1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "pequal-list")
(set-verify-guards-eagerness 2)
(set-case-split-limitations nil)
(set-well-founded-relation ord<)
(set-measure-function rank)
(dd.open "lambda-rules.tex")
(dd.section "$\\lambda$ reduction rules")
(defderiv build.dual-substitution-lemma-1
:from ((proof x (= (? a) (? b)))
(proof y (= (? b) (? d)))
(proof z (= (? c) (? d))))
:derive (= (? a) (? c))
:proof (@derive
((= (? a) (? b)) (@given x))
((= (? b) (? d)) (@given y))
((= (? a) (? d)) (build.transitivity-of-pequal @-- @-) *1)
((= (? c) (? d)) (@given z))
((= (? d) (? c)) (build.commute-pequal @-))
((= (? a) (? c)) (build.transitivity-of-pequal *1 @-))))
(defun build.flag-dual-substitution (flag x vars proofs)
(declare (xargs :guard (and (if (equal flag 'term)
(logic.termp x)
(and (equal flag 'list)
(logic.term-listp x)))
(logic.variable-listp vars)
(uniquep vars)
(logic.appeal-listp proofs)
(same-lengthp vars proofs)
(logic.all-atomicp (logic.strip-conclusions proofs)))
:verify-guards nil))
(if (equal flag 'term)
(cond ((logic.constantp x)
;; If x is a constant, then x/[Vi<-Ti] = x and x/[Vi<-Si] = x, so our goal
;; is to prove x = x, which is trivial by reflexivity.
(build.reflexivity x))
((logic.variablep x)
;; If x is a variable, then either it is some vi or not.
(let ((index (first-index x vars)))
(if (equal index (len vars))
;; If it wasn't found among the vi, then as in the constant case we
;; have x/[Vi<-Ti] = x and x/[Vi<-Si] = x, so our goal is to prove x
;; = x, which is again trivial by reflexivity.
(build.reflexivity x)
;; Else x is exactly some vi, and we have x/[Vi<-Ti] = ti and
;; x/[Vi<-Si] = si, so our goal is to prove ti = si, which is trivial
;; by the ith proof.
(logic.appeal-identity (nth index proofs)))))
((logic.functionp x)
;; If x is (f a1 ... an), then
;; x/[Vi<-Ti] = (f a1/[Vi<-Ti] ... an/[Vi<-Ti]), and
;; x/[Vi<-Si] = (f a1/[Vi<-Si] ... an/[Vi<-Si]).
;;
;; For each ai, we can recursively prove ai/[Vi<-Ti] = ai/[Vi<-Si], then
;; by pequal-by-args we can prove our goal.
(build.pequal-by-args (logic.function-name x)
(build.flag-dual-substitution 'list (logic.function-args x) vars proofs)))
((logic.lambdap x)
;; If x is ((lambda (x1...xn) B) a1...an), then by beta reduction we have
;;
;; To begin, we recursively construct proofs of:
;; ai/[Vi<-Ti] = ai/[Vi<-Si] (*1)
;;
;; To make our next steps more clear, let
;; ci = ai/[Vi<-Ti], and
;; di = ai/[Vi<-Si]
;;
;; In other words, the proofs in *1 establish:
;; ci = di
;;
;; Using these proofs, we can recursively prove B/[Xi<-Ci] = B/[Xi<-Di].
;; This is well-founded because we are recurring over only the structure
;; of x, and B is contained in x and hence is smaller than x. If we now
;; expand away the definitions of Ci and Di, we have proven:
;;
;; B/[Xi<-(Ai/[Vi<-Ti])] = B/[Xi<-(Ai/[Vi<-Si])]
;;
;; But since x is a lambda, all of the variables in B must be among the
;; Xi, so the substitutions can be teased apart. We find that the proof
;; above is exactly a proof of:
;;
;; (B/[Xi<-Ai])/[Vi<-Ti] = (B/[Xi<-Ai])/[Vi<-Si] (*2)
;;
;; We can now derive our goal, x/[Vi<-Ti] = x/[Vi<-Si], as follows:
;;
;; 1. x = B/[Xi<-Ai] Beta Reduction
;; 2. x/[Vi<-Ti] = (B/[Xi<-Ai])/[Vi<-Ti] Instantiation; 1 a=b
;; 3. (B/[Xi<-Ai])/[Vi<-Ti] = (B/[Xi<-Ai])/[Vi<-Si] By *2 b=d
;; 4. x/[Vi<-Si] = (B/[Xi<-Ai])/[Vi<-Si] Instantiation; 1 c=d
;; 5. x/[Vi<-Ti] = x/[Vi<-Si] Lemma; 2,3,4
(let* ((ti=si* (logic.strip-conclusions proofs))
(line-1 (build.beta-reduction (logic.lambda-formals x)
(logic.lambda-body x)
(logic.lambda-actuals x))))
(build.dual-substitution-lemma-1
(build.instantiation line-1 (pair-lists vars (logic.=lhses ti=si*)))
(build.flag-dual-substitution 'term (logic.lambda-body x) (logic.lambda-formals x)
(build.flag-dual-substitution 'list (logic.lambda-actuals x) vars proofs))
(build.instantiation line-1 (pair-lists vars (logic.=rhses ti=si*))))))
(t
;; sneaky hack so that it's always iff to t.
t))
;; List case.
