1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "../logic/formula-size")
(include-book "../logic/piff") ;; Yuck!
(include-book "../build/disjoined-subset")
(set-verify-guards-eagerness 2)
(set-case-split-limitations nil)
(set-well-founded-relation ord<)
(set-measure-function rank)
;; This is a port of Shankar's tautology checker from his work formalizing
;; Godel's incompleteness theorem in NQTHM, which in turn was based on
;; Shoenfield's proof of the tautology theorem.
;;
;; - We introduce a tautology checker (see tautologyp1/tautologyp) that
;; operates on formulas, returning t if the formula is a tautology and nil
;; otherwise.
;;
;; - We show that whenever tautologyp accepts a formula, its truth value is
;; true for every truth valuation
;;
;; - We show that whenever tautologyp rejects a formula, there is some truth
;; valuation which makes that formula's truth value false.
;;
;; - We introduce a tautology builder (see tautology-bldr1/tautology-bldr)
;; which can construct a proof of an arbitrary tautology, and show that it
;; does in fact construct a proof for any formula that our tautologyp
;; function accepts.
;;
;;
;; We adopt Shoenfield's definition of tautologies: a tautology is a formula
;; whose truth value is true under every possible truth valuation.
;;
;; Definition. A truth valuation is a mapping from every atomic formula
;; (formulas of the form t1 = t2) to truth values (true or false). Given a
;; truth valuation V, we assign a truth value to each formula as follows:
;;
;; 1. Val(t1 = t2) is true iff Val maps t1=t2 to true
;; 2. Val(~F) is not(Val(F))
;; 3. Val(F v G) is or(Val(F),Val(G))
;;
;; We represent truth valuations as simple lists of atomic formulas. We assign
;; true to formulas in the list, and false to formulas not in the list.
;;
;; Why is this a legitimate representation? After all, we said that a truth
;; valuation maps *every* atomic formula to true or false. But surely there
;; are infinitely many atomic formulas, and yet our lists are finite. Haven't
;; we failed to cover those truth valuations which map all formulas to true, or
;; even those which simply map some infinite number of formulas to true?
;;
;; Although we cannot represent such valuations as lists, we really don't need
;; to do so if our goal is only to determine if a formula is a tautology or
;; not. After all, any formula is itself finite, and hence contains at most
;; some finite number of atomic formulas. Hence, to determine if a formula F
;; is a tautology or not, we only need to consider the bindings of the atomic
;; formulas within F, all of which can be represented finitely.
;;
;; We begin by introducing the function truth-value below, which evaluates a
;; formula with respect to a truth valuation.
(defund truth-value (f valuation)
(declare (xargs :guard (logic.formulap f)))
(cond ((equal (logic.fmtype f) 'por*)
(or (truth-value (logic.vlhs f) valuation)
(truth-value (logic.vrhs f) valuation)))
((equal (logic.fmtype f) 'pnot*)
(not (truth-value (logic.~arg f) valuation)))
((equal (logic.fmtype f) 'pequal*)
(memberp f valuation))
(t nil)))
(defthm booleanp-of-truth-value
(equal (booleanp (truth-value f valuation))
t)
:hints(("Goal" :in-theory (e/d (truth-value)
(logic.fmtype-normalizer-cheap)))))
(defthm truth-value-of-list-fix
(equal (truth-value f (list-fix valuation))
(truth-value f valuation))
:hints(("Goal" :in-theory (e/d (truth-value)
(logic.fmtype-normalizer-cheap)))))
(defthm truth-value-when-logic.por
(implies (equal (logic.fmtype f) 'por*)
(equal (truth-value f valuation)
(or (truth-value (logic.vlhs f) valuation)
(truth-value (logic.vrhs f) valuation))))
:hints(("Goal" :in-theory (enable truth-value))))
(defthm truth-value-when-logic.pnot
(implies (equal (logic.fmtype f) 'pnot*)
(equal (truth-value f valuation)
(not (truth-value (logic.~arg f) valuation))))
:hints(("Goal" :in-theory (enable truth-value))))
(defthm truth-value-when-pequal
(implies (equal (logic.fmtype f) 'pequal*)
(equal (truth-value f valuation)
(memberp f valuation)))
:hints(("Goal" :in-theory (enable truth-value))))
(defthm truth-value-when-degenerate
(implies (and (not (equal (logic.fmtype f) 'por*))
(not (equal (logic.fmtype f) 'pnot*))
(not (equal (logic.fmtype f) 'pequal*)))
(equal (truth-value f valuation)
nil))
:hints(("Goal" :in-theory (e/d (truth-value)
(logic.fmtype-normalizer-cheap)))))
(defthm forcing-truth-value-of-logic.por
(implies (and (force (logic.formulap x))
(force (logic.formulap y)))
(equal (truth-value (logic.por x y) valuation)
(or (truth-value x valuation)
(truth-value y valuation))))
:rule-classes ((:rewrite :backchain-limit-lst 0)))
(defthm forcing-truth-value-of-logic.pnot
(implies (force (logic.formulap x))
(equal (truth-value (logic.pnot x) valuation)
(not (truth-value x valuation))))
:rule-classes ((:rewrite :backchain-limit-lst 0)))
(defthm forcing-truth-value-of-pequal
(implies (and (force (logic.termp x))
(force (logic.termp y)))
(equal (truth-value (logic.pequal x y) valuation)
(memberp (logic.pequal x y) valuation)))
:rule-classes ((:rewrite :backchain-limit-lst 0)))
(defthm forcing-truth-value-of-logic.pand
(implies (and (force (logic.formulap x))
(force (logic.formulap y)))
(equal (truth-value (logic.pand x y) valuation)
(and (truth-value x valuation)
(truth-value y valuation))))
:rule-classes ((:rewrite :backchain-limit-lst 0))
:hints(("Goal" :in-theory (enable logic.pand))))
(defthm forcing-truth-value-of-logic.piff
(implies (and (force (logic.formulap x))
(force (logic.formulap y)))
(equal (truth-value (logic.piff x y) valuation)
(iff (truth-value x valuation)
(truth-value y valuation))))
:rule-classes ((:rewrite :backchain-limit-lst 0))
:hints(("Goal" :in-theory (enable logic.piff))))
(deftheory slow-truth-value-theory
'(truth-value-when-logic.por
truth-value-when-logic.pnot
truth-value-when-pequal
truth-value-when-degenerate))
(in-theory (disable slow-truth-value-theory))
;; Suppose we want to reason about the truth value of logic.disjoin-formulas
;; under some valuation. Then the value will be true iff one of the formulas
;; we are about to disjoin happens to be true under the valuation. The
;; function find-positive searches for a formula that has a true truth-value
;; under a valuation, returning the first such formula found, or nil if no such
;; formula exists.
