File: iff-substitution.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (375 lines) | stat: -rw-r--r-- 16,902 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
;   Kookamara LLC
;   11410 Windermere Meadows
;   Austin, TX 78759, USA
;   http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
;   Permission is hereby granted, free of charge, to any person obtaining a
;   copy of this software and associated documentation files (the "Software"),
;   to deal in the Software without restriction, including without limitation
;   the rights to use, copy, modify, merge, publish, distribute, sublicense,
;   and/or sell copies of the Software, and to permit persons to whom the
;   Software is furnished to do so, subject to the following conditions:
;
;   The above copyright notice and this permission notice shall be included in
;   all copies or substantial portions of the Software.
;
;   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
;   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
;   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
;   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
;   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
;   FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
;   DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>

(in-package "MILAWA")
(include-book "../build/prop")
(include-book "../build/conjunctions")
(include-book "../logic/find-proof")
(set-verify-guards-eagerness 2)
(set-case-split-limitations nil)
(set-well-founded-relation ord<)
(set-measure-function rank)

;; In this file, we extend our proof checker with an equivalence checking
;; extension.  This extension is based on the equivalence theorem, below:
;;
;;   The Equivalence Theorem.
;;   (From Shoenfield's Mathematical Logic; Page 34)
;;
;;   Let G be obtained from F by replacing some occurrences of A1,...,An by
;;   A1',...,An', respectively.  If
;;    |- A1 <-> A1', |- A2 <-> A2', ..., |- An <-> An',
;;   then
;;    |- F <-> G.
;;
;; Our work is again very similar to Shankar's work in formalizing Godel's
;; incompleteness theorem in NQTHM.



;; We begin formalizing the equivalence theorem using the function
;; equivalent-underp below, which takes as inputs:
;;
;;   - two formulas, f and g
;;   - a list of equivalences, [A1 <-> A1', A2 <-> A2', ..., An <-> An']
;;
;; The equivalent-underp function returns true if g can be obtained by
;; replacing some occurrences of A1, ..., An with A1', ..., An'.
;;
;; Note: This is like Shankar's function, "eqn-form"

(defund iff-substitutiblep (f g as)
  (declare (xargs :guard (and (logic.formulap f)
                              (logic.formulap g)
                              (logic.formula-listp as))))
  (cond ((equal f g) t)
        ((memberp (logic.pnot (logic.por (logic.pnot (logic.por (logic.pnot f) g))
                             (logic.pnot (logic.por (logic.pnot g) f))))
                  as)
         t)
        ((equal (logic.fmtype f) 'pnot*)
         (if (equal (logic.fmtype g) 'pnot*)
             (iff-substitutiblep (logic.~arg f) (logic.~arg g) as)
           nil))
        ((equal (logic.fmtype f) 'por*)
         (if (equal (logic.fmtype g) 'por*)
             (and (iff-substitutiblep (logic.vlhs f) (logic.vlhs g) as)
                  (iff-substitutiblep (logic.vrhs f) (logic.vrhs g) as))
           nil))
        (t nil)))

(defthm booleanp-of-iff-substitutiblep
  (equal (booleanp (iff-substitutiblep f g as))
         t)
  :hints(("Goal" :in-theory (e/d (iff-substitutiblep)
                                 (logic.fmtype-normalizer-cheap
                                  aggressive-equal-of-logic.pnots
                                  aggressive-equal-of-logic.pors)))))





;; Historical Performance Notes
;;
;; Each of the branches below, except for the one where we just use find-proof,
;; are tautologies or tautological consequences of the recursively proven
;; formulas.  And, originally, I used the tautology builder directly in order
;; to construct the proofs, just as Shankar had done in his function.
;;
;; This is fine for proving that iff substitution is sound.  But in the
;; bootstrapping process, we actually care about proof size, and the tautology
;; builder builds remarkably long proofs.  So, now I use several "by hand"
;; derivations below, instead of calling upon the tautology builder.  This
;; results in a massive improvement.
;;
;; We did some test cases below.
;;
;; (defconst *F* (logic.pequal 'A1 'A1))
;; (defconst *G* (logic.pequal 'A2 'A2))
;; (defconst *H* (logic.pequal 'B1 'B1))
;; (defconst *I* (logic.pequal 'B2 'B2))
;;
;; Test1: (iff-substitutible-bldr *F* *F* nil)
;; Test2: (iff-substitutible-bldr
;;         (logic.pnot *F*)
;;         (logic.pnot *G*)
;;         (list (build.axiom (logic.piff *F* *G*))))
;;
;; Test3: (iff-substitutible-bldr
;;         (logic.por *F* *G*)
;;         (logic.por *H* *I*)
;;         (list (build.axiom (logic.piff *F* *H*))
;;               (build.axiom (logic.piff *G* *I*))))
;;
;; Here are the size results:
;;
;; Test    Rank w/Tautologies     Rank by Hand     Savings
;; Test1   1,780                  1,106            37.9%
;; Test2   60,291                 2,511            95.8%
;; Test3   1,122,354              5,294            99.5%
;;
;; BOZO we can probably do even better by building the proofs separately with
;; some kind of aux builder, then conjoining them in the end.