(if (consp x)
(cons (build.flag-dual-substitution 'term (car x) vars proofs)
(build.flag-dual-substitution 'list (cdr x) vars proofs))
nil)))
(definlined build.dual-substitution (x vars proofs)
(declare (xargs :guard (and (logic.termp x)
(logic.variable-listp vars)
(uniquep vars)
(logic.appeal-listp proofs)
(same-lengthp vars proofs)
(logic.all-atomicp (logic.strip-conclusions proofs)))
:verify-guards nil))
(build.flag-dual-substitution 'term x vars proofs))
(definlined build.dual-substitution-list (x vars proofs)
(declare (xargs :guard (and (logic.term-listp x)
(logic.variable-listp vars)
(uniquep vars)
(logic.appeal-listp proofs)
(same-lengthp vars proofs)
(logic.all-atomicp (logic.strip-conclusions proofs)))
:verify-guards nil))
(build.flag-dual-substitution 'list x vars proofs))
(defthmd definition-of-build.dual-substitution
(equal (build.dual-substitution x vars proofs)
(cond ((logic.constantp x)
(build.reflexivity x))
((logic.variablep x)
(let ((index (first-index x vars)))
(if (equal index (len vars))
(build.reflexivity x)
(logic.appeal-identity (nth index proofs)))))
((logic.functionp x)
(build.pequal-by-args (logic.function-name x)
(build.dual-substitution-list (logic.function-args x) vars proofs)))
((logic.lambdap x)
(let* ((ti=si* (logic.strip-conclusions proofs))
(line-1 (build.beta-reduction (logic.lambda-formals x)
(logic.lambda-body x)
(logic.lambda-actuals x))))
(build.dual-substitution-lemma-1
(build.instantiation line-1 (pair-lists vars (logic.=lhses ti=si*)))
(build.flag-dual-substitution 'term (logic.lambda-body x) (logic.lambda-formals x)
(build.flag-dual-substitution 'list (logic.lambda-actuals x) vars proofs))
(build.instantiation line-1 (pair-lists vars (logic.=rhses ti=si*))))))
(t t)))
:rule-classes :definition
:hints(("Goal" :in-theory (enable build.dual-substitution
build.dual-substitution-list))))
(defthmd definition-of-build.dual-substitution-list
(equal (build.dual-substitution-list x vars proofs)
(if (consp x)
(cons (build.dual-substitution (car x) vars proofs)
(build.dual-substitution-list (cdr x) vars proofs))
nil))
:rule-classes :definition
:hints(("Goal" :in-theory (enable build.dual-substitution
build.dual-substitution-list))))
(defobligations build.dual-substitution
(build.reflexivity
build.pequal-by-args
build.beta-reduction
build.instantiation
build.dual-substitution-lemma-1))
(defobligations build.dual-substitution-list
(build.dual-substitution))
(defthm build.flag-dual-substitution-of-term-removal
(equal (build.flag-dual-substitution 'term x vars proofs)
(build.dual-substitution x vars proofs))
:hints(("Goal" :in-theory (enable build.dual-substitution))))
(defthm build.flag-dual-substitution-of-list-removal
(equal (build.flag-dual-substitution 'list x vars proofs)
(build.dual-substitution-list x vars proofs))
:hints(("Goal" :in-theory (enable build.dual-substitution-list))))
(ACL2::theory-invariant (not (ACL2::active-runep '(:definition build.dual-substitution))))
(ACL2::theory-invariant (not (ACL2::active-runep '(:definition build.dual-substitution-list))))
(defthm build.dual-substitution-under-iff
(iff (build.dual-substitution x vars proofs)
t)
:hints(("Goal" :use ((:instance definition-of-build.dual-substitution)))))
(defthm build.dual-substitution-list-when-not-consp
(implies (not (consp x))
(equal (build.dual-substitution-list x vars proofs)
nil))
:hints(("Goal" :in-theory (enable definition-of-build.dual-substitution-list))))
(defthm build.dual-substitution-list-of-cons
(equal (build.dual-substitution-list (cons a x) vars proofs)
(cons (build.dual-substitution a vars proofs)
(build.dual-substitution-list x vars proofs)))
:hints(("Goal" :in-theory (enable definition-of-build.dual-substitution-list))))
(defthm len-of-build.dual-substitution-list
(equal (len (build.dual-substitution-list x vars proofs))
(len x))
:hints(("Goal" :induct (cdr-induction x))))
(defthms-flag
:shared-hyp (force (and (logic.variable-listp vars)
(uniquep vars)
(logic.appeal-listp proofs)
(equal (len vars) (len proofs))
(logic.all-atomicp (logic.strip-conclusions proofs))))
:thms ((term forcing-logic.appealp-of-build.dual-substitution
(implies (force (logic.termp x))
(equal (logic.appealp (build.dual-substitution x vars proofs))
t)))
(term forcing-logic.conclusion-of-build.dual-substitution
(implies (force (logic.termp x))
(equal (logic.conclusion (build.dual-substitution x vars proofs))
(logic.pequal
(logic.substitute x (pair-lists vars (logic.=lhses (logic.strip-conclusions proofs))))
(logic.substitute x (pair-lists vars (logic.=rhses (logic.strip-conclusions proofs))))))))
(t forcing-logic.appealp-listp-of-build.dual-substitution-list
(implies (force (logic.term-listp x))
(equal (logic.appeal-listp (build.dual-substitution-list x vars proofs))
t)))
(t forcing-logic.strip-conclusions-of-build.dual-substitution-list
