1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "level2")
(include-book "../build/prop-list")
(include-book "../build/disjoined-subset")
(include-book "../build/equal")
(include-book "../build/iff")
(include-book "../build/if")
(include-book "../build/not")
(include-book "../clauses/disjoined-update-clause-bldr")
(set-verify-guards-eagerness 2)
(set-case-split-limitations nil)
(set-well-founded-relation ord<)
(set-measure-function rank)
(defund level3.step-okp (x axioms thms atbl)
(declare (xargs :guard (and (logic.appealp x)
(logic.formula-listp axioms)
(logic.formula-listp thms)
(logic.arity-tablep atbl))))
(let ((method (logic.method x)))
(cond
;; Propositional rules
((equal method 'build.modus-ponens-list) (build.modus-ponens-list-okp x))
((equal method 'build.disjoined-modus-ponens-list) (build.disjoined-modus-ponens-list-okp x))
((equal method 'build.generic-subset) (build.generic-subset-okp x atbl))
((equal method 'build.multi-assoc-expansion) (build.multi-assoc-expansion-okp x atbl))
((equal method 'clause.aux-disjoined-update-clause-twiddle) (clause.aux-disjoined-update-clause-twiddle-okp x atbl))
;; Pequal rules
((equal method 'build.reflexivity) (build.reflexivity-okp x atbl))
((equal method 'build.commute-pequal) (build.commute-pequal-okp x atbl))
((equal method 'build.disjoined-commute-pequal) (build.disjoined-commute-pequal-okp x atbl))
((equal method 'build.commute-not-pequal) (build.commute-not-pequal-okp x atbl))
((equal method 'build.disjoined-commute-not-pequal) (build.disjoined-commute-not-pequal-okp x atbl))
((equal method 'build.substitute-into-not-pequal) (build.substitute-into-not-pequal-okp x atbl))
((equal method 'build.disjoined-substitute-into-not-pequal) (build.disjoined-substitute-into-not-pequal-okp x atbl))
((equal method 'build.transitivity-of-pequal) (build.transitivity-of-pequal-okp x atbl))
((equal method 'build.disjoined-transitivity-of-pequal) (build.disjoined-transitivity-of-pequal-okp x atbl))
((equal method 'build.not-nil-from-t) (build.not-nil-from-t-okp x atbl))
((equal method 'build.disjoined-not-nil-from-t) (build.disjoined-not-nil-from-t-okp x atbl))
((equal method 'build.not-t-from-nil) (build.not-t-from-nil-okp x atbl))
((equal method 'build.disjoined-not-t-from-nil) (build.disjoined-not-t-from-nil-okp x atbl))
;; Equal rules
((equal method 'build.equal-reflexivity) (build.equal-reflexivity-okp x atbl))
((equal method 'build.equal-t-from-not-nil) (build.equal-t-from-not-nil-okp x atbl))
((equal method 'build.disjoined-equal-t-from-not-nil) (build.disjoined-equal-t-from-not-nil-okp x atbl))
((equal method 'build.equal-nil-from-not-t) (build.equal-nil-from-not-t-okp x atbl))
((equal method 'build.disjoined-equal-nil-from-not-t) (build.disjoined-equal-nil-from-not-t-okp x atbl))
((equal method 'build.pequal-from-equal) (build.pequal-from-equal-okp x atbl))
((equal method 'build.disjoined-pequal-from-equal) (build.disjoined-pequal-from-equal-okp x atbl))
((equal method 'build.not-equal-from-not-pequal) (build.not-equal-from-not-pequal-okp x atbl))
((equal method 'build.disjoined-not-equal-from-not-pequal) (build.disjoined-not-equal-from-not-pequal-okp x atbl))
((equal method 'build.commute-equal) (build.commute-equal-okp x atbl))
((equal method 'build.disjoined-commute-equal) (build.disjoined-commute-equal-okp x atbl))
((equal method 'build.equal-from-pequal) (build.equal-from-pequal-okp x atbl))
((equal method 'build.disjoined-equal-from-pequal) (build.disjoined-equal-from-pequal-okp x atbl))