(defund find-positive (x valuation)
(declare (xargs :guard (logic.formula-listp x)))
(if (consp x)
(if (truth-value (car x) valuation)
(car x)
(find-positive (cdr x) valuation))
nil))
(defthm find-positive-when-not-consp
(implies (not (consp x))
(equal (find-positive x valuation)
nil))
:hints(("Goal" :in-theory (enable find-positive))))
(defthm find-positive-of-cons
(equal (find-positive (cons a x) valuation)
(if (truth-value a valuation)
a
(find-positive x valuation)))
:hints(("Goal" :in-theory (enable find-positive))))
(defthm find-positive-of-list-fix-one
(equal (find-positive (list-fix x) valuation)
(find-positive x valuation))
:hints(("Goal" :induct (cdr-induction x))))
(defthm find-positive-of-list-fix-two
(equal (find-positive x (list-fix valuation))
(find-positive x valuation))
:hints(("Goal" :induct (cdr-induction x))))
(defthm find-positive-of-app
(equal (find-positive (app x y) valuation)
(or (find-positive x valuation)
(find-positive y valuation)))
:hints(("Goal"
:induct (cdr-induction x)
:in-theory (enable slow-truth-value-theory))))
(defthm find-positive-when-memberp-with-true-value
(implies (and (memberp a x)
(truth-value a valuation))
(iff (find-positive x valuation)
t))
:hints(("Goal"
:induct (cdr-induction x)
:in-theory (enable slow-truth-value-theory))))
(defthm memberp-of-find-positive-when-find-positive
(implies (find-positive x valuation)
(equal (memberp (find-positive x valuation) x)
t))
:hints(("Goal" :induct (cdr-induction x))))
(defthm truth-value-of-find-positive-when-find-positive
(implies (find-positive x valuation)
(equal (truth-value (find-positive x valuation) valuation)
t))
:hints(("Goal" :induct (cdr-induction x))))
(defthm find-positive-when-subsetp
(implies (and (find-positive x valuation)
(subsetp x y))
(iff (find-positive y valuation)
t))
:hints(("Goal" :induct (cdr-induction x))))
(defthm find-positive-when-find-positive-of-cdr
(implies (find-positive (cdr x) valuation)
(find-positive x valuation)))
(defthm find-positive-when-not-find-positive-of-cdr
(implies (not (find-positive (cdr x) valuation))
(equal (find-positive x valuation)
(if (truth-value (car x) valuation)
(car x)
nil))))
(defthm find-positive-when-complementary-members
(implies (and (memberp (logic.pnot a) x)
(memberp a x)
(logic.formula-listp x))
(iff (find-positive x valuation)
t))
:hints(("Goal" :cases ((truth-value a valuation)))))
(defthm find-positive-when-complementary-members-alt
(implies (and (memberp (logic.~arg a) x)
(memberp a x)
(equal (logic.fmtype a) 'pnot*)
(logic.formula-listp x))
(iff (find-positive x valuation)
t))
:hints(("Goal"
:in-theory (enable slow-truth-value-theory)
:cases ((truth-value a valuation)))))
(defthm find-positive-when-complementary-members-app-one
(implies (and (memberp (logic.pnot a) x)
(memberp a (app x y))
(logic.formula-listp x)
(logic.formula-listp y))
(iff (find-positive (app x y) valuation)
t))
:hints(("Goal"
:in-theory (disable find-positive-when-complementary-members)
:use ((:instance find-positive-when-complementary-members
(x (app x y)))))))
(defthm find-positive-when-complementary-members-app-two
(implies (and (memberp (logic.pnot a) y)
(memberp a (app x y))
(logic.formula-listp x)
(logic.formula-listp y))
(iff (find-positive (app x y) valuation)
t))
:hints(("Goal"
:in-theory (disable find-positive-when-complementary-members)
:use ((:instance find-positive-when-complementary-members
(x (app x y)))))))
(defthm find-positive-when-complementary-members-app-alt-one
(implies (and (memberp (logic.~arg a) x)
(memberp a (app x y))
(equal (logic.fmtype a) 'pnot*)
(logic.formula-listp x)
(logic.formula-listp y))
(iff (find-positive (app x y) valuation)
t))
:hints(("Goal"
:in-theory (disable find-positive-when-complementary-members-alt)
:use ((:instance find-positive-when-complementary-members-alt
(x (app x y)))))))
(defthm find-positive-when-complementary-members-app-alt-two
(implies (and (memberp (logic.~arg a) y)
(memberp a (app x y))
(equal (logic.fmtype a) 'pnot*)
(logic.formula-listp x)
(logic.formula-listp y))
(iff (find-positive (app x y) valuation)
t))
:hints(("Goal"
:in-theory (disable find-positive-when-complementary-members-alt)
:use ((:instance find-positive-when-complementary-members-alt
(x (app x y)))))))
(defthm forcing-truth-valuation-of-disjoin-formula-under-iff
(implies (force (logic.formula-listp x))
(iff (truth-value (logic.disjoin-formulas x) valuation)
(find-positive x valuation)))
:hints(("Goal"
:induct (cdr-induction x)
:in-theory (enable slow-truth-value-theory logic.disjoin-formulas))))
;; "Basic formulas" play a particularly important role in our tautology
;; checker. And, for guards and for certain theorems, we need to be able to
;; talk about lists of basic formulas. (Shoenfield calls these "lists of
;; elementary formulas and their negations"). We now introduce the function
;; basic-logic.formula-listp, which checks to see if every formula in a list is
;; basic.
;; BOZO my god this is crying out for deflist.