(implies (force (logic.term-listp x))
(equal (logic.strip-conclusions (build.dual-substitution-list x vars proofs))
(logic.pequal-list
(logic.substitute-list x (pair-lists vars (logic.=lhses (logic.strip-conclusions proofs))))
(logic.substitute-list x (pair-lists vars (logic.=rhses (logic.strip-conclusions proofs)))))))))
:hints (("Goal"
:restrict ((definition-of-build.dual-substitution ((x x))))
:in-theory (e/d (definition-of-build.dual-substitution)
(forcing-lookup-of-logic.function-name))
:induct (build.flag-dual-substitution flag x vars proofs))))
(verify-guards build.flag-dual-substitution
:hints(("Goal" :in-theory (disable forcing-lookup-of-logic.function-name))))
(verify-guards build.dual-substitution)
(verify-guards build.dual-substitution-list)
(defthms-flag
:@contextp t
:shared-hyp (force (and (logic.variable-listp vars)
(uniquep vars)
(logic.appeal-listp proofs)
(logic.proof-listp proofs axioms thms atbl)
(equal (len vars) (len proofs))
(logic.all-atomicp (logic.strip-conclusions proofs))))
:thms ((term forcing-logic.proofp-of-build.dual-substitution
(implies (force (and (logic.termp x)
(logic.term-atblp x atbl)
(@obligations build.dual-substitution)))
(equal (logic.proofp (build.dual-substitution x vars proofs) axioms thms atbl)
t)))
(t forcing-logic.proof-listp-of-build.dual-substitution-list
(implies (force (and (logic.term-listp x)
(logic.term-list-atblp x atbl)
(@obligations build.dual-substitution-list)))
(equal (logic.proof-listp (build.dual-substitution-list x vars proofs) axioms thms atbl)
t))))
:hints (("Goal"
:restrict ((definition-of-build.dual-substitution ((x x))))
:in-theory (enable definition-of-build.dual-substitution)
:induct (build.flag-dual-substitution flag x vars proofs))))
(defund build.lambda-pequal-by-args (formals body proofs)
;; Derive ((lambda (x1...xn) B) t1...tn) = ((lambda (x1...xn) B) s1...sn) from t1 = s1, ..., tn = sn
(declare (xargs :guard (and (true-listp formals)
(logic.variable-listp formals)
(uniquep formals)
(logic.termp body)
(subsetp (logic.term-vars body) formals)
(logic.appeal-listp proofs)
(same-lengthp proofs formals)
(logic.all-atomicp (logic.strip-conclusions proofs)))
:verify-guards nil))
(let* ((conclusions (logic.strip-conclusions proofs)) ;; (t1 = s1, ..., tn = sn)
(t* (logic.=lhses conclusions)) ;; (t1, ..., tn)
(s* (logic.=rhses conclusions))) ;; (s1, ..., sn)
(if (equal t* s*)
;; Optimization. As with build.pequal-by-args, if all of the arguments
;; are identical, we will just use reflexivity to build the proof.
(build.reflexivity (logic.lambda formals body t*))
;; Otherwise, we use the following derivation.
;;
;; 1. ((lambda (x1...xn) B) t1...tn) = B/[Xi<-Ti] Beta reduction
;; 2. B/[Xi<-Ti] = B/[Xi<-Si] Dual substitution
;; 3. ((lambda (x1...xn) B) t1...tn) = B/[Xi<-Si] Trans =; 1,2
;; 4. ((lambda (x1...xn) B) s1...sn) = B/[Xi<-Si] Beta reduction
;; 5. B/[Xi<-Si] = ((lambda (x1...xn) B) s1...sn) Commute =; 4
;; 6. ((lambda (x1...xn) B) t1...tn) = ((lambda (x1...xn) B) s1...sn) Trans =; 3,5
;;
;; Q.E.D.
(let* ((line-1 (build.beta-reduction formals body t*))
(line-2 (build.dual-substitution body formals proofs))
(line-3 (build.transitivity-of-pequal line-1 line-2))
(line-4 (build.beta-reduction formals body s*))
(line-5 (build.commute-pequal line-4))
(line-6 (build.transitivity-of-pequal line-3 line-5)))
line-6))))
(defobligations build.lambda-pequal-by-args
(build.reflexivity
build.beta-reduction
build.dual-substitution
build.transitivity-of-pequal
build.commute-pequal
build.transitivity-of-pequal))
(encapsulate
()
(local (in-theory (enable build.lambda-pequal-by-args)))
(defthm build.lambda-pequal-by-args-under-iff
(iff (build.lambda-pequal-by-args formals body proofs)
t))
(defthm forcing-logic.appealp-of-build.lambda-pequal-by-args
(implies (force (and (true-listp formals)
(logic.variable-listp formals)
(uniquep formals)
(logic.termp body)
(subsetp (logic.term-vars body) formals)
(logic.appeal-listp proofs)
(equal (len proofs) (len formals))
(logic.all-atomicp (logic.strip-conclusions proofs))))
(equal (logic.appealp (build.lambda-pequal-by-args formals body proofs))
t)))
(defthm forcing-logic.conclusion-of-build.lambda-pequal-by-args
(implies (force (and (true-listp formals)
(logic.variable-listp formals)
(uniquep formals)
(logic.termp body)
(subsetp (logic.term-vars body) formals)
(logic.appeal-listp proofs)
(equal (len proofs) (len formals))
(logic.all-atomicp (logic.strip-conclusions proofs))))
(equal (logic.conclusion (build.lambda-pequal-by-args formals body proofs))
(logic.pequal (logic.lambda formals body (logic.=lhses (logic.strip-conclusions proofs)))
(logic.lambda formals body (logic.=rhses (logic.strip-conclusions proofs))))))
:rule-classes ((:rewrite :backchain-limit-lst 0)))
(defthm@ forcing-logic.proofp-of-build.lambda-pequal-by-args
(implies (force (and (true-listp formals)
