File: direct-iff-eqtrace-bldr.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (220 lines) | stat: -rw-r--r-- 10,385 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
;   Kookamara LLC
;   11410 Windermere Meadows
;   Austin, TX 78759, USA
;   http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
;   Permission is hereby granted, free of charge, to any person obtaining a
;   copy of this software and associated documentation files (the "Software"),
;   to deal in the Software without restriction, including without limitation
;   the rights to use, copy, modify, merge, publish, distribute, sublicense,
;   and/or sell copies of the Software, and to permit persons to whom the
;   Software is furnished to do so, subject to the following conditions:
;
;   The above copyright notice and this permission notice shall be included in
;   all copies or substantial portions of the Software.
;
;   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
;   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
;   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
;   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
;   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
;   FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
;   DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>

(in-package "MILAWA")
(include-book "eqtrace-okp")
(include-book "../../clauses/basic-bldrs")
(set-verify-guards-eagerness 2)
(set-case-split-limitations nil)
(set-well-founded-relation ord<)
(set-measure-function rank)



(defderiv rw.direct-iff-eqtrace-nhyp-bldr-lemma-1
  :derive (v (!= (iff (? a) (? b)) nil) (!= (? nhyp) nil))
  :from   ((proof x (= (? nhyp) (not (iff (? a) (? b))))))
  :proof  (@derive
           ((v (!= x nil) (= (not x) t))                                         (build.theorem (theorem-not-when-nil)))
           ((v (!= (iff (? a) (? b)) nil) (= (not (iff (? a) (? b))) t))         (build.instantiation @- (@sigma (x . (iff (? a) (? b))))) *1)
           ((= (? nhyp) (not (iff (? a) (? b))))                                 (@given x))
           ((v (!= (iff (? a) (? b)) nil) (= (? nhyp) (not (iff (? a) (? b)))))  (build.expansion (@formula (!= (iff (? a) (? b)) nil)) @-))
           ((v (!= (iff (? a) (? b)) nil) (= (? nhyp) t))                        (build.disjoined-transitivity-of-pequal @- *1))
           ((v (!= (iff (? a) (? b)) nil) (!= (? nhyp) nil))                     (build.disjoined-not-nil-from-t @-))))

(defderiv rw.direct-iff-eqtrace-nhyp-bldr-lemma-2
  :derive (v (!= (? nhyp) nil) (= (iff (? a) (? b)) t))
  :from   ((proof x (= (? nhyp) (not (iff (? a) (? b))))))
  :proof  (@derive
           ((= (? nhyp) (not (iff (? a) (? b))))                                 (@given x))
           ((v (!= (iff (? a) (? b)) nil) (!= (? nhyp) nil))                     (rw.direct-iff-eqtrace-nhyp-bldr-lemma-1 @-))
           ((v (!= (? nhyp) nil) (!= (iff (? a) (? b)) nil))                     (build.commute-or @-))
           ((v (!= (? nhyp) nil) (= (iff (? a) (? b)) t))                        (build.disjoined-iff-t-from-not-nil @-))))

(defund@ rw.direct-iff-eqtrace-nhyp-bldr (nhyp x)
  ;; Given an nhyp that matches a direct-iff eqtrace, prove:
  ;;   nhyp != nil v (equal lhs rhs) = t
  (declare (xargs :guard (and (logic.termp nhyp)
                              (rw.eqtracep x)
                              (equal (rw.direct-iff-eqtrace t nhyp) x))
                  :verify-guards nil))
  ;; Let nhyp be (not* (equal a b)).
  (let* ((guts (clause.negative-term-guts nhyp))
         (args (logic.function-args guts))
         (a    (first args))
         (main-proof (@derive
                      ((= nhyp (not (iff a b)))                         (clause.standardize-negative-term-bldr nhyp))
                      ((v (!= nhyp nil) (= (iff a b) t))                (rw.direct-iff-eqtrace-nhyp-bldr-lemma-2 @-)))))
    (if (equal a (rw.eqtrace->lhs x))
        main-proof
      (build.disjoined-commute-iff main-proof))))

(defobligations rw.direct-iff-eqtrace-nhyp-bldr
  (clause.standardize-negative-term-bldr
   rw.direct-iff-eqtrace-nhyp-bldr-lemma-2
   build.disjoined-commute-iff))


(encapsulate
 ()
 (local (in-theory (enable rw.direct-iff-eqtrace
                           rw.direct-iff-eqtrace-nhyp-bldr
                           theorem-not-when-nil
                           logic.term-formula)))

 (local (in-theory (disable forcing-equal-of-logic.pequal-rewrite-two
                            forcing-equal-of-logic.pequal-rewrite
                            forcing-equal-of-logic.por-rewrite-two
                            forcing-equal-of-logic.por-rewrite
                            forcing-equal-of-logic.pnot-rewrite-two
                            forcing-equal-of-logic.pnot-rewrite)))

 (defthm rw.direct-iff-eqtrace-nhyp-bldr-under-iff
   (iff (rw.direct-iff-eqtrace-nhyp-bldr nhyp x)
        t))

 (defthm forcing-logic.appealp-of-rw.direct-iff-eqtrace-nhyp-bldr
   (implies (force (and (logic.termp nhyp)
                        (rw.eqtracep x)
                        (equal (rw.direct-iff-eqtrace t nhyp) x)))
            (equal (logic.appealp (rw.direct-iff-eqtrace-nhyp-bldr nhyp x))
                   t)))