(defund basic-logic.formula-listp (x)
(declare (xargs :guard (logic.formula-listp x)))
(if (consp x)
(and (or (equal (logic.fmtype (car x)) 'pequal*)
(and (equal (logic.fmtype (car x)) 'pnot*)
(equal (logic.fmtype (logic.~arg (car x))) 'pequal*)))
(basic-logic.formula-listp (cdr x)))
t))
(defthm basic-logic.formula-listp-when-not-consp
(implies (not (consp x))
(equal (basic-logic.formula-listp x)
t))
:hints(("Goal" :in-theory (enable basic-logic.formula-listp))))
(defthm basic-logic.formula-listp-of-cons
(equal (basic-logic.formula-listp (cons a x))
(and (or (equal (logic.fmtype a) 'pequal*)
(and (equal (logic.fmtype a) 'pnot*)
(equal (logic.fmtype (logic.~arg a)) 'pequal*)))
(basic-logic.formula-listp x)))
:hints(("Goal" :in-theory (enable basic-logic.formula-listp))))
(defthm all-listeralsp-of-list-fix
(equal (basic-logic.formula-listp (list-fix x))
(basic-logic.formula-listp x))
:hints(("Goal" :induct (cdr-induction x))))
(defthm booleanp-of-basic-logic.formula-listp
(equal (booleanp (basic-logic.formula-listp x))
t)
:hints(("Goal" :induct (cdr-induction x))))
(defthm basic-logic.formula-listp-of-cdr-when-basic-logic.formula-listp
(implies (basic-logic.formula-listp x)
(equal (basic-logic.formula-listp (cdr x))
t)))
(defthm logic.fmtype-logic.pnot-when-non-pequal-memberp-of-basic-logic.formula-listp
(implies (and (memberp a x)
(basic-logic.formula-listp x)
(not (equal (logic.fmtype a) 'pequal*)))
(equal (logic.fmtype a) 'pnot*))
:hints(("Goal" :induct (cdr-induction x))))
(defthm logic.fmtype-of-logic.~arg-when-non-pequal-memberp-of-basic-logic.formula-listp
(implies (and (memberp a x)
(basic-logic.formula-listp x)
(not (equal (logic.fmtype a) 'pequal*)))
(equal (logic.fmtype (logic.~arg a)) 'pequal*))
:hints(("Goal" :induct (cdr-induction x))))
(defthm logic.fmtype-of-logic.~arg-when-logic.pnot-memberp-of-basic-logic.formula-listp
(implies (and (memberp a x)
(basic-logic.formula-listp x)
(equal (logic.fmtype a) 'pnot*))
(equal (logic.fmtype (logic.~arg a)) 'pequal*))
:hints(("Goal" :induct (cdr-induction x))))
(defthm logic.fmtype-pequal-when-non-logic.pnot-memberp-of-basic-logic.formula-listp
(implies (and (memberp a x)
(basic-logic.formula-listp x)
(not (equal (logic.fmtype a) 'pnot*)))
(equal (logic.fmtype a) 'pequal*))
:hints(("Goal" :induct (cdr-induction x))))
(defthm logic.fmtype-logic.pnot-when-non-pequal-car-of-basic-logic.formula-listp
(implies (and (basic-logic.formula-listp x)
(force (consp x))
(not (equal (logic.fmtype (car x)) 'pequal*)))
(equal (logic.fmtype (car x)) 'pnot*)))
(defthm logic.fmtype-of-logic.~arg-when-non-pequal-car-of-basic-logic.formula-listp
(implies (and (basic-logic.formula-listp x)
(force (consp x))
(not (equal (logic.fmtype (car x)) 'pequal*)))
(equal (logic.fmtype (logic.~arg (car x))) 'pequal*)))
(defthm logic.fmtype-of-logic.~arg-when-logic.pnot-car-of-basic-logic.formula-listp
(implies (and (basic-logic.formula-listp x)
(force (consp x))
(equal (logic.fmtype (car x)) 'pnot*))
(equal (logic.fmtype (logic.~arg (car x))) 'pequal*)))
(defthm logic.fmtype-pequal-when-non-logic.pnot-car-of-basic-logic.formula-listp
(implies (and (basic-logic.formula-listp x)
(force (consp x))
(not (equal (logic.fmtype (car x)) 'pnot*)))
(equal (logic.fmtype (car x)) 'pequal*)))
(defthm logic.fmtype-when-memberp-and-basic-logic.formula-listp
(implies (and (basic-logic.formula-listp x)
(memberp a x))
(or (equal (logic.fmtype a) 'pequal*)
(and (equal (logic.fmtype a) 'pnot*)
(equal (logic.fmtype (logic.~arg a)) 'pequal*))))
:rule-classes nil)
(defthm basic-logic.formula-listp-of-app
(equal (basic-logic.formula-listp (app x y))
(and (basic-logic.formula-listp x)
(basic-logic.formula-listp y)))
:hints(("Goal" :induct (cdr-induction x))))
(defthm basic-logic.formula-listp-when-subset-one
(implies (and (basic-logic.formula-listp y)
(subsetp x y))
(basic-logic.formula-listp x))
:hints(("Goal"
:induct (cdr-induction x)
:in-theory (enable basic-logic.formula-listp))))
(defthm basic-logic.formula-listp-when-subset-two
(implies (and (subsetp x y)
(basic-logic.formula-listp y))
(basic-logic.formula-listp x)))
;; Another important idea that we will introduce before discussing the
;; tautology checker itself is the following. Suppose that the basic formulas
;; t1 = t2 and t1 != t2 both occur within some list of basic formulas. Then,
;; we say that the list contains complementary formulas. We write the function
;; find-complements to search for complementary formulas.
(defund find-complements (x)
(declare (xargs :guard (and (logic.formula-listp x)
(basic-logic.formula-listp x))))
(if (consp x)
(if (if (equal (logic.fmtype (car x)) 'pnot*)
(memberp (logic.~arg (car x)) (cdr x))
(memberp (logic.pnot (car x)) (cdr x)))
(car x)
(find-complements (cdr x)))
nil))
(defthm find-complements-when-not-consp
(implies (not (consp x))
(not (find-complements x)))
:hints(("Goal" :in-theory (enable find-complements))))
(defthm find-complements-of-cons
(equal (find-complements (cons a x))
(if (if (equal (logic.fmtype a) 'pnot*)
(memberp (logic.~arg a) x)
(memberp (logic.pnot a) x))
a
(find-complements x)))
:hints(("Goal" :in-theory (enable find-complements))))
(defthm find-complements-of-list-fix
(equal (find-complements (list-fix x))
(find-complements x))
:hints(("Goal" :induct (cdr-induction x))))
(defthm not-find-complements-of-cdr-when-not-find-complements
(implies (and (not (find-complements x))
(force (logic.formula-listp x)))
(not (find-complements (cdr x)))))
(defthm find-complements-when-not-find-complements-of-cdr
(implies (not (find-complements (cdr x)))
(equal (find-complements x)
(if (if (equal (logic.fmtype (car x)) 'pnot*)
(memberp (logic.~arg (car x)) (cdr x))
(memberp (logic.pnot (car x)) (cdr x)))
(car x)
nil))))
(defthm memberp-of-find-complements
(implies (find-complements x)
(memberp (find-complements x) x))
:hints(("Goal" :induct (cdr-induction x))))
(defthm memberp-of-logic.pnot-of-find-complements
(implies (and (find-complements x)
(equal (logic.fmtype (find-complements x)) 'pequal*))
(memberp (logic.pnot (find-complements x)) x))
:hints(("Goal" :induct (cdr-induction x))))
(defthm memberp-of-logic.~arg-of-find-complements
(implies (and (find-complements x)
(equal (logic.fmtype (find-complements x)) 'pnot*))
(memberp (logic.~arg (find-complements x)) x))
:hints(("Goal" :induct (cdr-induction x))))
(defthm find-complements-when-complementary-members-one
(implies (and (memberp (logic.pnot a) x)
(memberp a x)
(equal (logic.fmtype a) 'pequal*)
(force (logic.formula-listp x)))
(find-complements x))
:hints(("Goal" :induct (cdr-induction x))))
(defthm find-complements-when-complementary-members-two
(implies (and (memberp (logic.~arg a) x)
(memberp a x)
(equal (logic.fmtype a) 'pnot*)
(equal (logic.fmtype (logic.~arg a)) 'pequal*)
(force (logic.formula-listp x)))
(find-complements x))
:hints(("Goal" :induct (cdr-induction x))))