(logic.variable-listp formals)
(uniquep formals)
(logic.termp body)
(logic.term-atblp body atbl)
(subsetp (logic.term-vars body) formals)
(logic.appeal-listp proofs)
(logic.proof-listp proofs axioms thms atbl)
(equal (len proofs) (len formals))
(logic.all-atomicp (logic.strip-conclusions proofs))
(@obligations build.lambda-pequal-by-args)))
(equal (logic.proofp (build.lambda-pequal-by-args formals body proofs) axioms thms atbl)
t)))
(verify-guards build.lambda-pequal-by-args))
(defund build.lambda-pequal-by-args-okp (x atbl)
(declare (xargs :guard (and (logic.appealp x)
(logic.arity-tablep atbl))))
(let ((method (logic.method x))
(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))
(and (equal method 'build.lambda-pequal-by-args)
(tuplep 2 extras)
(let ((formals (first extras))
(body (second extras)))
(and (true-listp formals)
(logic.variable-listp formals)
(uniquep formals)
(logic.termp body)
(logic.term-atblp body atbl)
(subsetp (logic.term-vars body) formals)
(same-lengthp subproofs formals)
(logic.all-atomicp-of-strip-conclusions subproofs)
(equal conclusion
(logic.pequal (logic.lambda formals body (logic.=lhses-of-strip-conclusions subproofs))
(logic.lambda formals body (logic.=rhses-of-strip-conclusions subproofs)))))))))
(defund build.lambda-pequal-by-args-high (formals body proofs)
;; BOZO we could add a true-listp restriction to proofs to avoid the list-fix
(declare (xargs :guard (and (true-listp formals)
(logic.variable-listp formals)
(uniquep formals)
(logic.termp body)
(subsetp (logic.term-vars body) formals)
(logic.appeal-listp proofs)
(same-lengthp proofs formals)
(logic.all-atomicp (logic.strip-conclusions proofs)))))
(logic.appeal 'build.lambda-pequal-by-args
(logic.pequal (logic.lambda formals body (logic.=lhses-of-strip-conclusions proofs))
(logic.lambda formals body (logic.=rhses-of-strip-conclusions proofs)))
(list-fix proofs)
(list formals body)))
(encapsulate
()
(local (in-theory (enable build.lambda-pequal-by-args-okp)))
(defthm booleanp-of-build.lambda-pequal-by-args-okp
(equal (booleanp (build.lambda-pequal-by-args-okp x atbl))
t)
:hints(("goal" :in-theory (disable (:executable-counterpart ACL2::force)))))
(defthm build.lambda-pequal-by-args-okp-of-logic.appeal-identity
(equal (build.lambda-pequal-by-args-okp (logic.appeal-identity x) atbl)
(build.lambda-pequal-by-args-okp x atbl))
:hints(("goal" :in-theory (disable (:executable-counterpart ACL2::force)))))
(local (in-theory (e/d (backtracking-logic.formula-atblp-rules)
(forcing-logic.formula-atblp-rules
forcing-lookup-of-logic.function-name-free))))
(defthm lemma-1-for-soundness-of-build.lambda-pequal-by-args-okp
(implies (and (build.lambda-pequal-by-args-okp x atbl)
(logic.appealp x)
(logic.provable-listp (logic.strip-conclusions (logic.subproofs x)) axioms thms atbl))
(equal (logic.conclusion (build.lambda-pequal-by-args
(first (logic.extras x))
(second (logic.extras x))
(logic.provable-list-witness (logic.strip-conclusions (logic.subproofs x))
axioms thms atbl)))
(logic.conclusion x))))
(defthm@ lemma-2-for-soundness-of-build.lambda-pequal-by-args-okp
(implies (and (build.lambda-pequal-by-args-okp x atbl)
(logic.appealp x)
(logic.provable-listp (logic.strip-conclusions (logic.subproofs x)) axioms thms atbl)
(@obligations build.lambda-pequal-by-args))
(equal (logic.proofp (build.lambda-pequal-by-args
(first (logic.extras x))
(second (logic.extras x))
(logic.provable-list-witness (logic.strip-conclusions (logic.subproofs x))
axioms thms atbl))
axioms thms atbl)
t)))
(defthm@ forcing-soundness-of-build.lambda-pequal-by-args-okp
(implies (and (build.lambda-pequal-by-args-okp x atbl)
(force (and (logic.appealp x)
(logic.provable-listp (logic.strip-conclusions (logic.subproofs x)) axioms thms atbl)
(@obligations build.lambda-pequal-by-args))))
(equal (logic.provablep (logic.conclusion x) axioms thms atbl)
t))
:hints (("Goal"
:in-theory (enable lemma-1-for-soundness-of-build.lambda-pequal-by-args-okp
lemma-2-for-soundness-of-build.lambda-pequal-by-args-okp)
:use ((:instance forcing-logic.provablep-when-logic.proofp
(x (build.lambda-pequal-by-args
(first (logic.extras x))
(second (logic.extras x))
(logic.provable-list-witness (logic.strip-conclusions (logic.subproofs x))
axioms thms atbl)))))))))
(defderiv build.disjoined-dual-substitution-lemma-1
:from ((proof x (v P (= (? a) (? b))))
(proof y (v P (= (? b) (? d))))
(proof z (v P (= (? c) (? d)))))
:derive (v P (= (? a) (? c)))
:proof (@derive
((v P (= (? a) (? b))) (@given x))
((v P (= (? b) (? d))) (@given y))
((v P (= (? a) (? d))) (build.disjoined-transitivity-of-pequal @-- @-) *1)
((v P (= (? c) (? d))) (@given z))
((v P (= (? d) (? c))) (build.disjoined-commute-pequal @-))
((v P (= (? a) (? c))) (build.disjoined-transitivity-of-pequal *1 @-))))
(defun build.flag-disjoined-dual-substitution (flag x vars p proofs)
;;
;; P v t1 = s1
;; ...