(defund iff-substitutible-bldr (f g as)
  (declare (xargs :guard (and (logic.formulap f)
                              (logic.formulap g)
                              (logic.appeal-listp as)
                              (iff-substitutiblep f g (logic.strip-conclusions as)))
                  :verify-guards nil))
  (cond ((equal f g)
         ;; Here F = G, so F <-> F is a tautology.  Originally, I used the
         ;; tautology builder here, but now I prefer this shorter derivation:
         ;;
         ;; Derivation.  (Cost: 18)
         ;;
         ;;   1. F -> F      Propositional Schema
         ;;   2. F <-> F     Conjoin; 1,1
         ;;
         ;; Q.E.D.
         (let ((lemma (build.propositional-schema f)))
           (build.conjoin lemma lemma)))
        ((memberp (logic.pnot (logic.por (logic.pnot (logic.por (logic.pnot f) g))
                                         (logic.pnot (logic.por (logic.pnot g) f))))
                  (logic.strip-conclusions as))
         ;; Here F <-> G happens to be a proof given to us in the list of
         ;; proofs.  Just find that proof and return it.
         (logic.find-proof (logic.pnot (logic.por (logic.pnot (logic.por (logic.pnot f) g))
                                                  (logic.pnot (logic.por (logic.pnot g) f))))
                           as))
        ((equal (logic.fmtype f) 'pnot*)
         ;; Here we have F = ~A1 and G = ~A2.  Originally, I proved A1 <-> A2
         ;; recursively, and then as a tautological consequence concluded that
         ;; F <-> G.  Now, I use the derivation below, which creates much
         ;; shorter proofs:
         ;;
         ;; Derivation.  (Cost: 35 + 2x)
         ;;
         ;;  1. A1 <-> A2         (Given; constructed recursively)
         ;;  2. ~A2 v A1          Second Conjunct; 1
         ;;  3. A1 v ~A2          Commute Or
         ;;  4. ~~A1 v ~A2        LHS Insert ~~
         ;;  5. ~A1 v A2          First Conjunct; 1
         ;;  6. A2 v ~A1          Commute Or
         ;;  7. ~~A2 v ~A1        LHS Insert ~~
         ;;  8. F <-> G           Conjoin; 4,7
         ;;
         ;; Q.E.D.
         (let ((lemma (iff-substitutible-bldr (logic.~arg f) (logic.~arg g) as)))
           (build.conjoin
            (build.lhs-insert-neg-neg (build.commute-or (build.second-conjunct lemma)))
            (build.lhs-insert-neg-neg (build.commute-or (build.first-conjunct lemma))))))
        ((equal (logic.fmtype f) 'por*)
         ;; Here we have F = A1 v B1 and G = A2 v B2.  Originally, I proved
         ;; A1 <-> A2 and B1 <-> B2, recursively, and then as a tautological
         ;; consequence concluded that F <-> G.  Now, I use the derivation
         ;; below, which creates much shorter proofs:
         ;;
         ;; Derivation.  (Cost: 119 + 2x + 2y)
         ;;
         ;;   1. A1 <-> A2               (Given; constructed recursively)
         ;;   2. B1 <-> B2               (Given; constructed recursively)
         ;;
         ;;   3. ~A1 v A2                1st Conjunct; 1
         ;;   4. ~A1 v (A2 v B2)         DJ Right Expansion
         ;;   5. ~B1 v B2                1st Conjunct; 2
         ;;   6. ~B1 v (A2 v B2)         DJ Left Expansion
         ;;   7. ~(A1 v B1) v (A2 v B2)  Merge Implications; 4,6
         ;;
         ;;   8. ~A2 v A1                2nd Conjunct; 1
         ;;   9. ~A2 v (A1 v B1)         DJ Right Expansion
         ;;  10. ~B2 v B1                2nd Conjunct; 2
         ;;  11. ~B2 v (A1 v B1)         DJ Left Expansion
         ;;  12. ~(A2 v B2) v (A1 v B1)  Merge Implications; 9,11
         ;;  13. F <-> G                 Conjoin; 7,12
         ;;
         ;; Q.E.D.
         (let ((lemma1 (iff-substitutible-bldr (logic.vlhs f) (logic.vlhs g) as))
               (lemma2 (iff-substitutible-bldr (logic.vrhs f) (logic.vrhs g) as)))
           (build.conjoin
            (build.merge-implications
             (build.disjoined-right-expansion (build.first-conjunct lemma1) (logic.vrhs g))
             (build.disjoined-left-expansion (build.first-conjunct lemma2) (logic.vlhs g)))
            (build.merge-implications
             (build.disjoined-right-expansion (build.second-conjunct lemma1) (logic.vrhs f))
             (build.disjoined-left-expansion (build.second-conjunct lemma2) (logic.vlhs f))))))
        (t nil)))