((equal method 'build.not-pequal-from-not-equal) (build.not-pequal-from-not-equal-okp x atbl))
((equal method 'build.disjoined-not-pequal-from-not-equal) (build.disjoined-not-pequal-from-not-equal-okp x atbl))
((equal method 'build.transitivity-of-equal) (build.transitivity-of-equal-okp x atbl))
((equal method 'build.disjoined-transitivity-of-equal) (build.disjoined-transitivity-of-equal-okp x atbl))
((equal method 'build.not-pequal-constants) (build.not-pequal-constants-okp x atbl))
;; If rules
((equal method 'build.if-when-not-nil) (build.if-when-not-nil-okp x atbl))
((equal method 'build.if-when-nil) (build.if-when-nil-okp x atbl))
;; Iff rules
((equal method 'build.iff-t-from-not-pequal-nil) (build.iff-t-from-not-pequal-nil-okp x atbl))
((equal method 'build.disjoined-iff-t-from-not-pequal-nil) (build.disjoined-iff-t-from-not-pequal-nil-okp x atbl))
((equal method 'build.not-pequal-nil-from-iff-t) (build.not-pequal-nil-from-iff-t-okp x atbl))
((equal method 'build.disjoined-not-pequal-nil-from-iff-t) (build.disjoined-not-pequal-nil-from-iff-t-okp x atbl))
((equal method 'build.iff-t-from-not-nil) (build.iff-t-from-not-nil-okp x atbl))
((equal method 'build.disjoined-iff-t-from-not-nil) (build.disjoined-iff-t-from-not-nil-okp x atbl))
((equal method 'build.iff-reflexivity) (build.iff-reflexivity-okp x atbl))
((equal method 'build.commute-iff) (build.commute-iff-okp x atbl))
((equal method 'build.disjoined-commute-iff) (build.disjoined-commute-iff-okp x atbl))
((equal method 'build.transitivity-of-iff) (build.transitivity-of-iff-okp x atbl))
((equal method 'build.disjoined-transitivity-of-iff) (build.disjoined-transitivity-of-iff-okp x atbl))
((equal method 'build.iff-from-pequal) (build.iff-from-pequal-okp x atbl))
((equal method 'build.disjoined-iff-from-pequal) (build.disjoined-iff-from-pequal-okp x atbl))
((equal method 'build.iff-from-equal) (build.iff-from-equal-okp x atbl))
((equal method 'build.disjoined-iff-from-equal) (build.disjoined-iff-from-equal-okp x atbl))
;; dead rules now, i think
;;((equal method 'build.pequal-nil-from-iff-nil) (build.pequal-nil-from-iff-nil-okp x atbl))
;;((equal method 'build.disjoined-pequal-nil-from-iff-nil) (build.disjoined-pequal-nil-from-iff-nil-okp x atbl))
;;((equal method 'build.not-equal-from-not-iff) (build.not-equal-from-not-iff-okp x atbl))
;;((equal method 'build.iff-nil-from-not-t) (build.iff-nil-from-not-t-okp x atbl))
;;((equal method 'build.disjoined-iff-nil-from-not-t) (build.disjoined-iff-nil-from-not-t-okp x atbl))
;; Not rules
((equal method 'build.disjoined-negative-lit-from-pequal-nil) (build.disjoined-negative-lit-from-pequal-nil-okp x atbl))
((equal method 'build.disjoined-pequal-nil-from-negative-lit) (build.disjoined-pequal-nil-from-negative-lit-okp x atbl))
((equal method 'build.disjoined-iff-when-not-nil) (build.disjoined-iff-when-not-nil-okp x atbl))
;; Extended propositional rules
;; Other rules
(t
(level2.step-okp x axioms thms atbl)))))
(defobligations level3.step-okp
(build.modus-ponens-list
build.disjoined-modus-ponens-list
build.generic-subset
build.multi-assoc-expansion
clause.aux-disjoined-update-clause-twiddle
build.reflexivity
build.commute-pequal
build.disjoined-commute-pequal
build.commute-not-pequal
build.disjoined-commute-not-pequal
build.substitute-into-not-pequal
build.disjoined-substitute-into-not-pequal
build.transitivity-of-pequal
build.disjoined-transitivity-of-pequal
build.not-nil-from-t
build.disjoined-not-nil-from-t
build.not-t-from-nil