;; P v tn = sn
;; -----------------------------------------------------
;; P v x/[v1<-t1, ..., vn<-tn] = x/[v1<-s1, ..., vn<-sn]
;;
;; - x is the term we are instantiating
;; - vars are the list of variables (v1 ... vn) from above
;; - p is explicitly given; we can't extract it if proofs is empty
;; - proofs are the givens, i.e., proofs of (t1 = s1, ..., tn = sn)
;;
;; Note: we don't comment this proof since it's almost identical to the one
;; in build.flag-dual-substitution. So see the comments there instead.
(declare (xargs :guard (and (if (equal flag 'term)
(logic.termp x)
(and (equal flag 'list)
(logic.term-listp x)))
(logic.variable-listp vars)
(uniquep vars)
(logic.formulap p)
(logic.appeal-listp proofs)
(equal (len vars) (len proofs))
(let ((conclusions (logic.strip-conclusions proofs)))
(and (logic.all-disjunctionsp conclusions)
(all-equalp p (logic.vlhses conclusions))
(logic.all-atomicp (logic.vrhses conclusions)))))
:verify-guards nil))
(if (equal flag 'term)
(cond ((logic.constantp x)
(build.expansion p (build.reflexivity x)))
((logic.variablep x)
(let ((index (first-index x vars)))
(if (equal index (len vars))
(build.expansion p (build.reflexivity x))
(logic.appeal-identity (nth index proofs)))))
((logic.functionp x)
(let ((name (logic.function-name x))
(args (logic.function-args x)))
(build.disjoined-pequal-by-args name p (build.flag-disjoined-dual-substitution 'list args vars p proofs))))
((logic.lambdap x)
(let* ((ti=si* (logic.vrhses (logic.strip-conclusions proofs)))
(line-1 (build.beta-reduction (logic.lambda-formals x)
(logic.lambda-body x)
(logic.lambda-actuals x))))
(build.disjoined-dual-substitution-lemma-1
(build.expansion p (build.instantiation line-1 (pair-lists vars (logic.=lhses ti=si*))))
(build.flag-disjoined-dual-substitution 'term
(logic.lambda-body x)
(logic.lambda-formals x)
p
(build.flag-disjoined-dual-substitution 'list
(logic.lambda-actuals x)
vars
p
proofs))
(build.expansion p (build.instantiation line-1 (pair-lists vars (logic.=rhses ti=si*)))))))
(t t))
(if (consp x)
(cons (build.flag-disjoined-dual-substitution 'term (car x) vars p proofs)
(build.flag-disjoined-dual-substitution 'list (cdr x) vars p proofs))
nil)))
(definlined build.disjoined-dual-substitution (x vars p proofs)
(declare (xargs :guard (and (logic.termp x)
(logic.variable-listp vars)
(uniquep vars)
(logic.formulap p)
(logic.appeal-listp proofs)
(equal (len vars) (len proofs))
(let ((conclusions (logic.strip-conclusions proofs)))
(and (logic.all-disjunctionsp conclusions)
(all-equalp p (logic.vlhses conclusions))
(logic.all-atomicp (logic.vrhses conclusions)))))
:verify-guards nil))
(build.flag-disjoined-dual-substitution 'term x vars p proofs))
(definlined build.disjoined-dual-substitution-list (x vars p proofs)
(declare (xargs :guard (and (logic.term-listp x)
(logic.variable-listp vars)
(uniquep vars)
(logic.formulap p)
(logic.appeal-listp proofs)
(equal (len vars) (len proofs))
(let ((conclusions (logic.strip-conclusions proofs)))
(and (logic.all-disjunctionsp conclusions)
(all-equalp p (logic.vlhses conclusions))
(logic.all-atomicp (logic.vrhses conclusions)))))
:verify-guards nil))
(build.flag-disjoined-dual-substitution 'list x vars p proofs))
(defthmd definition-of-build.disjoined-dual-substitution
(equal (build.disjoined-dual-substitution x vars p proofs)
(cond ((logic.constantp x)
(build.expansion p (build.reflexivity x)))
((logic.variablep x)
(let ((index (first-index x vars)))
(if (equal index (len vars))
(build.expansion p (build.reflexivity x))
(logic.appeal-identity (nth index proofs)))))
((logic.functionp x)
(let ((name (logic.function-name x))
(args (logic.function-args x)))
(build.disjoined-pequal-by-args name p (build.disjoined-dual-substitution-list args vars p proofs))))
((logic.lambdap x)
(let* ((ti=si* (logic.vrhses (logic.strip-conclusions proofs)))
(line-1 (build.beta-reduction (logic.lambda-formals x)
(logic.lambda-body x)
(logic.lambda-actuals x))))
(build.disjoined-dual-substitution-lemma-1
(build.expansion p (build.instantiation line-1 (pair-lists vars (logic.=lhses ti=si*))))
(build.disjoined-dual-substitution (logic.lambda-body x) (logic.lambda-formals x) p
(build.disjoined-dual-substitution-list (logic.lambda-actuals x) vars p proofs))
(build.expansion p (build.instantiation line-1 (pair-lists vars (logic.=rhses ti=si*)))))))
(t t)))
:rule-classes :definition
:hints(("Goal" :in-theory (enable build.disjoined-dual-substitution
build.disjoined-dual-substitution-list))))
(defthmd definition-of-build.disjoined-dual-substitution-list
(equal (build.disjoined-dual-substitution-list x vars p proofs)
(if (consp x)
(cons (build.disjoined-dual-substitution (car x) vars p proofs)
(build.disjoined-dual-substitution-list (cdr x) vars p proofs))
nil))
:rule-classes :definition
:hints(("Goal" :in-theory (enable build.disjoined-dual-substitution
build.disjoined-dual-substitution-list))))
(defobligations build.disjoined-dual-substitution
(build.expansion
build.reflexivity
build.disjoined-pequal-by-args
build.beta-reduction
build.instantiation
build.disjoined-transitivity-of-pequal
build.commute-pequal))
(defobligations build.disjoined-dual-substitution-list
(build.disjoined-dual-substitution))
(defthm build.flag-disjoined-dual-substitution-of-term-removal
(equal (build.flag-disjoined-dual-substitution 'term x vars p proofs)
(build.disjoined-dual-substitution x vars p proofs))
:hints(("Goal" :in-theory (enable build.disjoined-dual-substitution))))