(defthm logic.fmtype-of-g-when-iff-substitutible-for-logic.pnot
  (implies (and (iff-substitutiblep f g as)
                (not (memberp (logic.pnot (logic.por (logic.pnot (logic.por (logic.pnot f) g))
                                                     (logic.pnot (logic.por (logic.pnot g) f))))
                              as))
                (equal (logic.fmtype f) 'pnot*))
           (equal (logic.fmtype g) 'pnot*))
  :hints(("Goal" :in-theory (enable iff-substitutiblep))))

(defthm logic.fmtype-of-g-when-iff-substitutible-for-logic.por
  (implies (and (iff-substitutiblep f g as)
                (not (memberp (logic.pnot (logic.por (logic.pnot (logic.por (logic.pnot f) g))
                                                     (logic.pnot (logic.por (logic.pnot g) f))))
                              as))
                (force (equal (logic.fmtype f) 'por*)))
           (equal (logic.fmtype g) 'por*))
  :hints(("Goal" :in-theory (enable iff-substitutiblep))))

(defthm forcing-iff-substitutiblep-of-logic.vlhs
  (implies (and (iff-substitutiblep f g as)
                (not (memberp (logic.pnot (logic.por (logic.pnot (logic.por (logic.pnot f) g))
                                                     (logic.pnot (logic.por (logic.pnot g) f))))
                              as))
                (force (equal (logic.fmtype f) 'por*)))
           (iff-substitutiblep (logic.vlhs f) (logic.vlhs g) as))
  :hints(("Goal" :in-theory (enable iff-substitutiblep))))

(defthm forcing-iff-substitutiblep-of-logic.vrhs
  (implies (and (iff-substitutiblep f g as)
                (not (memberp (logic.pnot (logic.por (logic.pnot (logic.por (logic.pnot f) g))
                                                     (logic.pnot (logic.por (logic.pnot g) f))))
                              as))
                (force (equal (logic.fmtype f) 'por*)))
           (iff-substitutiblep (logic.vrhs f) (logic.vrhs g) as))
  :hints(("Goal" :in-theory (enable iff-substitutiblep))))

(defthm forcing-iff-substitutiblep-of-logic.~arg
  (implies (and (iff-substitutiblep f g as)
                (not (memberp (logic.pnot (logic.por (logic.pnot (logic.por (logic.pnot f) g))
                                                     (logic.pnot (logic.por (logic.pnot g) f))))
                              as))
                (force (equal (logic.fmtype f) 'pnot*)))
           (iff-substitutiblep (logic.~arg f) (logic.~arg g) as))
  :hints(("Goal" :in-theory (enable iff-substitutiblep))))

(encapsulate
 ()
 (local (defthm main-lemma
          (implies (and (logic.formulap f)
                        (logic.formulap g)
                        (logic.appeal-listp as)
                        (iff-substitutiblep f g (logic.strip-conclusions as)))
                   (and (logic.appealp (iff-substitutible-bldr f g as))
                        (equal (logic.conclusion (iff-substitutible-bldr f g as))
                               (logic.pnot (logic.por (logic.pnot (logic.por (logic.pnot f) g))
                                          (logic.pnot (logic.por (logic.pnot g) f)))))))
          :hints(("Goal" :in-theory (enable iff-substitutible-bldr iff-substitutiblep)))))