 (defthm forcing-logic.conclusion-of-rw.direct-iff-eqtrace-nhyp-bldr
   (implies (force (and (logic.termp nhyp)
                        (rw.eqtracep x)
                        (equal (rw.direct-iff-eqtrace t nhyp) x)))
            (equal (logic.conclusion (rw.direct-iff-eqtrace-nhyp-bldr nhyp x))
                   (logic.por (logic.term-formula nhyp)
                              (logic.pequal (logic.function 'iff
                                                            (list (rw.eqtrace->lhs x)
                                                                  (rw.eqtrace->rhs x)))
                                            ''t))))
   :rule-classes ((:rewrite :backchain-limit-lst 0)))

 (defthm@ forcing-logic.proofp-of-rw.direct-iff-eqtrace-nhyp-bldr
   (implies (force (and (logic.termp nhyp)
                        (rw.eqtracep x)
                        (equal (rw.direct-iff-eqtrace t nhyp) x)
                        ;; ---
                        (logic.term-atblp nhyp atbl)
                        (equal (cdr (lookup 'not atbl)) 1)
                        (@obligations rw.direct-iff-eqtrace-nhyp-bldr)))
            (equal (logic.proofp (rw.direct-iff-eqtrace-nhyp-bldr nhyp x) axioms thms atbl)
                   t)))

 (verify-guards rw.direct-iff-eqtrace-nhyp-bldr))


(defund rw.direct-iff-eqtrace-bldr (x box)
  ;; Given a direct-iff eqtrace that is box-okp, prove
  ;;   hypbox-formula v (iff lhs rhs) = t
  (declare (xargs :guard (and (rw.eqtracep x)
                              (rw.hypboxp box)
                              (rw.direct-iff-eqtrace-okp x box))
                  :verify-guards nil))
  (let* ((left      (rw.hypbox->left box))
         (right     (rw.hypbox->right box))
         (nhyp-left (rw.find-nhyp-for-direct-iff-eqtracep left x)))
    ;; First search for a working hyp on the left.
    (if nhyp-left
        ;; 1. nhyp-left v (iff lhs rhs) = t      Direct-Iff eqtrace nhyp bldr
        ;; 2. Left v (iff lhs rhs) = t           Multi assoc expansion
        (let* ((line-1 (rw.direct-iff-eqtrace-nhyp-bldr nhyp-left x))
               (line-2 (build.multi-assoc-expansion line-1 (logic.term-list-formulas left))))
          (if right
              ;; 3. Left v (Right v (iff lhs rhs) = t)    DJ Left Expansion
              ;; 4. (Left v Right) v (iff lhs rhs) = t    Associativity
              (build.associativity (build.disjoined-left-expansion line-2 (clause.clause-formula right)))
            ;; Else we're done already
            line-2))
      ;; Else we know there must be a matching hyp on the right, since our guard
      ;; requires we are a box-okp direct-iff eqtrace.
      ;;
      ;; 1. nhyp-right v (iff lhs rhs) = t       Direct-Iff eqtrace nhyp bldr
      ;; 2. Right v (iff lhs rhs) = t            Multi assoc expansion.
      (let* ((nhyp-right (rw.find-nhyp-for-direct-iff-eqtracep right x))
             (line-1     (rw.direct-iff-eqtrace-nhyp-bldr nhyp-right x))
             (line-2     (build.multi-assoc-expansion line-1 (logic.term-list-formulas right))))
        (if left
            ;; 3. Left v (Right v (iff lhs rhs) = t)    Expansion
            ;; 4. (Left v Right) v (iff lhs rhs) = t    Associativity
            (build.associativity
             (build.expansion (clause.clause-formula left) line-2))
          ;; Else we're done already.
          line-2)))))

(defobligations rw.direct-iff-eqtrace-bldr
  (rw.direct-iff-eqtrace-nhyp-bldr
   build.multi-assoc-expansion
   build.disjoined-left-expansion))

(encapsulate
 ()
 (local (in-theory (enable rw.direct-iff-eqtrace-bldr
                           rw.direct-iff-eqtrace-okp
                           rw.hypbox-formula
                           rw.eqtrace-formula
                           )))

 (defthm rw.direct-iff-eqtrace-bldr-under-iff
   (iff (rw.direct-iff-eqtrace-bldr x box)
        t))

 (defthm forcing-logic.appealp-of-rw.direct-iff-eqtrace-bldr
   (implies (force (and (rw.eqtracep x)
                        (rw.hypboxp box)
                        (rw.direct-iff-eqtrace-okp x box)))
            (equal (logic.appealp (rw.direct-iff-eqtrace-bldr x box))
                   t)))

 (defthm forcing-logic.conclusion-of-rw.direct-iff-eqtrace-bldr
   (implies (force (and (rw.eqtracep x)
                        (rw.hypboxp box)
                        (rw.direct-iff-eqtrace-okp x box)))
            (equal (logic.conclusion (rw.direct-iff-eqtrace-bldr x box))
                   (rw.eqtrace-formula x box)))
   :rule-classes ((:rewrite :backchain-limit-lst 0)))

 (defthm@ forcing-logic.proofp-of-rw.direct-iff-eqtrace-bldr
   (implies (force (and (rw.eqtracep x)
                        (rw.hypboxp box)
                        (rw.direct-iff-eqtrace-okp x box)
                        ;; ---
                        (equal (cdr (lookup 'not atbl)) 1)
                        (rw.hypbox-atblp box atbl)
                        (@obligations rw.direct-iff-eqtrace-bldr)))
            (equal (logic.proofp (rw.direct-iff-eqtrace-bldr x box) axioms thms atbl)
                   t)))

 (verify-guards rw.direct-iff-eqtrace-bldr))