(defthm logic.fmtype-of-find-complements-when-not-pequal
(implies (and (force (logic.formula-listp x))
(force (basic-logic.formula-listp x))
(find-complements x)
(not (equal (logic.fmtype (find-complements x)) 'pequal*)))
(equal (logic.fmtype (find-complements x))
'pnot*))
:hints(("Goal" :in-theory (enable find-complements))))
(defthm logic.fmtype-of-find-complements-when-not-logic.pnot
(implies (and (force (logic.formula-listp x))
(force (basic-logic.formula-listp x))
(find-complements x)
(not (equal (logic.fmtype (find-complements x)) 'pnot*)))
(equal (logic.fmtype (find-complements x))
'pequal*))
:hints(("Goal" :in-theory (enable find-complements))))
(encapsulate
()
(local (defthm lemma1
(implies (and (force (logic.formula-listp y))
(force (basic-logic.formula-listp y))
(find-complements x)
(equal (logic.fmtype (find-complements x)) 'pequal*)
(subsetp x y))
(find-complements y))
:hints(("Goal"
:in-theory (disable in-superset-when-in-subset-one
in-superset-when-in-subset-two)
:use ((:instance in-superset-when-in-subset-one
(a (find-complements x))
(x x)
(y y))
(:instance in-superset-when-in-subset-one
(a (logic.pnot (find-complements x)))
(x x)
(y y)))))))
(local (defthm lemma2
(implies (and (force (logic.formula-listp y))
(force (basic-logic.formula-listp y))
(find-complements x)
(equal (logic.fmtype (find-complements x)) 'pnot*)
(subsetp x y))
(find-complements y))
:hints(("Goal"
:in-theory (disable in-superset-when-in-subset-one
in-superset-when-in-subset-two)
:use ((:instance in-superset-when-in-subset-one
(a (find-complements x))
(x x)
(y y))
(:instance in-superset-when-in-subset-one
(a (logic.~arg (find-complements x)))
(x x)
(y y)))))))
(defthm find-complements-when-find-complements-of-subset-one
(implies (and (find-complements x)
(subsetp x y)
(force (logic.formula-listp y))
(force (basic-logic.formula-listp y)))
(find-complements y))
:hints(("Goal"
:cases ((equal (logic.fmtype (find-complements x)) 'pequal*)
(equal (logic.fmtype (find-complements x)) 'pnot*)))))
(defthm find-complements-when-find-complements-of-subset-two
(implies (and (subsetp x y)
(find-complements x)
(force (logic.formula-listp y))
(force (basic-logic.formula-listp y)))
(find-complements y)))
(defthm not-find-complements-when-not-find-complements-of-superset-one
(implies (and (not (find-complements y))
(subsetp x y)
(force (logic.formula-listp y))
(force (basic-logic.formula-listp y)))
(not (find-complements x))))
(defthm not-find-complements-when-not-find-complements-of-superset-two
(implies (and (subsetp x y)
(not (find-complements y))
(force (logic.formula-listp y))
(force (basic-logic.formula-listp y)))
(not (find-complements x)))))
;; One of the key theorems about basic formula lists is the following. Suppose
;; that the list contains complementary formulas. Then, we can always find at
;; least some formula which evaluates to true under any arbitrary truth
;; valuation.
(defthm find-positive-when-find-complements
(implies (and (logic.formula-listp x)
(basic-logic.formula-listp x)
(find-complements x))
(find-positive x valuation))
:hints(("Goal"
:induct (cdr-induction x)
:in-theory (enable slow-truth-value-theory))))
;; Finally, suppose that we are given a list of basic formulas. If there are
;; no complementary formulas in the list, then it is possible to construct a
;; valuation which will render the disjunction false. (See Shoenfield, at the
;; top of page 27.) Essentially, we construct a valuation V as follows. Let
;; V(t1 = t2) be true iff t1 != t2 is a member of the list. In Shankar's
;; implementation, this is the function "falsify".
(defund falsify-formulas (x)
(declare (xargs :guard (and (logic.formula-listp x)
(basic-logic.formula-listp x)
(not (find-complements x)))))
(if (consp x)
(if (equal (logic.fmtype (car x)) 'pnot*)
(cons (logic.~arg (car x))
(falsify-formulas (cdr x)))
(falsify-formulas (cdr x)))
nil))
(defthm falsify-formulas-when-not-consp
(implies (not (consp x))
(equal (falsify-formulas x)
nil))
:hints(("Goal" :in-theory (enable falsify-formulas))))
(defthm true-listp-of-falsify-formulas
(equal (true-listp (falsify-formulas x))
t)
:hints(("Goal" :in-theory (enable falsify-formulas))))
(defthm memberp-of-falsify-formulas
(implies (and (force (logic.formula-listp x))
(force (logic.formulap a)))
(equal (memberp a (falsify-formulas x))
(memberp (logic.pnot a) x)))
:hints(("Goal" :in-theory (enable falsify-formulas))))
(encapsulate
()
(local (defthm lemma1
;; If L \in X is of the form t1 = t2, then it evaluates to true under
;; the falsifying valuation only when its complement t1 != t2 is also
;; a member of the list.
(implies (and (force (logic.formula-listp x))
(force (basic-logic.formula-listp x))
(memberp a x)
(equal (logic.fmtype a) 'pequal*))
(equal (truth-value a (falsify-formulas x))
(memberp (logic.pnot a) x)))
:hints(("Goal" :in-theory (enable slow-truth-value-theory)))))
(local (defthm lemma2
;; We can conclude from Lemma 1 that if find-positive is able to find
;; a positive formula L (i.e., L is of the form t1 = t2) which
;; evaluates to true under the falsifying valuation, then X must have
;; some complementary formula. After all, since L evaluates to true,
;; t1 != t2 must be in X.
(implies (and (force (logic.formula-listp x))
(force (basic-logic.formula-listp x))
(find-positive x (falsify-formulas x))
(equal (logic.fmtype (find-positive x (falsify-formulas x)))
'pequal*))
(find-complements x))
:hints(("Goal" :in-theory (disable lemma1)
:use ((:instance lemma1
(a (find-positive x (falsify-formulas x)))
(x x)))))))
(local (defthm lemma3
;; Alternately, if L \in X is of the form t1 != t2, then it surely
;; does not evaluate to true under the falsifying valuation, because
;; the falsifying valuation will bind t1 = t2 to true, and hence t1
;; != t2 is false.
(implies (and (force (logic.formula-listp x))
(force (basic-logic.formula-listp x))
(memberp a x)
(equal (logic.fmtype a) 'pnot*)
(equal (logic.fmtype (logic.~arg a)) 'pequal*))
(not (truth-value a (falsify-formulas x))))
:hints(("Goal" :in-theory (enable slow-truth-value-theory)))))
(local (defthm lemma4
;; And as a result of Lemma 3, we see that the if find positive is
;; able to find some formulas L which evaluates to true under the
;; falsifying valuation, then surely L must be positive.
(implies (and (force (logic.formula-listp x))
(force (basic-logic.formula-listp x))
(find-positive x (falsify-formulas x)))
(equal (logic.fmtype (find-positive x (falsify-formulas x))) 'pequal*))
:hints(("Goal"
:in-theory (disable lemma3)
:use ((:instance logic.fmtype-when-memberp-and-basic-logic.formula-listp
(a (find-positive x (falsify-formulas x)))
(x x))
(:instance lemma3
(a (find-positive x (falsify-formulas x)))
(x x)))))))
(local (defthm lemma5
;; Chaining together Lemmas 2 and 4, we see that whenever
;; find-positive returns true, it must be the case that
;; find-complements is successful.
