp proofs)
(subsetp (logic.disjoin-each-formula-list y)
(logic.strip-conclusions proofs)))))
(if (consp x)
(let* ((subset (find-subset (car x) y))
(proof (logic.find-proof (logic.disjoin-formulas subset) proofs)))
;; Proof is now a proof of subset, which is a subset of (car x).
;; We can just expand the proof to get a proof of (car x).
(cons (build.disjoined-subset subset (car x) proof)
(build.all-superset-of-some (cdr x) y proofs)))
nil))
(encapsulate
()
(local (in-theory (enable build.all-superset-of-some)))
(defthm forcing-logic.appeal-listp-of-build.all-superset-of-some
(implies (force (and (logic.formula-list-listp x)
(logic.formula-list-listp y)
(cons-listp y)
(all-superset-of-somep x y)
(logic.appeal-listp proofs)
(subsetp (logic.disjoin-each-formula-list y)
(logic.strip-conclusions proofs))))
(equal (logic.appeal-listp (build.all-superset-of-some x y proofs))
t)))
(defthm forcing-logic.strip-conclusions-of-build.all-superset-of-some
(implies (force (and (logic.formula-list-listp x)
(logic.formula-list-listp y)
(cons-listp y)
(all-superset-of-somep x y)
(logic.appeal-listp proofs)
(subsetp (logic.disjoin-each-formula-list y)
(logic.strip-conclusions proofs))))
(equal (logic.strip-conclusions (build.all-superset-of-some x y proofs))
(logic.disjoin-each-formula-list x)))
:rule-classes ((:rewrite :backchain-limit-lst 0)))
(defthm forcing-logic.proof-listp-of-build.all-superset-of-some
(implies (force (and (logic.formula-list-listp x)
(logic.formula-list-listp y)
(cons-listp y)
(all-superset-of-somep x y)
(logic.appeal-listp proofs)
(subsetp (logic.disjoin-each-formula-list y)
(logic.strip-conclusions proofs))
;; ---
(logic.formula-list-list-atblp x atbl)
(logic.proof-listp proofs axioms thms atbl)))
(equal (logic.proof-listp (build.all-superset-of-some x y proofs) axioms thms atbl)
t))))
(defund build.generic-subset-okp (x atbl)
(declare (xargs :guard (and (logic.appealp x)
(logic.arity-tablep atbl))))
(let ((method (logic.method x))
(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))
(and (equal method 'build.generic-subset)
(equal (len subproofs) 1)
(tuplep 2 extras)
(let ((as (first extras))
(bs (second extras)))
(and (logic.formula-listp bs)
(logic.formula-list-atblp bs atbl)
(subsetp as bs)
(consp as)
(equal conclusion (logic.disjoin-formulas bs))
(equal (logic.conclusion (first subproofs))
(logic.disjoin-formulas as)))))))
(encapsulate
()
(local (in-theory (enable build.generic-subset-okp)))
(defthm booleanp-of-build.generic-subset-okp
(equal (booleanp (build.generic-subset-okp x atbl))
t)
:hints(("goal" :in-theory (disable forcing-true-listp-of-logic.subproofs))))
(defthm build.generic-subset-okp-of-logic.appeal-identity
(equal (build.generic-subset-okp (logic.appeal-identity x) atbl)
(build.generic-subset-okp x atbl))
:hints(("goal" :in-theory (disable forcing-true-listp-of-logic.subproofs))))
(defthm forcing-soundness-of-build.generic-subset-okp
(implies (and (build.generic-subset-okp x atbl)
(force (and (logic.appealp x)
(logic.provable-listp (logic.strip-conclusions (logic.subproofs x)) axioms thms atbl))))
(equal (logic.provablep (logic.conclusion x) axioms thms atbl)
t))
:hints (("Goal"
:use ((:instance forcing-logic.provablep-when-logic.proofp
(x (build.generic-subset
(first (logic.extras x))
(second (logic.extras x))
(logic.provable-witness (logic.conclusion (car (logic.subproofs x)))
axioms thms atbl)))))))))
(dd.close)
|