(defthm forcing-logic.appealp-of-iff-substitutible-bldr
   (implies (and (force (logic.formulap f))
                 (force (logic.formulap g))
                 (force (logic.appeal-listp as))
                 (force (iff-substitutiblep f g (logic.strip-conclusions as))))
            (equal (logic.appealp (iff-substitutible-bldr f g as))
                   t)))

(defthm forcing-logic.conclusion-of-iff-substitutible-bldr
   (implies (and (force (logic.formulap f))
                 (force (logic.formulap g))
                 (force (logic.appeal-listp as))
                 (force (iff-substitutiblep f g (logic.strip-conclusions as))))
            (equal (logic.conclusion (iff-substitutible-bldr f g as))
                   (logic.pnot (logic.por (logic.pnot (logic.por (logic.pnot f) g))
                              (logic.pnot (logic.por (logic.pnot g) f))))))
   :rule-classes ((:rewrite :backchain-limit-lst 0))))

(defthm forcing-logic.proofp-of-iff-substitutible-bldr
  (implies (and (force (logic.formulap f))
                (force (logic.formulap g))
                (force (logic.appeal-listp as))
                (force (iff-substitutiblep f g (logic.strip-conclusions as)))
                ;; ---
                (force (logic.formula-atblp f atbl))
                (force (logic.formula-atblp g atbl))
                (force (logic.proof-listp as axioms thms atbl)))
           (logic.proofp (iff-substitutible-bldr f g as)
                   axioms thms atbl))
  :hints(("Goal" :in-theory (enable iff-substitutible-bldr
                                    iff-substitutiblep))))

(verify-guards iff-substitutible-bldr)



;; Iff Consequences
;; Derive G from proofs of F and A1 <-> A1', ..., An <-> An'
;;   where G is iff-substitutible for F.
;;
;; Derivation.
;;
;;   1. F <-> G     Iff Substitution
;;   2. F -> G      First Conjunct
;;   3. F           Given
;;   4. G           Modus Ponens; 3,2
;;
;; Q.E.D.

(defun iff-consequence-bldr (g f as)
  (declare (xargs :guard (and (logic.formulap g)
                              (logic.appealp f)
                              (logic.appeal-listp as)
                              (iff-substitutiblep (logic.conclusion f) g (logic.strip-conclusions as)))))
  (build.modus-ponens f (build.first-conjunct (iff-substitutible-bldr (logic.conclusion f) g as))))

(defthm forcing-logic.appealp-of-iff-consequence-bldr
  (implies (and (force (logic.formulap g))
                (force (logic.appealp f))
                (force (logic.appeal-listp as))
                (force (iff-substitutiblep (logic.conclusion f) g (logic.strip-conclusions as))))
           (equal (logic.appealp (iff-consequence-bldr g f as))
                  t))
  :hints(("Goal" :in-theory (enable iff-consequence-bldr))))

(defthm forcing-logic.conclusion-of-iff-consequence-bldr
  (implies (and (force (logic.formulap g))
                (force (logic.appealp f))
                (force (logic.appeal-listp as))
                (force (iff-substitutiblep (logic.conclusion f) g (logic.strip-conclusions as))))
           (equal (logic.conclusion (iff-consequence-bldr g f as))
                  g))
  :rule-classes ((:rewrite :backchain-limit-lst 0))
  :hints(("Goal" :in-theory (enable iff-consequence-bldr))))

(defthm forcing-logic.proofp-of-iff-consequence-bldr
  (implies (and (force (logic.formulap g))
                (force (logic.appealp f))
                (force (logic.appeal-listp as))
                (force (iff-substitutiblep (logic.conclusion f) g (logic.strip-conclusions as)))
                ;; ---
                (force (logic.formula-atblp g atbl))
                (force (logic.proofp f axioms thms atbl))
                (force (logic.proof-listp as axioms thms atbl)))
           (equal (logic.proofp (iff-consequence-bldr g f as) axioms thms atbl)
                  t))
  :hints(("Goal" :in-theory (enable iff-consequence-bldr))))