(implies (and (force (logic.formula-listp x))
(force (basic-logic.formula-listp x))
(find-positive x (falsify-formulas x)))
(find-complements x))))
(defthm find-positive-of-falsify-formulas
;; We have already proven the other half of the implication in Lemma 5 in a
;; more general setting, in the theorem find-positive-when-find-complements.
;; So, we can now provide an iff-rewrite and say that find-positive finds an
;; acceptable formula only when complementary formulas exist.
(implies (and (force (logic.formula-listp x))
(force (basic-logic.formula-listp x)))
(iff (find-positive x (falsify-formulas x))
(find-complements x)))))
;; We now introduce our main tautology checking function, tautologyp1. We take
;; as inputs two lists of formulas, As and Acc. We assume that acc is a list
;; of basic formulas with no complementary members, and we return true only
;; when the disjunction of (app as acc) is a tautology. This function is like
;; Shankar's function of the same name. We prove that the function is "sound
;; and complete" in the sense that it only accepts tautologies, and anything it
;; rejects is not a tautology.
(local (defthm termination-crock-1
(implies (and (equal (logic.fmtype as1) 'pnot*)
(equal (logic.fmtype (logic.~arg as1)) 'por*))
(< (+ 1 (logic.formula-size (logic.vrhs (logic.~arg as1))))
(logic.formula-size as1)))
:hints(("Goal" :in-theory (enable logic.formula-size logic.fmtype logic.vrhs logic.~arg)))))
(local (defthm termination-crock-2
(implies (and (equal (logic.fmtype x) 'pnot*)
(equal (logic.fmtype (logic.~arg x)) 'pnot*))
(< (logic.formula-size (logic.~arg (logic.~arg x)))
(logic.formula-size x)))
:hints(("Goal" :in-theory (enable logic.formula-size logic.fmtype logic.~arg)))))
(local (defthm termination-crock-3
(implies (and (equal (logic.fmtype x) 'pnot*)
(equal (logic.fmtype (logic.~arg x)) 'por*))
(< (+ 1 (logic.formula-size (logic.vlhs (logic.~arg x))))
(logic.formula-size x)))
:hints(("Goal" :in-theory (enable logic.formula-size logic.fmtype logic.vlhs logic.~arg)))))
(local (defthm termination-crock-4
(implies (equal (logic.fmtype as1) 'por*)
(< (+ (logic.formula-size (logic.vlhs as1))
(logic.formula-size (logic.vrhs as1)))
(logic.formula-size as1)))
:hints(("Goal" :in-theory (enable logic.formula-size logic.fmtype logic.vlhs logic.vrhs)))))
(defund tautologyp1 (as acc)
(declare (xargs :guard (and (logic.formula-listp as)
(logic.formula-listp acc))
:measure (logic.formula-list-size as)
:hints(("Goal" :in-theory (disable logic.fmtype-normalizer-cheap)))))
(if (consp as)
(let ((A1 (car as)))
(cond
;; TC([B v C,...], acc) = TC([B,C,...], acc)
((equal (logic.fmtype A1) 'por*)
(tautologyp1 (list* (logic.vlhs A1) (logic.vrhs A1) (cdr as)) acc))
;; TC([~(B v C),...], acc) = TC([~B,...], acc) andalso
;; TC([~C,...], acc)
((and (equal (logic.fmtype A1) 'pnot*)
(equal (logic.fmtype (logic.~arg A1)) 'por*))
(and (tautologyp1 (cons (logic.pnot (logic.vlhs (logic.~arg A1)))
(cdr as))
acc)
(tautologyp1 (cons (logic.pnot (logic.vrhs (logic.~arg A1)))
(cdr as))
acc)))
;; TC([~~B,...], acc) = TC([B,...], acc)
((and (equal (logic.fmtype A1) 'pnot*)
(equal (logic.fmtype (logic.~arg A1)) 'pnot*))
(tautologyp1 (cons (logic.~arg (logic.~arg A1))
(cdr as))
acc))
;; TC([~(t1=t2),...], acc) = memberp(t1=t2, acc) orelse
;; TC(..., ~(t1=t2)::acc)
((equal (logic.fmtype A1) 'pnot*)
(or (memberp (logic.~arg A1) acc)
(tautologyp1 (cdr as) (cons A1 acc))))
;; TC([t1=t2,...], acc) = memberp(~(t1=t2), acc) orelse
;; TC(..., t1=t2::acc)
(t
(or (memberp (logic.pnot A1) acc)
(tautologyp1 (cdr as) (cons A1 acc))))))
nil))
(defthm booleanp-of-tautologyp1
(equal (booleanp (tautologyp1 as acc))
t)
:hints(("Goal" :in-theory (enable tautologyp1))))
(defthm tautologyp1-when-not-consp
(implies (not (consp as))
(not (tautologyp1 as acc)))
:hints(("Goal" :in-theory (enable tautologyp1))))
(defthm tautologyp1-of-list-fix-one
(equal (tautologyp1 (list-fix as) acc)
(tautologyp1 as acc))
:hints(("Goal" :in-theory (enable tautologyp1
;; Yuck! why?
list-fix))))
(defthm tautologyp1-of-list-fix-two
(equal (tautologyp1 as (list-fix acc))
(tautologyp1 as acc))
:hints(("Goal" :in-theory (enable tautologyp1))))
(defthm tautologyp1-of-recursive-call-in-logic.por-case
(implies (and (tautologyp1 as acc)
(equal (logic.fmtype (car as)) 'por*))
(equal (tautologyp1 (list* (logic.vlhs (car as)) (logic.vrhs (car as)) (cdr as)) acc)
t))
:hints(("Goal" :in-theory (enable tautologyp1))))
(defthm tautologyp1-of-recursive-calls-in-logic.pnot-of-logic.pors-case
(implies (and (tautologyp1 as acc)
(equal (logic.fmtype (car as)) 'pnot*)
(equal (logic.fmtype (logic.~arg (car as))) 'por*))
(and (tautologyp1 (cons (logic.pnot (logic.vlhs (logic.~arg (car as)))) (cdr as)) acc)
(tautologyp1 (cons (logic.pnot (logic.vrhs (logic.~arg (car as)))) (cdr as)) acc)))
:hints(("Goal" :in-theory (enable tautologyp1))))
(defthm tautologyp1-of-recursive-call-in-logic.pnot-of-logic.pnot-case
(implies (and (tautologyp1 as acc)
(equal (logic.fmtype (car as)) 'pnot*)
(equal (logic.fmtype (logic.~arg (car as))) 'pnot*))
(equal (tautologyp1 (cons (logic.~arg (logic.~arg (car as))) (cdr as)) acc)
t))
:hints(("Goal" :in-theory (enable tautologyp1))))
(defthm tautologyp1-of-recursive-call-in-logic.pnot-of-pequal-case
(implies (and (tautologyp1 as acc)
(equal (logic.fmtype (car as)) 'pnot*)
(equal (logic.fmtype (logic.~arg (car as))) 'pequal*)
(not (memberp (logic.~arg (car as)) acc)))
(equal (tautologyp1 (cdr as) (cons (car as) acc))
t))
:hints(("Goal" :in-theory (enable tautologyp1))))
(defthm tautologyp1-of-recursive-call-in-pequal-case
(implies (and (logic.formula-listp as)
(tautologyp1 as acc)
(equal (logic.fmtype (car as)) 'pequal*)
(not (memberp (logic.pnot (car as)) acc)))
(equal (tautologyp1 (cdr as) (cons (car as) acc))
t))
:hints(("Goal" :in-theory (enable tautologyp1))))
;; We now begin our correctness argument for tautologyp1. Our first goal is to
;; show that "tautologies are true". In other words, suppose that as and acc
;; satisfy the conditions we have described. Then, it follows that the
;; disjunction of (app as acc) must evaluate to true under every arbitrary
;; truth valuation. Given our supporting definitions, the proof works out
;; easily.