build.disjoined-not-t-from-nil
build.equal-reflexivity
build.equal-t-from-not-nil
build.disjoined-equal-t-from-not-nil
build.equal-nil-from-not-t
build.disjoined-equal-nil-from-not-t
build.pequal-from-equal
build.disjoined-pequal-from-equal
build.not-equal-from-not-pequal
build.disjoined-not-equal-from-not-pequal
build.commute-equal
build.disjoined-commute-equal
build.equal-from-pequal
build.disjoined-equal-from-pequal
build.not-pequal-from-not-equal
build.disjoined-not-pequal-from-not-equal
build.transitivity-of-equal
build.disjoined-transitivity-of-equal
build.not-pequal-constants
build.if-when-not-nil
build.if-when-nil
build.iff-t-from-not-pequal-nil
build.disjoined-iff-t-from-not-pequal-nil
build.not-pequal-nil-from-iff-t
build.disjoined-not-pequal-nil-from-iff-t
build.iff-t-from-not-nil
build.disjoined-iff-t-from-not-nil
build.iff-reflexivity
build.commute-iff
build.disjoined-commute-iff
build.transitivity-of-iff
build.disjoined-transitivity-of-iff
build.iff-from-pequal
build.disjoined-iff-from-pequal
build.iff-from-equal
build.disjoined-iff-from-equal
build.disjoined-negative-lit-from-pequal-nil
build.disjoined-pequal-nil-from-negative-lit
build.disjoined-iff-when-not-nil))
(encapsulate
()
(local (in-theory (enable level3.step-okp)))
(defthm@ soundness-of-level3.step-okp
(implies (and (logic.appealp x)
(level3.step-okp x axioms thms atbl)
(logic.provable-listp (logic.strip-conclusions (logic.subproofs x)) axioms thms atbl)
(equal (cdr (lookup 'not atbl)) 1)
(equal (cdr (lookup 'equal atbl)) 2)
(equal (cdr (lookup 'iff atbl)) 2)
(equal (cdr (lookup 'if atbl)) 3)
(@obligations level3.step-okp))
(equal (logic.provablep (logic.conclusion x) axioms thms atbl)
t)))
(defthm level3.step-okp-when-level2.step-okp
;; This shows that our new step checker is "complete" in the sense that all
;; previously acceptable appeals are still acceptable.
(implies (level2.step-okp x axioms thms atbl)
(level3.step-okp x axioms thms atbl))
:hints(("Goal" :in-theory (enable level2.step-okp logic.appeal-step-okp))))
(defthm level3.step-okp-when-not-consp
(implies (not (consp x))
(equal (level3.step-okp x axioms thms atbl)
nil))
:hints(("Goal" :in-theory (enable logic.method)))))
(encapsulate
()
(defund level3.flag-proofp-aux (flag x axioms thms atbl)
(declare (xargs :guard (and (if (equal flag 'proof)
(logic.appealp x)
(and (equal flag 'list)
(logic.appeal-listp x)))
(logic.formula-listp axioms)
(logic.formula-listp thms)
(logic.arity-tablep atbl))
:measure (two-nats-measure (rank x)
(if (equal flag 'proof) 1 0))))
(if (equal flag 'proof)
(and (level3.step-okp x axioms thms atbl)
(level3.flag-proofp-aux 'list (logic.subproofs x) axioms thms atbl))
(if (consp x)
(and (level3.flag-proofp-aux 'proof (car x) axioms thms atbl)
(level3.flag-proofp-aux 'list (cdr x) axioms thms atbl))
t)))
(definlined level3.proofp-aux (x axioms thms atbl)
(declare (xargs :guard (and (logic.appealp x)
(logic.formula-listp axioms)
(logic.formula-listp thms)
(logic.arity-tablep atbl))))
(level3.flag-proofp-aux 'proof x axioms thms atbl))
(definlined level3.proof-listp-aux (x axioms thms atbl)
(declare (xargs :guard (and (logic.appeal-listp x)
(logic.formula-listp axioms)
(logic.formula-listp thms)
(logic.arity-tablep atbl))))
(level3.flag-proofp-aux 'list x axioms thms atbl))
(defthmd definition-of-level3.proofp-aux
(equal (level3.proofp-aux x axioms thms atbl)
(and (level3.step-okp x axioms thms atbl)
(level3.proof-listp-aux (logic.subproofs x) axioms thms atbl)))
:rule-classes :definition
