1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "../build/prop")
(set-verify-guards-eagerness 2)
(set-case-split-limitations nil)
(set-well-founded-relation ord<)
(set-measure-function rank)
;; We prove that a new proof checker, demo.proofp, is sound with respect to the
;; core proof checker, logic.proofp. Our new proof checker understands all of
;; the primitive rules, and also commute-or. This isn't a practically useful
;; thing to do, but perhaps this serves as the simplest example of extending
;; the core prover.
(defund@ demo.commute-or$ (x)
;; This builds a "commute or" appeal. Such appeals are not accepted by
;; logic.proofp, but they will be accepted by demo.proofp.
(declare (xargs :guard (and (logic.appealp x)
(@match (proof x (v A B))))))
(logic.appeal 'commute-or
(@formula (v B A))
(list x)
nil))
(encapsulate
()
(local (in-theory (enable demo.commute-or$)))
(defthm demo.commute-or$-under-iff
(iff (demo.commute-or$ x)
t))
(defthm logic.method-of-demo.commute-or$
(equal (logic.method (demo.commute-or$ x))
'commute-or))
(defthm@ logic.conclusion-of-demo.commute-or$
(@extend ((proof x (v A B)))
(equal (logic.conclusion (demo.commute-or$ x))
(@formula (v B A)))))
(defthm logic.subproofs-of-demo.commute-or$
(equal (logic.subproofs (demo.commute-or$ x))
(list x)))
(defthm logic.extras-of-demo.commute-or$
(equal (logic.extras (demo.commute-or$ x))
nil))
(defthm@ forcing-logic.appealp-of-demo.commute-or$
(implies (force (and (logic.appealp x)
(@match (proof x (v A B)))))
(equal (logic.appealp (demo.commute-or$ x))
t))))
(defund@ demo.commute-or-okp (x)
;; This checks that a commute or appeal is valid. It's the same idea as in
;; the primitive checkers for expansion, associativity, etc.
(declare (xargs :guard (logic.appealp x)))
(let ((method (logic.method x))
(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))
(and (equal method 'commute-or)
(equal extras nil)
(equal (len subproofs) 1)
(@match (formula conclusion (v A B))
(proof (first subproofs) (v B A))))))
(encapsulate
()
(local (in-theory (enable demo.commute-or-okp)))
(defthm booleanp-of-demo.commute-or-okp
(equal (booleanp (demo.commute-or-okp x))
t))
(defthm@ forcing-demo.commute-or-okp-of-demo.commute-or$
(implies (force (and (logic.appealp x)
(@match (proof x (v A B)))))
(equal (demo.commute-or-okp (demo.commute-or$ x))
t)))
(defthm demo.commute-or-okp-of-logic.appeal-identity
(equal (demo.commute-or-okp (logic.appeal-identity x))
(demo.commute-or-okp x)))
;; Now we'll show that demo.commute-or-okp is sound w.r.t. the core proof
;; checker: if demo.commute-or-okp accepts a step whose subproofs are all
;; provable, then the step's conclusion is also provable.
(local (defthm lemma1
(implies (and (demo.commute-or-okp x)
(logic.appealp x)
(logic.provable-listp (logic.strip-conclusions (logic.subproofs x)) axioms thms atbl))
(equal (logic.conclusion (build.commute-or (logic.provable-witness (logic.conclusion (first (logic.subproofs x))) axioms thms atbl)))
(logic.conclusion x)))))
(local (defthm lemma2
(implies (and (demo.commute-or-okp x)
(logic.appealp x)
(logic.provable-listp (logic.strip-conclusions (logic.subproofs x)) axioms thms atbl))
(equal (logic.proofp (build.commute-or (logic.provable-witness (logic.conclusion (first (logic.subproofs x))) axioms thms atbl)) axioms thms atbl)
t))))
(defthm soundness-of-demo.commute-or-okp
(implies (and (demo.commute-or-okp x)
(logic.appealp x)
(logic.provable-listp (logic.strip-conclusions (logic.subproofs x)) axioms thms atbl))
(equal (logic.provablep (logic.conclusion x) axioms thms atbl)
t))
:hints(("Goal"
:use (:instance forcing-logic.provablep-when-logic.proofp
(x (build.commute-or (logic.provable-witness (logic.conclusion (first (logic.subproofs x))) axioms thms atbl))))))))
(defund demo.appeal-step-okp (x axioms thms atbl)
;; This is our extended version of logic.appeal-step-okp. We accept commute
;; or appeals, and also all the primitive appeals. I sometimes think of this
;; function as "extending of the virtual table" to include a new "subclass"
;; of the appeal class.