(defthm forcing-tautologies-are-true
(implies (and (force (logic.formula-listp as))
(force (logic.formula-listp acc))
(tautologyp1 as acc))
(equal (truth-value (logic.disjoin-formulas (app as acc)) valuation)
t))
:hints(("Goal" :in-theory (enable tautologyp1 slow-truth-value-theory))))
;; Our attention now turns to demonstrating the completeness of tautologyp1.
;; That is, suppose that tautologyp1 rejects its inputs. Then, we would like
;; to show that there is some truth valuation which makes (app as acc) false.
;; To do this, we will actually construct such a valuation.
;; Shoenfield explains this process at the top of Page 27, and in Shankar's
;; work it appears as the function "falsify-taut", which we recreate below with
;; the appropriate changes. We return a pair of the form (successp
;; . valuation), where if successp is true then valuation is a falsifying
;; valuation for this formula, and otherwise we have failed to produce such a
;; valuation.
(defund falsify-taut (as acc)
(declare (xargs :measure (logic.formula-list-size as)
:guard (and (logic.formula-listp as)
(logic.formula-listp acc)
(basic-logic.formula-listp acc)
(not (find-complements acc)))
:verify-guards nil))
(if (consp as)
(let ((A1 (car as)))
(cond ((equal (logic.fmtype A1) 'por*)
(falsify-taut (list* (logic.vlhs A1) (logic.vrhs A1) (cdr as)) acc))
((and (equal (logic.fmtype A1) 'pnot*)
(equal (logic.fmtype (logic.~arg A1)) 'por*))
(let* ((candidate (falsify-taut (cons (logic.pnot (logic.vlhs (logic.~arg A1)))
(cdr as))
acc))
(successp (car candidate)))
(if successp
candidate
(falsify-taut (cons (logic.pnot (logic.vrhs (logic.~arg A1)))
(cdr as))
acc))))
((and (equal (logic.fmtype A1) 'pnot*)
(equal (logic.fmtype (logic.~arg A1)) 'pnot*))
(falsify-taut (cons (logic.~arg (logic.~arg A1))
(cdr as))
acc))
((equal (logic.fmtype A1) 'pnot*)
(if (memberp (logic.~arg A1) acc)
'(nil . nil)
(falsify-taut (cdr as) (cons A1 acc))))
(t
(if (memberp (logic.pnot A1) acc)
'(nil . nil)
(falsify-taut (cdr as) (cons A1 acc))))))
(cons t (falsify-formulas acc))))
(defthm consp-of-falsify-taut
(equal (consp (falsify-taut as acc))
t)
:hints(("Goal" :in-theory (enable falsify-taut))))
(verify-guards falsify-taut
:hints(("Goal" :in-theory (enable logic.fmtype-normalizer-cheap))))
(encapsulate
()
(local
(defthm lemma
;; By looking at the definitions of falsify-taut and tautologyp1, we can see
;; that falsify-taut considers itself "successful" exactly when tautologyp1
;; rejects these inputs.
(implies (and (logic.formula-listp as))
(equal (tautologyp1 as acc)
(not (car (falsify-taut as acc)))))
:hints(("Goal"
:in-theory (enable tautologyp1 falsify-taut)
:induct (tautologyp1 as acc)))))
(defthm forcing-non-tautologies-are-falsifiable
;; We can also demonstrate that when tautologyp1 rejects its inputs, then the
;; valuation returned by falsify-taut falsifies the disjunction of these
;; formulas. In other words, anything that tautologyp1 rejects is not true
;; in all valuations, and hence is not a tautology.
(implies (and (force (logic.formula-listp as))
(force (logic.formula-listp acc))
(force (basic-logic.formula-listp acc))
(force (not (find-complements acc)))
(not (tautologyp1 as acc)))
(not (truth-value (logic.disjoin-formulas (app as acc))
(cdr (falsify-taut as acc)))))
:hints(("Goal"
:in-theory (enable falsify-taut
slow-truth-value-theory
logic.fmtype-normalizer-cheap)
:induct (falsify-taut as acc)))))
;; We now have a function, tautologyp1, which we can use to determine precisely
;; when (logic.disjoin-formulas (app as acc)) is a tautology, assuming that as and
;; acc are lists of formulas, where acc consists entirely of basic formulas and
;; has no complementary formulas. This turns out to be sufficient to answer
;; whether any formula F is a tautology, by asking about (logic.disjoin-formulas
;; (list F) nil). We now "wrap up" this common usage as follows.
(defund tautologyp (x)
(declare (xargs :guard (logic.formulap x)))
(tautologyp1 (list x) nil))
(defthm booleanp-of-tautologyp
(equal (booleanp (tautologyp x))
t)
:hints(("Goal" :in-theory (enable tautologyp))))
(defund tautologyp-counterexample (x)
(declare (xargs :guard (and (logic.formulap x)
(not (tautologyp x)))))
(cdr (falsify-taut (list x) nil)))
(defthm truth-value-when-tautologyp
(implies (and (force (logic.formulap x))
(tautologyp x))
(equal (truth-value x valuation)
t))
:hints(("Goal"
:in-theory (e/d (tautologyp)
(forcing-tautologies-are-true))
:use (:instance forcing-tautologies-are-true
(as (list x))
(acc nil)))))
(defthm truth-value-of-counterexample-when-not-tautologyp
(implies (and (force (logic.formulap x))
(not (tautologyp x)))
(not (truth-value x (tautologyp-counterexample x))))
:hints(("Goal"
:in-theory (e/d (tautologyp tautologyp-counterexample)
(forcing-non-tautologies-are-falsifiable))
:use (:instance forcing-non-tautologies-are-falsifiable
(as (list x))
(acc nil)))))
(encapsulate
()
(local (defthm lemma
(implies (and (logic.formula-listp xs)
(truth-value (logic.disjoin-formulas xs)
(cdr (falsify-taut xs nil))))
(tautologyp1 xs nil))
:hints(("Goal"
:in-theory (disable forcing-non-tautologies-are-falsifiable)
:use ((:instance forcing-non-tautologies-are-falsifiable
(as xs)
(acc nil)))))))
(defthm tautologyp-when-cannot-be-falsified
;; This is Shankar's trick for allowing us to symbolically simplify
;; tautologies as they arise in formulas. (See page 88 of his book,
;; Metamathematics, Machines, and Godel's Proof).
