1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "../build/prop")
(include-book "../clauses/prop")
(include-book "../rewrite/prop")
(set-verify-guards-eagerness 2)
(set-case-split-limitations nil)
(set-well-founded-relation ord<)
(set-measure-function rank)
(defund level2.step-okp (x axioms thms atbl)
(declare (xargs :guard (and (logic.appealp x)
(logic.formula-listp axioms)
(logic.formula-listp thms)
(logic.arity-tablep atbl))))
(let ((method (logic.method x)))
(cond ((equal method 'build.commute-or) (build.commute-or-okp x atbl))
((equal method 'build.right-expansion) (build.right-expansion-okp x atbl))
((equal method 'build.modus-ponens) (build.modus-ponens-okp x atbl))
((equal method 'build.modus-ponens-2) (build.modus-ponens-2-okp x atbl))
((equal method 'build.right-associativity) (build.right-associativity-okp x atbl))
((equal method 'build.disjoined-left-expansion) (build.disjoined-left-expansion-okp x atbl))
((equal method 'build.disjoined-right-expansion) (build.disjoined-right-expansion-okp x atbl))
((equal method 'build.disjoined-contraction) (build.disjoined-contraction-okp x atbl))
((equal method 'build.cancel-neg-neg) (build.cancel-neg-neg-okp x atbl))
((equal method 'build.insert-neg-neg) (build.insert-neg-neg-okp x atbl))
((equal method 'build.lhs-insert-neg-neg) (build.lhs-insert-neg-neg-okp x atbl))
((equal method 'build.merge-negatives) (build.merge-negatives-okp x atbl))
((equal method 'build.merge-implications) (build.merge-implications-okp x atbl))
((equal method 'build.disjoined-commute-or) (build.disjoined-commute-or-okp x atbl))
((equal method 'build.disjoined-right-associativity) (build.disjoined-right-associativity-okp x atbl))
((equal method 'build.disjoined-associativity) (build.disjoined-associativity-okp x atbl))
((equal method 'build.disjoined-cut) (build.disjoined-cut-okp x atbl))
((equal method 'build.disjoined-modus-ponens) (build.disjoined-modus-ponens-okp x atbl))
((equal method 'build.disjoined-modus-ponens-2) (build.disjoined-modus-ponens-2-okp x atbl))
((equal method 'build.lhs-commute-or-then-rassoc) (build.lhs-commute-or-then-rassoc-okp x atbl))
((equal method 'rw.crewrite-twiddle-bldr) (rw.crewrite-twiddle-bldr-okp x atbl))
((equal method 'rw.crewrite-twiddle2-bldr) (rw.crewrite-twiddle2-bldr-okp x atbl))
((equal method 'clause.aux-split-twiddle) (clause.aux-split-twiddle-okp x atbl))
((equal method 'clause.aux-split-twiddle2) (clause.aux-split-twiddle2-okp x atbl))
((equal method 'clause.aux-split-default-3-bldr) (clause.aux-split-default-3-bldr-okp x atbl))
((equal method 'clause.aux-limsplit-cutoff-step-bldr) (clause.aux-limsplit-cutoff-step-bldr-okp x atbl))
(t
(logic.appeal-step-okp x axioms thms atbl)))))
(encapsulate
()
(local (in-theory (enable level2.step-okp)))
(defthm soundness-of-level2.step-okp
(implies (and (logic.appealp x)
(level2.step-okp x axioms thms atbl)
(logic.provable-listp (logic.strip-conclusions (logic.subproofs x)) axioms thms atbl))
(equal (logic.provablep (logic.conclusion x) axioms thms atbl)
t)))
(defthm level2.step-okp-when-logic.appeal-step-okp
;; This shows that our new step checker is "complete" in the sense that all
;; previously acceptable appeals are still acceptable.