(declare (xargs :guard (and (logic.appealp x)
(logic.formula-listp axioms)
(logic.formula-listp thms)
(logic.arity-tablep atbl))))
(cond ((equal (logic.method x) 'commute-or)
(demo.commute-or-okp x))
(t
(logic.appeal-step-okp x axioms thms atbl))))
(encapsulate
()
(local (in-theory (enable demo.appeal-step-okp)))
(defthm soundness-of-demo.appeal-step-okp
(implies (and (logic.appealp x)
(demo.appeal-step-okp x axioms thms atbl)
(logic.provable-listp (logic.strip-conclusions (logic.subproofs x)) axioms thms atbl))
(equal (logic.provablep (logic.conclusion x) axioms thms atbl)
t)))
(defthm demo.appeal-step-okp-when-logic.appeal-step-okp
;; This shows that our new step checker is "complete" in the sense that all
;; previously acceptable appeals are still acceptable.
(implies (logic.appeal-step-okp x axioms thms atbl)
(demo.appeal-step-okp x axioms thms atbl))
:hints(("Goal" :in-theory (enable logic.appeal-step-okp))))
(defthm demo.appeal-step-okp-when-not-consp
(implies (not (consp x))
(equal (demo.appeal-step-okp x axioms thms atbl)
nil))
:hints(("Goal" :in-theory (enable logic.method)))))
(defund demo.flag-proofp (flag x axioms thms atbl)
(declare (xargs :guard (and (if (equal flag 'proof)
(logic.appealp x)
(and (equal flag 'list)
(logic.appeal-listp x)))
(logic.formula-listp axioms)
(logic.formula-listp thms)
(logic.arity-tablep atbl))
:measure (two-nats-measure (rank x)
(if (equal flag 'proof) 1 0))))
(if (equal flag 'proof)
(and (demo.appeal-step-okp x axioms thms atbl)
(demo.flag-proofp 'list (logic.subproofs x) axioms thms atbl))
(if (consp x)
(and (demo.flag-proofp 'proof (car x) axioms thms atbl)
(demo.flag-proofp 'list (cdr x) axioms thms atbl))
t)))
(definlined demo.proofp (x axioms thms atbl)
(declare (xargs :guard (and (logic.appealp x)
(logic.formula-listp axioms)
(logic.formula-listp thms)
(logic.arity-tablep atbl))))
(demo.flag-proofp 'proof x axioms thms atbl))
(definlined demo.proof-listp (x axioms thms atbl)
(declare (xargs :guard (and (logic.appeal-listp x)
(logic.formula-listp axioms)
(logic.formula-listp thms)
(logic.arity-tablep atbl))))
(demo.flag-proofp 'list x axioms thms atbl))
(defthmd definition-of-demo.proofp
(equal (demo.proofp x axioms thms atbl)
(and (demo.appeal-step-okp x axioms thms atbl)
(demo.proof-listp (logic.subproofs x) axioms thms atbl)))
:rule-classes :definition
:hints(("Goal" :in-theory (enable demo.proofp demo.proof-listp demo.flag-proofp))))
(defthmd definition-of-demo.proof-listp
(equal (demo.proof-listp x axioms thms atbl)
(if (consp x)
(and (demo.proofp (car x) axioms thms atbl)
(demo.proof-listp (cdr x) axioms thms atbl))
t))
:rule-classes :definition
:hints(("Goal" :in-theory (enable demo.proofp demo.proof-listp demo.flag-proofp))))
(ACL2::theory-invariant (not (ACL2::active-runep '(:definition demo.proofp))))
(ACL2::theory-invariant (not (ACL2::active-runep '(:definition demo.proof-list))))
(defthm demo.proofp-when-not-consp