(implies (and (logic.formulap x)
(truth-value x (cdr (falsify-taut (list x) nil))))
(equal (tautologyp x)
t))
:hints(("Goal"
:in-theory (enable tautologyp)))))
(defthm forcing-tautologyp-of-logic.piff-a-a
(implies (force (logic.formulap a))
(equal (tautologyp (logic.piff a a))
t))
:hints(("Goal" :in-theory (enable logic.piff logic.pand))))
;; It is not sufficient to prove that tautologyp1 is sound and complete in the
;; sense we have demonstrated above. We need to show that we can actually
;; build proofs of every tautology.
(defund tautology-bldr1 (as acc)
;; Derive (logic.disjoin-formulas (app as acc)) when (tautologyp1 as acc).
;; Note: This is basically like Shankar's function "taut-proof1".
(declare (xargs :guard (and (logic.formula-listp as)
(logic.formula-listp acc)
(tautologyp1 as acc))
:verify-guards nil
:measure (logic.formula-list-size as)))
;; We will denote As = [A1 ... An]
;; We will write Acc = [B1 ... Bm]
;; Goal is to prove [A1 v... v An v B1 v ... v Bm] (fully right associated)
(if (consp as)
(let ((A1 (car as)))
(cond
;; As = [(F v G), A2, ..., An]
((equal (logic.fmtype A1) 'por*)
;; Case 1: {A2...An}U{B1...Bm} is nonempty
;; Recursively build F v (G v (A2 ... An v B1 ... Bm))
;; Associativity yields (F v G) v (A2 ... An v B1 ... Bm)
(if (or (consp (cdr as))
(consp acc))
(build.associativity (tautology-bldr1 (list* (logic.vlhs A1) (logic.vrhs A1) (cdr as)) acc))
;; Case 2: {A2...An}U{B1...Bm} is empty
;; Recursively build F v G
(tautology-bldr1 (list* (logic.vlhs A1) (logic.vrhs A1) (cdr as)) acc)))
;; As = [~(F v G), A2, ..., An]
((and (equal (logic.fmtype A1) 'pnot*)
(equal (logic.fmtype (logic.~arg A1)) 'por*))
;; Case 1: {A2...An}U{B1...Bm} is nonempty
;; Recursively build ~F v (A2 ... An v B1 ... Bm)
;; Recursively build ~G v (A2 ... An v B1 ... Bm)
;; Merge Implications yields ~(F v G) v (A2 ... An v B1 ... Bm)
(if (or (consp (cdr as))
(consp acc))
(build.merge-implications (tautology-bldr1 (cons (logic.pnot (logic.vlhs (logic.~arg A1))) (cdr as)) acc)
(tautology-bldr1 (cons (logic.pnot (logic.vrhs (logic.~arg A1))) (cdr as)) acc))
;; Case 2: {A2...An}U{B1...Bm} is empty
;; Recursively build ~F
;; Recursively Build ~G
;; Merge Negatives yields ~(F v G)
(build.merge-negatives (tautology-bldr1 (cons (logic.pnot (logic.vlhs (logic.~arg A1))) (cdr as)) acc)
(tautology-bldr1 (cons (logic.pnot (logic.vrhs (logic.~arg A1))) (cdr as)) acc))))
;; As = [~~B, A2, ..., An]
((and (equal (logic.fmtype A1) 'pnot*)
(equal (logic.fmtype (logic.~arg A1)) 'pnot*))
;; Case 1: [A2...An]@[B1...Bm] is nonempty
;; Recursively build B v (A2 ... An v B1 ... Bm)
;; Lhs Insert ~~ yields ~~B v (A2 ... An v B1 ... Bm)
(if (or (consp (cdr as))
(consp acc))
(build.lhs-insert-neg-neg (tautology-bldr1 (cons (logic.~arg (logic.~arg A1)) (cdr as)) acc))
;; Case 2: [A2...An]@[B1...Bm] is empty
;; Recursively build B
;; Then Double Negate yields ~~B
(build.insert-neg-neg (tautology-bldr1 (cons (logic.~arg (logic.~arg A1)) (cdr as)) acc))))
;; As = [~(t1 = t2), A2, ..., An]
((equal (logic.fmtype A1) 'pnot*)
;; Case 1: t1=t2 is Bi for some i.
;; Propositional Schema: A1 v Bi
;; Multi Or Expansion: A1 ... An v B1 ... Bm
(if (memberp (logic.~arg A1) acc)
(build.multi-or-expansion (build.propositional-schema (logic.~arg A1)) (app as acc))
;; Case 2: t1=t2 is not Bi for any i.
;; Recursively build A2 ... An v A1 v B1 ... Bm
;; Disjoined Subset yields A1 ... An v B1 ... Bm
(build.disjoined-subset (app (cdr as) (cons a1 acc))
(app as acc)
(tautology-bldr1 (cdr as) (cons A1 acc)))))
;; As = [t1=t2, A2, ..., An]
(t
;; Case 1: ~(t1=t2) is Bi for some i.
;; Propositional Schema: Bi v A1
;; Multi Or Expansion: A1 ... An v B1 ... Bm
(if (memberp (logic.pnot A1) acc)
(build.multi-or-expansion (build.propositional-schema A1) (app as acc))
;; Case 2: ~(t1=t2) is not Bi for any i.
;; Recursively build A2...An v A1 v B1 ... Bm
;; Disjoined Subset yields A1...An v B1...Bm
(build.disjoined-subset (app (cdr as) (cons a1 acc))
(app as acc)
(tautology-bldr1 (cdr as) (cons A1 acc)))))
))
;; as = [], our guard is violated; we return garbage.
nil))
;; We now prove that whenever the tautologyp1 function accepts as and acc, the
;; tautology-bldr1 function will actually construct the appropriate proof.
;; This still leaves the question of whether or not tautologyp1 behaves
;; correctly, but establishes that if it does, then tautologyp-bldr will indeed
;; construct a proof of any arbitrary tautology.