(defthm build.flag-disjoined-dual-substitution-of-list-removal
(equal (build.flag-disjoined-dual-substitution 'list x vars p proofs)
(build.disjoined-dual-substitution-list x vars p proofs))
:hints(("Goal" :in-theory (enable build.disjoined-dual-substitution-list))))
(ACL2::theory-invariant (not (ACL2::active-runep '(:definition build.disjoined-dual-substitution))))
(ACL2::theory-invariant (not (ACL2::active-runep '(:definition build.disjoined-dual-substitution-list))))
(defthm forcing-build.disjoined-dual-substitution-under-iff
(iff (build.disjoined-dual-substitution x vars p proofs)
t)
:hints(("Goal" :use ((:instance definition-of-build.disjoined-dual-substitution)))))
(defthm build.disjoined-dual-substitution-list-when-not-consp
(implies (not (consp x))
(equal (build.disjoined-dual-substitution-list x vars p proofs)
nil))
:hints(("Goal" :in-theory (enable definition-of-build.disjoined-dual-substitution-list))))
(defthm build.disjoined-dual-substitution-list-of-cons
(equal (build.disjoined-dual-substitution-list (cons a x) vars p proofs)
(cons (build.disjoined-dual-substitution a vars p proofs)
(build.disjoined-dual-substitution-list x vars p proofs)))
:hints(("Goal" :in-theory (enable definition-of-build.disjoined-dual-substitution-list))))
(defthm len-of-build.disjoined-dual-substitution-list
(equal (len (build.disjoined-dual-substitution-list x vars p proofs))
(len x))
:hints(("Goal" :induct (cdr-induction x))))
(defthms-flag
:shared-hyp (force (and (logic.variable-listp vars)
(uniquep vars)
(logic.formulap p)
(logic.appeal-listp proofs)
(equal (len vars) (len proofs))
(logic.all-disjunctionsp (logic.strip-conclusions proofs))
(all-equalp p (logic.vlhses (logic.strip-conclusions proofs)))
(logic.all-atomicp (logic.vrhses (logic.strip-conclusions proofs)))))
:thms ((term forcing-logic.appealp-of-build.disjoined-dual-substitution
(implies (force (logic.termp x))
(equal (logic.appealp (build.disjoined-dual-substitution x vars p proofs))
t)))
(term forcing-logic.conclusion-of-build.disjoined-dual-substitution
(implies (force (logic.termp x))
(equal (logic.conclusion (build.disjoined-dual-substitution x vars p proofs))
(logic.por p (logic.pequal (logic.substitute x (pair-lists vars (logic.=lhses (logic.vrhses (logic.strip-conclusions proofs)))))
(logic.substitute x (pair-lists vars (logic.=rhses (logic.vrhses (logic.strip-conclusions proofs))))))))))
(t forcing-logic.appeal-listp-of-build.disjoined-dual-substitution
(implies (force (logic.term-listp x))
(equal (logic.appeal-listp (build.disjoined-dual-substitution-list x vars p proofs))
t)))
(t forcing-logic.strip-conclusions-of-build.disjoined-dual-substitution
(implies (force (logic.term-listp x))
(equal (logic.strip-conclusions (build.disjoined-dual-substitution-list x vars p proofs))
(logic.por-list (repeat p (len x))
(logic.pequal-list
(logic.substitute-list x (pair-lists vars (logic.=lhses (logic.vrhses (logic.strip-conclusions proofs)))))
(logic.substitute-list x (pair-lists vars (logic.=rhses (logic.vrhses (logic.strip-conclusions proofs)))))))))))
:hints (("Goal"
:in-theory (enable definition-of-build.disjoined-dual-substitution)
:induct (build.flag-disjoined-dual-substitution flag x vars p proofs))))
(verify-guards build.flag-disjoined-dual-substitution)
(verify-guards build.disjoined-dual-substitution)
(verify-guards build.disjoined-dual-substitution-list)
(defthms-flag
:@contextp t
:shared-hyp (force (and (logic.variable-listp vars)
(uniquep vars)
(logic.formulap p)
(logic.formula-atblp p atbl)
(logic.appeal-listp proofs)
(equal (len vars) (len proofs))
(logic.all-disjunctionsp (logic.strip-conclusions proofs))
(all-equalp p (logic.vlhses (logic.strip-conclusions proofs)))
(logic.all-atomicp (logic.vrhses (logic.strip-conclusions proofs)))
(logic.proof-listp proofs axioms thms atbl)))
:thms ((term forcing-logic.proofp-of-build.disjoined-dual-substitution
(implies (force (and (logic.termp x)
(logic.term-atblp x atbl)
(logic.proof-listp proofs axioms thms atbl)
(@obligations build.disjoined-dual-substitution)))
(equal (logic.proofp (build.disjoined-dual-substitution x vars p proofs) axioms thms atbl)
t)))
(t forcing-logic.proof-listp-of-build.disjoined-dual-substitution
(implies (force (and (logic.term-listp x)
(logic.term-list-atblp x atbl)
(logic.proof-listp proofs axioms thms atbl)
(@obligations build.disjoined-dual-substitution-list)))
(equal (logic.proof-listp (build.disjoined-dual-substitution-list x vars p proofs) axioms thms atbl)
t))))
:hints (("Goal"
:in-theory (enable definition-of-build.disjoined-dual-substitution)
:induct (build.flag-disjoined-dual-substitution flag x vars p proofs))))
(defund build.disjoined-lambda-pequal-by-args (formals body p proofs)
(declare (xargs :guard (and (true-listp formals)
(logic.variable-listp formals)
(uniquep formals)
(logic.termp body)
(subsetp (logic.term-vars body) formals)
(logic.formulap p)
(logic.appeal-listp proofs)
(equal (len proofs) (len formals))
(let ((conclusions (logic.strip-conclusions proofs)))
(and (logic.all-disjunctionsp conclusions)
(all-equalp p (logic.vlhses conclusions))
(logic.all-atomicp (logic.vrhses conclusions)))))))
(let* ((ti=si* (logic.vrhses (logic.strip-conclusions proofs)))
(ti* (logic.=lhses ti=si*))
(si* (logic.=rhses ti=si*)))
(if (equal ti* si*)
;; Optimization. If all the args are identical, we can just use
;; reflexivity and expansion to build the proof.