(implies (not (consp x))
(equal (demo.proofp x axioms thms atbl)
nil))
:hints(("Goal" :in-theory (enable definition-of-demo.proofp))))
(defthm demo.proof-listp-when-not-consp
(implies (not (consp x))
(equal (demo.proof-listp x axioms thms atbl)
t))
:hints (("Goal" :in-theory (enable definition-of-demo.proof-listp))))
(defthm demo.proof-listp-of-cons
(equal (demo.proof-listp (cons a x) axioms thms atbl)
(and (demo.proofp a axioms thms atbl)
(demo.proof-listp x axioms thms atbl)))
:hints (("Goal" :in-theory (enable definition-of-demo.proof-listp))))
(defthms-flag
:thms ((proof booleanp-of-demo.proofp
(equal (booleanp (demo.proofp x axioms thms atbl))
t))
(t booleanp-of-demo.proof-listp
(equal (booleanp (demo.proof-listp x axioms thms atbl))
t)))
:hints (("Goal"
:induct (logic.appeal-induction flag x)
:in-theory (enable definition-of-demo.proofp))))
(deflist demo.proof-listp (x axioms thms atbl)
(demo.proofp x axioms thms atbl)
:already-definedp t)
(defthms-flag
:thms ((proof logic.provablep-when-demo.proofp
(implies (and (logic.appealp x)
(demo.proofp x axioms thms atbl))
(logic.provablep (logic.conclusion x) axioms thms atbl)))
(t logic.provable-listp-when-demo.proof-listp
(implies (and (logic.appeal-listp x)
(demo.proof-listp x axioms thms atbl))
(logic.provable-listp (logic.strip-conclusions x) axioms thms atbl))))
:hints (("Goal"
:induct (logic.appeal-induction flag x)
:in-theory (enable definition-of-demo.proofp))))
(defthms-flag
;; WARNING: THESE THEOREMS MUST BE LEFT DISABLED!
;;
;; Suppose this rule is enabled, and we are trying to prove (demo.proofp X
;; ...) Using this rule, we backchain and try to show (logic.proofp X ...),
;; which causes our forcing rules to kick in and assert that the subproofs of
;; X are acceptable using logic.proofp.
;;
;; But this is horrible; if any of the subproofs are derived rules that only
;; demo.proofp understands, we end up stuck in forcing rounds that we cannot
;; relieve. So, we should always be reasoning about some single layer and
;; never about previous layers.
:thms ((proof demo.proofp-when-logic.proofp
(implies (logic.proofp x axioms thms atbl)
(demo.proofp x axioms thms atbl)))
(t demo.proof-listp-when-logic.proof-listp
(implies (logic.proof-listp x axioms thms atbl)
(demo.proof-listp x axioms thms atbl))))
:hints (("Goal"
:induct (logic.appeal-induction flag x)
:in-theory (enable definition-of-demo.proofp
definition-of-logic.proofp))))
(in-theory (disable demo.proofp-when-logic.proofp demo.proof-listp-when-logic.proof-listp))
(defthm forcing-demo.proofp-of-logic.provable-witness
;; Corollary: Suppose F is any provable formula. Then, the witnessing
;; proof of F is acceptable by demo.proofp.
(implies (force (logic.provablep formula axioms thms atbl))
(equal (demo.proofp (logic.provable-witness formula axioms thms atbl) axioms thms atbl)
t))
:hints(("Goal" :in-theory (enable demo.proofp-when-logic.proofp))))
|