File: pequal-list.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (209 lines) | stat: -rw-r--r-- 9,872 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
;   Kookamara LLC
;   11410 Windermere Meadows
;   Austin, TX 78759, USA
;   http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
;   Permission is hereby granted, free of charge, to any person obtaining a
;   copy of this software and associated documentation files (the "Software"),
;   to deal in the Software without restriction, including without limitation
;   the rights to use, copy, modify, merge, publish, distribute, sublicense,
;   and/or sell copies of the Software, and to permit persons to whom the
;   Software is furnished to do so, subject to the following conditions:
;
;   The above copyright notice and this permission notice shall be included in
;   all copies or substantial portions of the Software.
;
;   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
;   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
;   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
;   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
;   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
;   FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
;   DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>

(in-package "MILAWA")
(include-book "prop-list")
(include-book "pequal")
(set-verify-guards-eagerness 2)
(set-case-split-limitations nil)
(set-well-founded-relation ord<)
(set-measure-function rank)

(dd.open "pequal-list.tex")

(defund build.reflexivity-list (x)
  ;; BOZO update the defderiv table with the axiom?
  (declare (xargs :guard (logic.term-listp x)))
  (if (consp x)
      (cons (build.reflexivity (car x))
            (build.reflexivity-list (cdr x)))
    nil))

(defobligations build.reflexivity-list
  (build.reflexivity))

(encapsulate
 ()
 (local (in-theory (enable build.reflexivity-list)))

 (defthm forcing-logic.appeal-listp-of-build.reflexivity-list
   (implies (force (logic.term-listp x))
            (equal (logic.appeal-listp (build.reflexivity-list x))
                   t)))

 (defthm forcing-logic.strip-conclusions-of-build.reflexivity-list
   (implies (force (logic.term-listp x))
            (equal (logic.strip-conclusions (build.reflexivity-list x))
                   (logic.pequal-list x x))))

 (defthm@ forcing-logic.proof-listp-of-build.reflexivity-list
   (implies (force (and (logic.term-listp x)
                        (logic.term-list-atblp x atbl)
                        (@obligations build.reflexivity-list)))
            (equal (logic.proof-listp (build.reflexivity-list x) axioms thms atbl)
                   t))))



(defund build.pequal-by-args (f as)
  ;; Derive (f t1 ... tn) = (f s1 ... sn) from t1 = s1, ..., tn = sn.
  (declare (xargs :guard (and (logic.function-namep f)
                              (logic.appeal-listp as)
                              (logic.all-atomicp (logic.strip-conclusions as)))
                  :guard-hints (("Goal" :in-theory (enable logic.functional-axiom)))))
  (let* ((conclusions (logic.strip-conclusions as)) ;; (t1 = s1, ..., tn = sn)
         (t*          (logic.=lhses conclusions))   ;; (t1, ..., tn)
         (s*          (logic.=rhses conclusions)))  ;; (s1, ..., sn)
    (cond ((equal t* s*)
           ;; Optimization.  We can just use reflexivity.
           (build.reflexivity (logic.function f t*)))
          (t
           ;; Otherwise, take the functional equality axiom,
           ;;    t1 = s1 -> ... -> tn = sn -> (f t1 ... tn) = (f s1 ... sn),
           ;; and apply repeated modus ponens.
           (build.modus-ponens-list (logic.pequal (logic.function f t*) (logic.function f s*))
                                    as
                                    (build.functional-equality f t* s*))))))

(defobligations build.pequal-by-args
  (build.reflexivity build.modus-ponens-list build.functional-equality))

(encapsulate
 ()
 (local (in-theory (enable logic.functional-axiom build.pequal-by-args)))

 (defthm forcing-build.pequal-by-args-under-iff
   (iff (build.pequal-by-args f as)
        t))

 (defthm forcing-logic.appealp-of-build.pequal-by-args
   (implies (force (and (logic.function-namep f)
                        (logic.appeal-listp as)
                        (logic.all-atomicp (logic.strip-conclusions as))))
            (equal (logic.appealp (build.pequal-by-args f as))
                   t)))

 (defthm forcing-logic.conclusion-of-build.pequal-by-args
   (implies (force (and (logic.function-namep f)
                        (logic.appeal-listp as)
                        (logic.all-atomicp (logic.strip-conclusions as))))
            (equal (logic.conclusion (build.pequal-by-args f as))
                   (logic.pequal (logic.function f (logic.=lhses (logic.strip-conclusions as)))
                                 (logic.function f (logic.=rhses (logic.strip-conclusions as))))))
   :rule-classes ((:rewrite :backchain-limit-lst 0)))