(implies (logic.appeal-step-okp x axioms thms atbl)
(level2.step-okp x axioms thms atbl))
:hints(("Goal" :in-theory (enable logic.appeal-step-okp))))
(defthm level2.step-okp-when-not-consp
(implies (not (consp x))
(equal (level2.step-okp x axioms thms atbl)
nil))
:hints(("Goal" :in-theory (enable logic.method)))))
(encapsulate
()
(defund level2.flag-proofp (flag x axioms thms atbl)
(declare (xargs :guard (and (if (equal flag 'proof)
(logic.appealp x)
(and (equal flag 'list)
(logic.appeal-listp x)))
(logic.formula-listp axioms)
(logic.formula-listp thms)
(logic.arity-tablep atbl))
:measure (two-nats-measure (rank x)
(if (equal flag 'proof) 1 0))))
(if (equal flag 'proof)
(and (level2.step-okp x axioms thms atbl)
(level2.flag-proofp 'list (logic.subproofs x) axioms thms atbl))
(if (consp x)
(and (level2.flag-proofp 'proof (car x) axioms thms atbl)
(level2.flag-proofp 'list (cdr x) axioms thms atbl))
t)))
(definlined level2.proofp (x axioms thms atbl)
(declare (xargs :guard (and (logic.appealp x)
(logic.formula-listp axioms)
(logic.formula-listp thms)
(logic.arity-tablep atbl))))
(level2.flag-proofp 'proof x axioms thms atbl))
(definlined level2.proof-listp (x axioms thms atbl)
(declare (xargs :guard (and (logic.appeal-listp x)
(logic.formula-listp axioms)
(logic.formula-listp thms)
(logic.arity-tablep atbl))))
(level2.flag-proofp 'list x axioms thms atbl))
(defthmd definition-of-level2.proofp
(equal (level2.proofp x axioms thms atbl)
(and (level2.step-okp x axioms thms atbl)
(level2.proof-listp (logic.subproofs x) axioms thms atbl)))
:rule-classes :definition
:hints(("Goal" :in-theory (enable level2.proofp level2.proof-listp level2.flag-proofp))))
(defthmd definition-of-level2.proof-listp
(equal (level2.proof-listp x axioms thms atbl)
(if (consp x)
(and (level2.proofp (car x) axioms thms atbl)
(level2.proof-listp (cdr x) axioms thms atbl))
t))
:rule-classes :definition
:hints(("Goal" :in-theory (enable level2.proofp level2.proof-listp level2.flag-proofp))))
(ACL2::theory-invariant (not (ACL2::active-runep '(:definition level2.proofp))))
(ACL2::theory-invariant (not (ACL2::active-runep '(:definition demo.proof-list)))))
(defthm level2.proofp-when-not-consp
(implies (not (consp x))
(equal (level2.proofp x axioms thms atbl)
nil))
:hints(("Goal" :in-theory (enable definition-of-level2.proofp))))
(defthm level2.proof-listp-when-not-consp
(implies (not (consp x))
(equal (level2.proof-listp x axioms thms atbl)
t))
:hints (("Goal" :in-theory (enable definition-of-level2.proof-listp))))
(defthm level2.proof-listp-of-cons
(equal (level2.proof-listp (cons a x) axioms thms atbl)
(and (level2.proofp a axioms thms atbl)
(level2.proof-listp x axioms thms atbl)))
:hints (("Goal" :in-theory (enable definition-of-level2.proof-listp))))
(defthms-flag
:thms ((proof booleanp-of-level2.proofp
(equal (booleanp (level2.proofp x axioms thms atbl))
t))
(t booleanp-of-level2.proof-listp
(equal (booleanp (level2.proof-listp x axioms thms atbl))
t)))
:hints(("Goal"
:in-theory (enable definition-of-level2.proofp)
:induct (logic.appeal-induction flag x))))
(deflist level2.proof-listp (x axioms thms atbl)
(level2.proofp x axioms thms atbl)
:already-definedp t)
(defthms-flag
;; We now prove that level2.proofp is sound. I.e., it only accepts appeals
;; whose conclusions are provable in the sense of logic.proofp.
:thms ((proof logic.provablep-when-level2.proofp
(implies (and (logic.appealp x)
(level2.proofp x axioms thms atbl))
(equal (logic.provablep (logic.conclusion x) axioms thms atbl)
t)))
(t logic.provable-listp-when-level2.proof-listp
(implies (and (logic.appeal-listp x)
(level2.proof-listp x axioms thms atbl))
(equal (logic.provable-listp (logic.strip-conclusions x) axioms thms atbl)
t))))
:hints(("Goal"
:induct (logic.appeal-induction flag x)
:in-theory (enable definition-of-level2.proofp))))
(defthms-flag
;; We also show that any proof accepted by logic.proofp is still accepted,
;; i.e., level2.proofp is "strictly more capable" than logic.proofp.
;;
;; WARNING: THESE THEOREMS MUST BE LEFT DISABLED!
;;
;; Suppose this rule is enabled, and we are trying to prove (level2.proofp X
;; ...) Using this rule, we backchain and try to show (logic.proofp X ...),
;; which causes our forcing rules to kick in and assert that the subproofs of
;; X are acceptable using logic.proofp.
;;
;; But this is horrible; if any of the subproofs are derived rules that only
;; level2.proofp understands, we end up stuck in forcing rounds that we cannot
;; relieve. So, we should always be reasoning about some single layer and
;; never about previous layers.
:thms ((proof level2.proofp-when-logic.proofp
(implies (logic.proofp x axioms thms atbl)
(equal (level2.proofp x axioms thms atbl)
t)))
(t level2.proof-listp-when-logic.proof-listp
(implies (logic.proof-listp x axioms thms atbl)
(equal (level2.proof-listp x axioms thms atbl)
t))))
:hints (("Goal"
:induct (logic.appeal-induction flag x)
:in-theory (enable definition-of-level2.proofp
definition-of-logic.proofp))))
(in-theory (disable level2.proofp-when-logic.proofp
level2.proof-listp-when-logic.proof-listp))
(defthm forcing-level2.proofp-of-logic.provable-witness
;; Corollary: Suppose F is any provable formula. Then, the witnessing
;; proof of F is acceptable by level2.proofp.
(implies (force (logic.provablep formula axioms thms atbl))
(equal (level2.proofp (logic.provable-witness formula axioms thms atbl) axioms thms atbl)
t))
:hints(("Goal" :in-theory (enable level2.proofp-when-logic.proofp))))
|