(encapsulate
()
(local (defthm lemma
(implies (and (force (logic.formula-listp as))
(force (logic.formula-listp acc))
(force (tautologyp1 as acc)))
(and (logic.appealp (tautology-bldr1 as acc))
(equal (logic.conclusion (tautology-bldr1 as acc))
(logic.disjoin-formulas (app as acc)))))
:hints(("Goal" :in-theory (enable tautology-bldr1 logic.fmtype-normalizer-cheap)))))
(verify-guards tautology-bldr1
:hints(("Goal" :in-theory (enable logic.fmtype-normalizer-cheap))))
(defthm forcing-logic.appealp-of-tautology-bldr1
(implies (and (force (logic.formula-listp as))
(force (logic.formula-listp acc))
(force (tautologyp1 as acc)))
(equal (logic.appealp (tautology-bldr1 as acc))
t)))
(defthm forcing-logic.conclusion-of-tautology-bldr1
(implies (and (force (logic.formula-listp as))
(force (logic.formula-listp acc))
(force (tautologyp1 as acc)))
(equal (logic.conclusion (tautology-bldr1 as acc))
(logic.disjoin-formulas (app as acc))))
:rule-classes ((:rewrite :backchain-limit-lst 0)))
(defthm forcing-logic.proofp-of-tautology-bldr1
(implies (and (force (logic.formula-listp as))
(force (logic.formula-listp acc))
(force (tautologyp1 as acc))
;; ---
(force (logic.formula-list-atblp as atbl))
(force (logic.formula-list-atblp acc atbl)))
(equal (logic.proofp (tautology-bldr1 as acc) axioms thms atbl)
t))
:hints(("Goal" :in-theory (enable tautology-bldr1 logic.fmtype-normalizer-cheap)))))
(defund tautology-bldr (x)
(declare (xargs :guard (and (logic.formulap x)
(tautologyp x))
:guard-hints (("Goal" :in-theory (enable tautologyp)))))
(tautology-bldr1 (list x) nil))
(encapsulate
()
(defthm forcing-logic.appealp-of-tautology-bldr
(implies (and (force (tautologyp x))
(force (logic.formulap x)))
(equal (logic.appealp (tautology-bldr x))
t))
:hints(("Goal" :in-theory (enable tautologyp tautology-bldr))))
(defthm forcing-logic.conclusion-of-tautology-bldr
(implies (and (force (tautologyp x))
(force (logic.formulap x)))
(equal (logic.conclusion (tautology-bldr x))
x))
:rule-classes ((:rewrite :backchain-limit-lst 0))
:hints(("Goal" :in-theory (enable tautologyp tautology-bldr))))
(defthm forcing-logic.proofp-of-tautology-bldr
(implies (and (force (tautologyp x))
(force (logic.formulap x))
;; ---
(force (logic.formula-atblp x atbl)))
(equal (logic.proofp (tautology-bldr x) axioms thms atbl)
t))
:hints(("Goal" :in-theory (enable tautologyp tautology-bldr)))))
;; ------------------------------------------------------------------------- ;;
;; ;;
;; Part 3 ;;
;; ;;
;; Tautological Consequences ;;
;; ;;
;; ------------------------------------------------------------------------- ;;
;; We now write a function that checks if some formula B is a tautological
;; consequence of some other formulas, say A1, A2, ..., An. We also write a
;; function that will build a proof of B given proofs of each Ai.
(defund tautological-consequencep (b as)
(declare (xargs :guard (and (logic.formulap b)
(logic.formula-listp as))))
(tautologyp (logic.disjoin-formulas (cons b (logic.negate-formulas as)))))
(defthm booleanp-of-tautological-consequencep
(equal (booleanp (tautological-consequencep b as))
t)
:hints(("Goal" :in-theory (enable tautological-consequencep))))
;; BOZO move; rename
(defthm forcing-tautological-consequencep-of-nots
(implies (and (force (logic.formulap f))
(force (logic.formulap g))
(force (equal (logic.fmtype f) 'pnot*))
(force (equal (logic.fmtype g) 'pnot*)))
(equal (tautological-consequencep (logic.piff f g)
(list (logic.piff (logic.~arg f) (logic.~arg g))))
t))
:hints(("Goal" :in-theory (enable slow-truth-value-theory
tautological-consequencep))))
;; BOZO move; rename
(defthm forcing-tautological-consequencep-of-ors
(implies (and (force (logic.formulap f))
(force (logic.formulap g))
(force (equal (logic.fmtype f) 'por*))
(force (equal (logic.fmtype g) 'por*)))
(equal (tautological-consequencep (logic.piff f g)
(list (logic.piff (logic.vlhs f) (logic.vlhs g))
(logic.piff (logic.vrhs f) (logic.vrhs g))))
t))
:hints(("Goal" :in-theory (enable slow-truth-value-theory
logic.piff
tautological-consequencep))))
(defund tautological-consequence-bldr (b as)
(declare (xargs :guard (and (logic.formulap b)
(logic.appeal-listp as)
(tautological-consequencep b (logic.strip-conclusions as)))
:verify-guards nil))
(build.modus-ponens-list b as
(tautology-bldr (logic.disjoin-formulas
(fast-app (logic.negate-formulas (logic.strip-conclusions as))
(list b))))))
;; There is a slight disconnect here; our builder function appends the
;; singleton list [B] to the end of [A1 ... An], whereas our simple testing
;; function conses B onto the front instead. We to a little work here to show
;; that there is really no difference between these two lists as far as
;; tautologyp is concerned.
(defthm forcing-truth-value-of-logic.disjoin-formulas-of-superset-one
(implies (and (subsetp x y)
(truth-value (logic.disjoin-formulas x) valuation)
(force (logic.formula-listp y)))
(equal (truth-value (logic.disjoin-formulas y) valuation)
t)))
(defthm forcing-truth-value-of-logic.disjoin-formulas-of-superset-two
(implies (and (truth-value (logic.disjoin-formulas x) valuation)
(subsetp x y)
(force (logic.formula-listp y)))
(equal (truth-value (logic.disjoin-formulas y) valuation)
t)))
(defthm forcing-tautologyp-of-logic.disjoin-formulas-of-superset-one
(implies (and (tautologyp (logic.disjoin-formulas x))
(subsetp x y)
(force (consp x))
(force (logic.formula-listp y)))
(equal (tautologyp (logic.disjoin-formulas y))
t)))
(defthm forcing-tautologyp-of-logic.disjoin-formulas-of-superset-two
(implies (and (subsetp x y)
(tautologyp (logic.disjoin-formulas x))
(force (consp x))
(force (logic.formula-listp y)))
(equal (tautologyp (logic.disjoin-formulas y))
t)))
;; And finally we can state the usual properties about our tautological
;; consequence builder function.
(verify-guards tautological-consequence-bldr
:hints(("Goal" :in-theory (enable tautological-consequencep))))
(defthm forcing-logic.appealp-of-tautological-consequence-bldr
(implies (and (force (logic.formulap b))
(force (logic.appeal-listp as))
(force (tautological-consequencep b (logic.strip-conclusions as))))
(equal (logic.appealp (tautological-consequence-bldr b as))
t))
:hints(("Goal" :in-theory (enable tautological-consequence-bldr tautological-consequencep))))
(defthm forcing-logic.conclusion-of-tautological-consequence-bldr
(implies (and (force (logic.formulap b))
(force (logic.appeal-listp as))
(force (tautological-consequencep b (logic.strip-conclusions as))))
(equal (logic.conclusion (tautological-consequence-bldr b as))
b))
:rule-classes ((:rewrite :backchain-limit-lst 0))
:hints(("Goal" :in-theory (enable tautological-consequence-bldr tautological-consequencep))))
(defthm forcing-logic.proofp-of-tautological-consequence-bldr
(implies (and (force (logic.formulap b))
(force (logic.appeal-listp as))
(force (tautological-consequencep b (logic.strip-conclusions as)))
;; ---
(force (logic.formula-atblp b atbl))
(force (logic.proof-listp as axioms thms atbl)))
(equal (logic.proofp (tautological-consequence-bldr b as) axioms thms atbl)
t))
:hints(("Goal" :in-theory (enable tautological-consequence-bldr tautological-consequencep))))
|