 (defthm@ forcing-logic.proofp-of-build.pequal-by-args
   (implies (force (and (logic.function-namep f)
                        (logic.appeal-listp as)
                        (logic.all-atomicp (logic.strip-conclusions as))
                        (logic.proof-listp as axioms thms atbl)
                        (equal (len as) (cdr (lookup f atbl)))
                        (@obligations build.pequal-by-args)))
            (equal (logic.proofp (build.pequal-by-args f as) axioms thms atbl)
                   t))))



(defund build.disjoined-pequal-by-args (f p as)
  ;; Derive P v (f t1 ... tn) = (f s1 ... sn) from P v t1 = s1, ..., P v tn = sn
  (declare (xargs :guard (and (logic.function-namep f)
                              (logic.formulap p)
                              (logic.appeal-listp as)
                              (let ((aconcs (logic.strip-conclusions as)))
                                (and (logic.all-disjunctionsp aconcs)
                                     (all-equalp p (logic.vlhses aconcs))
                                     (logic.all-atomicp (logic.vrhses aconcs)))))
                  :guard-hints(("Goal" :in-theory (enable logic.functional-axiom)))))
  (let* ((ti=si* (logic.vrhses (logic.strip-conclusions as)))  ;; (t1 = s1, ..., tn = sn)
         (t*     (logic.=lhses ti=si*))                        ;; (t1, ..., tn)
         (s*     (logic.=rhses ti=si*)))                       ;; (s1, ..., sn)
     (cond ((equal t* s*)
            ;; Optimization.  We can just use reflexivity and expansion.
            (build.expansion P (build.reflexivity (logic.function f t*))))
           (t
            ;; Otherwise, take the functional equality axiom,
            ;;    t1 = s1 -> ... -> tn = sn -> (f t1 ... tn) = (f s1 ... sn),
            ;; expand it with P,
            ;;    P v t1 = s1 -> ... -> tn = sn -> (f t1 ... tn) = (f s1 ... sn),
            ;; and apply repeated disjoined modus ponens.
            (build.disjoined-modus-ponens-list (logic.pequal (logic.function f t*) (logic.function f s*))
                                               as
                                               (build.expansion p (build.functional-equality f t* s*)))))))

(defobligations build.disjoined-pequal-by-args
  (build.expansion build.reflexivity build.disjoined-modus-ponens-list build.functional-equality))

(encapsulate
 ()
 (local (in-theory (enable logic.functional-axiom build.disjoined-pequal-by-args)))

 (defthm forcing-build.disjoined-pequal-by-args-under-iff
   (iff (build.disjoined-pequal-by-args f p as)
        t))

 (defthm forcing-logic.appealp-of-build.disjoined-pequal-by-args
   (implies (force (and (logic.function-namep f)
                        (logic.formulap p)
                        (logic.appeal-listp as)
                        (logic.all-disjunctionsp (logic.strip-conclusions as))
                        (all-equalp p (logic.vlhses (logic.strip-conclusions as)))
                        (logic.all-atomicp (logic.vrhses (logic.strip-conclusions as)))))
            (equal (logic.appealp (build.disjoined-pequal-by-args f p as))
                   t)))

 (defthm forcing-logic.conclusion-of-build.disjoined-pequal-by-args
   (implies (force (and (logic.function-namep f)
                        (logic.formulap p)
                        (logic.appeal-listp as)
                        (logic.all-disjunctionsp (logic.strip-conclusions as))
                        (all-equalp p (logic.vlhses (logic.strip-conclusions as)))
                        (logic.all-atomicp (logic.vrhses (logic.strip-conclusions as)))))
            (equal (logic.conclusion (build.disjoined-pequal-by-args f p as))
                   (logic.por p (logic.pequal (logic.function f (logic.=lhses (logic.vrhses (logic.strip-conclusions as))))
                                              (logic.function f (logic.=rhses (logic.vrhses (logic.strip-conclusions as))))))))
   :rule-classes ((:rewrite :backchain-limit-lst 0)))

 (defthm@ forcing-logic.proofp-of-build.disjoined-pequal-by-args
   (implies (force (and (logic.function-namep f)
                        (logic.formulap p)
                        (logic.appeal-listp as)
                        (logic.all-disjunctionsp (logic.strip-conclusions as))
                        (all-equalp p (logic.vlhses (logic.strip-conclusions as)))
                        (logic.all-atomicp (logic.vrhses (logic.strip-conclusions as)))
                        (logic.formula-atblp p atbl)
                        (logic.proof-listp as axioms thms atbl)
                        (equal (cdr (lookup f atbl)) (len as))
                        (@obligations build.disjoined-pequal-by-args)))
            (equal (logic.proofp (build.disjoined-pequal-by-args f p as) axioms thms atbl)
                   t))))

(dd.close)