:hints(("Goal" :in-theory (enable level3.proofp-aux level3.proof-listp-aux level3.flag-proofp-aux))))
(defthmd definition-of-level3.proof-listp-aux
(equal (level3.proof-listp-aux x axioms thms atbl)
(if (consp x)
(and (level3.proofp-aux (car x) axioms thms atbl)
(level3.proof-listp-aux (cdr x) axioms thms atbl))
t))
:rule-classes :definition
:hints(("Goal" :in-theory (enable level3.proofp-aux level3.proof-listp-aux level3.flag-proofp-aux))))
(ACL2::theory-invariant (not (ACL2::active-runep '(:definition level3.proofp-aux))))
(ACL2::theory-invariant (not (ACL2::active-runep '(:definition demo.proof-list)))))
(defthm level3.proofp-aux-when-not-consp
(implies (not (consp x))
(equal (level3.proofp-aux x axioms thms atbl)
nil))
:hints(("Goal" :in-theory (enable definition-of-level3.proofp-aux))))
(defthm level3.proof-listp-aux-when-not-consp
(implies (not (consp x))
(equal (level3.proof-listp-aux x axioms thms atbl)
t))
:hints (("Goal" :in-theory (enable definition-of-level3.proof-listp-aux))))
(defthm level3.proof-listp-aux-of-cons
(equal (level3.proof-listp-aux (cons a x) axioms thms atbl)
(and (level3.proofp-aux a axioms thms atbl)
(level3.proof-listp-aux x axioms thms atbl)))
:hints (("Goal" :in-theory (enable definition-of-level3.proof-listp-aux))))
(defthms-flag
:thms ((proof booleanp-of-level3.proofp-aux
(equal (booleanp (level3.proofp-aux x axioms thms atbl))
t))
(t booleanp-of-level3.proof-listp-aux
(equal (booleanp (level3.proof-listp-aux x axioms thms atbl))
t)))
:hints(("Goal"
:in-theory (enable definition-of-level3.proofp-aux)
:induct (logic.appeal-induction flag x))))
(deflist level3.proof-listp-aux (x axioms thms atbl)
(level3.proofp-aux x axioms thms atbl)
:already-definedp t)
(defthms-flag
;; We now prove that level3.proofp-aux is sound. I.e., it only accepts appeals
;; whose conclusions are provable in the sense of logic.proofp.
:@contextp t
:shared-hyp (and (@obligations level3.step-okp)
(equal (cdr (lookup 'not atbl)) 1)
(equal (cdr (lookup 'equal atbl)) 2)
(equal (cdr (lookup 'iff atbl)) 2)
(equal (cdr (lookup 'if atbl)) 3))
:thms ((proof logic.provablep-when-level3.proofp-aux
(implies (and (logic.appealp x)
(level3.proofp-aux x axioms thms atbl))
(equal (logic.provablep (logic.conclusion x) axioms thms atbl)
t)))
(t logic.provable-listp-when-level3.proof-listp-aux
(implies (and (logic.appeal-listp x)
(level3.proof-listp-aux x axioms thms atbl))
(equal (logic.provable-listp (logic.strip-conclusions x) axioms thms atbl)
t))))
:hints(("Goal"
:induct (logic.appeal-induction flag x)
:in-theory (enable definition-of-level3.proofp-aux))))
(defthms-flag
;; We also show that any proof accepted by logic.proofp is still accepted,
;; i.e., level3.proofp-aux is "strictly more capable" than logic.proofp.
;; THESE THEOREMS MUST BE LEFT DISABLED!
:thms ((proof level3.proofp-aux-when-logic.proofp
(implies (logic.proofp x axioms thms atbl)
(equal (level3.proofp-aux x axioms thms atbl)
t)))
(t level3.proof-listp-aux-when-logic.proof-listp
(implies (logic.proof-listp x axioms thms atbl)
(equal (level3.proof-listp-aux x axioms thms atbl)
t))))
:hints (("Goal"
:induct (logic.appeal-induction flag x)
:in-theory (enable definition-of-level3.proofp-aux
definition-of-logic.proofp))))
(in-theory (disable level3.proofp-aux-when-logic.proofp
level3.proof-listp-aux-when-logic.proof-listp))
(defthm forcing-level3.proofp-aux-of-logic.provable-witness
;; Corollary: Suppose F is any provable formula. Then, the witnessing
;; proof of F is acceptable by level3.proofp-aux.