(build.expansion p (build.reflexivity (logic.lambda formals body ti*)))
;; Otherwise, we use the following derivation:
;;
;; 1. P v ((lambda (x1...xn) B) t1...tn) = B/[Xi<-Ti] Beta reduction, expansion
;; 2. P v B/[Xi<-Ti] = B/[Xi<-Si] DJ Dual Substitution
;; 3. P v ((lambda (x1...xn) B) t1...tn) = B/[Xi<-Si] DJ Trans =; 1,2
;; 4. P v B/[Xi<-Si] = ((lambda (x1...xn) B) s1...sn) Beta, commute =, expansion
;; 5. P v ((lambda (x1...xn) B) t1...tn) = ((lambda (x1...xn) B) s1...sn) DJ Trans =; 3,4
;;
;; Q.E.D.
(let* ((line-1 (build.expansion p (build.beta-reduction formals body ti*)))
(line-2 (build.disjoined-dual-substitution body formals p proofs))
(line-3 (build.disjoined-transitivity-of-pequal line-1 line-2))
(line-4 (build.expansion p (build.commute-pequal (build.beta-reduction formals body si*))))
(line-5 (build.disjoined-transitivity-of-pequal line-3 line-4)))
line-5))))
(defobligations build.disjoined-lambda-pequal-by-args
(build.expansion
build.reflexivity
build.disjoined-dual-substitution
build.disjoined-transitivity-of-pequal
build.commute-pequal
build.beta-reduction))
(encapsulate
()
(local (in-theory (enable build.disjoined-lambda-pequal-by-args)))
(defthm forcing-build.disjoined-lambda-pequal-by-args-under-iff
(iff (build.disjoined-lambda-pequal-by-args formals body p proofs)
t))
(defthm forcing-logic.appealp-of-build.disjoined-lambda-pequal-by-args
(implies (force (and (true-listp formals)
(logic.variable-listp formals)
(uniquep formals)
(logic.termp body)
(subsetp (logic.term-vars body) formals)
(logic.formulap p)
(logic.appeal-listp proofs)
(equal (len proofs) (len formals))
(logic.all-disjunctionsp (logic.strip-conclusions proofs))
(all-equalp p (logic.vlhses (logic.strip-conclusions proofs)))
(logic.all-atomicp (logic.vrhses (logic.strip-conclusions proofs)))))
(equal (logic.appealp (build.disjoined-lambda-pequal-by-args formals body p proofs))
t)))
(defthm forcing-logic.conclusion-of-build.disjoined-lambda-pequal-by-args
(implies (force (and (true-listp formals)
(logic.variable-listp formals)
(uniquep formals)
(logic.termp body)
(subsetp (logic.term-vars body) formals)
(logic.formulap p)
(logic.appeal-listp proofs)
(equal (len proofs) (len formals))
(logic.all-disjunctionsp (logic.strip-conclusions proofs))
(all-equalp p (logic.vlhses (logic.strip-conclusions proofs)))
(logic.all-atomicp (logic.vrhses (logic.strip-conclusions proofs)))))
(equal (logic.conclusion (build.disjoined-lambda-pequal-by-args formals body p proofs))
(logic.por p (logic.pequal
(logic.lambda formals body (logic.=lhses (logic.vrhses (logic.strip-conclusions proofs))))
(logic.lambda formals body (logic.=rhses (logic.vrhses (logic.strip-conclusions proofs))))))))
:rule-classes ((:rewrite :backchain-limit-lst 0)))
(defthm@ forcing-logic.proofp-of-build.disjoined-lambda-pequal-by-args
(implies (force (and (true-listp formals)
(logic.variable-listp formals)
(uniquep formals)
(logic.termp body)
(subsetp (logic.term-vars body) formals)
(logic.formulap p)
(logic.appeal-listp proofs)
(equal (len proofs) (len formals))
(logic.all-disjunctionsp (logic.strip-conclusions proofs))
(all-equalp p (logic.vlhses (logic.strip-conclusions proofs)))
(logic.all-atomicp (logic.vrhses (logic.strip-conclusions proofs)))
;; ---
(logic.term-atblp body atbl)
(logic.formula-atblp p atbl)
(logic.proof-listp proofs axioms thms atbl)
(@obligations build.disjoined-lambda-pequal-by-args)))
(equal (logic.proofp (build.disjoined-lambda-pequal-by-args formals body p proofs) axioms thms atbl)
t))))
(defund build.disjoined-lambda-pequal-by-args-okp (x atbl)
(declare (xargs :guard (and (logic.appealp x)
(logic.arity-tablep atbl))))
(let ((method (logic.method x))
(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))
(and (equal method 'build.disjoined-lambda-pequal-by-args)
(tuplep 2 extras)
(let ((formals (first extras))
(body (second extras)))
(and (true-listp formals)
(logic.variable-listp formals)
(uniquep formals)
(logic.termp body)
(logic.term-atblp body atbl)
(subsetp (logic.term-vars body) formals)
(same-lengthp subproofs formals)