(implies (force (logic.provablep formula axioms thms atbl))
(equal (level3.proofp-aux (logic.provable-witness formula axioms thms atbl) axioms thms atbl)
t))
:hints(("Goal" :in-theory (enable level3.proofp-aux-when-logic.proofp))))
(definlined@ level3.proofp (x axioms thms atbl)
(declare (xargs :guard (and (logic.appealp x)
(logic.formula-listp axioms)
(logic.formula-listp thms)
(logic.arity-tablep atbl))))
(and (@obligations level3.step-okp)
(equal (cdr (lookup 'not atbl)) 1)
(equal (cdr (lookup 'equal atbl)) 2)
(equal (cdr (lookup 'iff atbl)) 2)
(equal (cdr (lookup 'if atbl)) 3)
(level3.proofp-aux x axioms thms atbl)))
(defthm booleanp-of-level3.proofp
(equal (booleanp (level3.proofp x axioms thms atbl))
t)
:hints(("Goal" :in-theory (enable level3.proofp))))
(defthm logic.provablep-when-level3.proofp
(implies (and (logic.appealp x)
(level3.proofp x axioms thms atbl))
(equal (logic.provablep (logic.conclusion x) axioms thms atbl)
t))
:hints(("Goal" :in-theory (enable level3.proofp))))
;; The reflective transition to Level 3.
;;
;; This is a particularly interesting transition because the generic subset
;; builder can be used to replace a whole lot of other builders.
(defund build.generic-subset-high (as bs proof)
(declare (xargs :guard (and (logic.formula-listp bs)
(subsetp as bs)
(consp as)
(logic.appealp proof)
(equal (logic.conclusion proof) (logic.disjoin-formulas as)))))
(if (equal as bs)
;; Important optimization since clause cleaning will apply this to each clause,
;; and often clauses are unchanged.
proof
(logic.appeal 'build.generic-subset
(logic.disjoin-formulas bs)
(list proof)
(list as bs))))
(defund@ build.multi-expansion-high (x as)
(declare (xargs :guard (and (logic.appealp x)
(logic.formula-listp as)
(@match (proof x A_i))
(memberp (@formula A_i) as))))
(build.generic-subset-high (@formulas A_i) as x))
(defund@ build.multi-or-expansion-step-high (base as)
(declare (xargs :guard (and (logic.appealp base)
(logic.formula-listp as)
(@match (proof base (v P Ai)))
(memberp (@formula Ai) as))))
(build.generic-subset-high (@formulas P Ai) (cons (@formula P) as) base))
(defund@ build.multi-or-expansion-high (base as)
(declare (xargs :guard (and (logic.appealp base)
(logic.formula-listp as)
(@match (proof base (v Ai Aj)))
(memberp (@formula Ai) as)
(memberp (@formula Aj) as))))
(build.generic-subset-high (@formulas Ai Aj) as base))
(defund build.rev-disjunction-high (x proof)
(declare (xargs :guard (and (consp x)
(logic.formula-listp x)
(logic.appealp proof)
(equal (logic.conclusion proof) (logic.disjoin-formulas x)))))
(build.generic-subset-high x (fast-rev x) proof))
(defund build.ordered-subset-high (sub sup proof)
(declare (xargs :guard (and (logic.formula-listp sup)
(logic.appealp proof)
(consp sub)
(ordered-subsetp sub sup)
(equal (logic.conclusion proof) (logic.disjoin-formulas sub)))))
(build.generic-subset-high sub sup proof))
(defund build.disjoined-rev-disjunction-high (x proof)
(declare (xargs :guard (and (consp x)
(logic.formula-listp x)
(logic.appealp proof)
(equal (logic.fmtype (logic.conclusion proof)) 'por*)
(equal (logic.vrhs (logic.conclusion proof))
(logic.disjoin-formulas x)))))
(let ((P (logic.vlhs (logic.conclusion proof))))
(build.generic-subset-high (cons P x) (cons P (fast-rev x)) proof)))
|