(logic.all-disjunctionsp-of-strip-conclusions subproofs)
(logic.all-atomicp-of-vrhses-of-strip-conclusions subproofs)
(equal (logic.fmtype conclusion) 'por*)
(logic.formula-atblp (logic.vlhs conclusion) atbl)
;; BOZO efficiency -- add an all-equalp-of-vlhses-of-strip-conclusions
(all-equalp (logic.vlhs conclusion) (logic.vlhses-of-strip-conclusions subproofs))
(equal (logic.vrhs conclusion)
(logic.pequal (logic.lambda formals body (logic.=lhses-of-vrhses-of-strip-conclusions subproofs))
(logic.lambda formals body (logic.=rhses-of-vrhses-of-strip-conclusions subproofs)))))))))
(defund build.disjoined-lambda-pequal-by-args-high (formals body p proofs)
;; BOZO we could add a true-listp restriction to proofs to avoid the list-fix
(declare (xargs :guard (and (true-listp formals)
(logic.variable-listp formals)
(uniquep formals)
(logic.termp body)
(subsetp (logic.term-vars body) formals)
(logic.formulap p)
(logic.appeal-listp proofs)
(equal (len proofs) (len formals))
(let ((conclusions (logic.strip-conclusions proofs)))
(and (logic.all-disjunctionsp conclusions)
(all-equalp p (logic.vlhses conclusions))
(logic.all-atomicp (logic.vrhses conclusions)))))))
(logic.appeal 'build.disjoined-lambda-pequal-by-args
(logic.por p (logic.pequal (logic.lambda formals body (logic.=lhses-of-vrhses-of-strip-conclusions proofs))
(logic.lambda formals body (logic.=rhses-of-vrhses-of-strip-conclusions proofs))))
(list-fix proofs)
(list formals body)))
(encapsulate
()
(local (in-theory (enable build.disjoined-lambda-pequal-by-args-okp)))
(defthm booleanp-of-build.disjoined-lambda-pequal-by-args-okp
(equal (booleanp (build.disjoined-lambda-pequal-by-args-okp x atbl))
t)
:hints(("goal" :in-theory (disable (:executable-counterpart ACL2::force)))))
(defthm build.disjoined-lambda-pequal-by-args-okp-of-logic.appeal-identity
(equal (build.disjoined-lambda-pequal-by-args-okp (logic.appeal-identity x) atbl)
(build.disjoined-lambda-pequal-by-args-okp x atbl))
:hints(("goal" :in-theory (disable (:executable-counterpart ACL2::force)))))
(local (in-theory (e/d (backtracking-logic.formula-atblp-rules)
(forcing-logic.formula-atblp-rules
forcing-lookup-of-logic.function-name-free))))
(defthm lemma-1-for-soundness-of-build.disjoined-lambda-pequal-by-args-okp
(implies (and (build.disjoined-lambda-pequal-by-args-okp x atbl)
(logic.appealp x)
(logic.provable-listp (logic.strip-conclusions (logic.subproofs x)) axioms thms atbl))
(equal (logic.conclusion (build.disjoined-lambda-pequal-by-args
(first (logic.extras x))
(second (logic.extras x))
(logic.vlhs (logic.conclusion x))
(logic.provable-list-witness (logic.strip-conclusions (logic.subproofs x))
axioms thms atbl)))
(logic.conclusion x))))
(defthm@ lemma-2-for-soundness-of-build.disjoined-lambda-pequal-by-args-okp
(implies (and (build.disjoined-lambda-pequal-by-args-okp x atbl)
(logic.appealp x)
(logic.provable-listp (logic.strip-conclusions (logic.subproofs x)) axioms thms atbl)
(@obligations build.disjoined-lambda-pequal-by-args))
(equal (logic.proofp (build.disjoined-lambda-pequal-by-args
(first (logic.extras x))
(second (logic.extras x))
(logic.vlhs (logic.conclusion x))
(logic.provable-list-witness (logic.strip-conclusions (logic.subproofs x))
axioms thms atbl))
axioms thms atbl)
t)))
(defthm@ forcing-soundness-of-build.disjoined-lambda-pequal-by-args-okp
(implies (and (build.disjoined-lambda-pequal-by-args-okp x atbl)
(force (and (logic.appealp x)
(logic.provable-listp (logic.strip-conclusions (logic.subproofs x)) axioms thms atbl)
(@obligations build.disjoined-lambda-pequal-by-args))))
(equal (logic.provablep (logic.conclusion x) axioms thms atbl)
t))
:hints (("Goal"
:in-theory (enable lemma-1-for-soundness-of-build.disjoined-lambda-pequal-by-args-okp
lemma-2-for-soundness-of-build.disjoined-lambda-pequal-by-args-okp)
:use ((:instance forcing-logic.provablep-when-logic.proofp
(x (build.disjoined-lambda-pequal-by-args
(first (logic.extras x))
(second (logic.extras x))
(logic.vlhs (logic.conclusion x))
(logic.provable-list-witness (logic.strip-conclusions (logic.subproofs x))
axioms thms atbl)))))))))
(dd.close)
|