1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "eqtrace-okp")
(include-book "transitivity-eqtraces")
(include-book "../../clauses/basic-bldrs")
(set-verify-guards-eagerness 2)
(set-case-split-limitations nil)
(set-well-founded-relation ord<)
(set-measure-function rank)
(defund rw.trans1-eqtrace-bldr (x box proofs)
(declare (xargs :guard (and (rw.eqtracep x)
(rw.hypboxp box)
(rw.trans1-eqtrace-okp x)
(rw.eqtrace-okp x box)
(logic.appeal-listp proofs)
(equal (logic.strip-conclusions proofs) (rw.eqtrace-formula-list (rw.eqtrace->subtraces x) box)))
:verify-guards nil)
(ignore box))
(if (rw.eqtrace->iffp x)
(let ((proof1 (if (rw.eqtrace->iffp (first (rw.eqtrace->subtraces x)))
(first proofs)
(build.disjoined-iff-from-equal (first proofs))))
(proof2 (if (rw.eqtrace->iffp (second (rw.eqtrace->subtraces x)))
(second proofs)
(build.disjoined-iff-from-equal (second proofs)))))
(build.disjoined-transitivity-of-iff proof1 proof2))
(build.disjoined-transitivity-of-equal (first proofs) (second proofs))))
(defobligations rw.trans1-eqtrace-bldr
(build.disjoined-iff-from-equal
build.disjoined-transitivity-of-equal
build.disjoined-transitivity-of-iff))
(defthmd lemma-1-for-forcing-logic.appealp-of-rw.trans1-eqtrace-bldr
(implies (and (equal (logic.strip-conclusions proofs) (rw.eqtrace-formula-list x box))
(force (consp x)))
(equal (logic.conclusion (car proofs))
(rw.eqtrace-formula (car x) box))))
(defthmd lemma-2-for-forcing-logic.appealp-of-rw.trans1-eqtrace-bldr
(implies (and (equal (logic.strip-conclusions proofs) (rw.eqtrace-formula-list x box))
(force (consp (cdr x))))
(equal (logic.conclusion (second proofs))
(rw.eqtrace-formula (second x) box))))
(defthmd lemma-3-for-forcing-logic.appealp-of-rw.trans1-eqtrace-bldr
(implies (equal (logic.strip-conclusions proofs) (rw.eqtrace-formula-list x box))
(equal (consp proofs)
(consp x))))
(defthmd lemma-4-for-forcing-logic.appealp-of-rw.trans1-eqtrace-bldr
(implies (equal (logic.strip-conclusions proofs) (rw.eqtrace-formula-list x box))
(equal (consp (cdr proofs))
(consp (cdr x)))))
(encapsulate
()
(local (in-theory (enable rw.eqtrace-formula
rw.trans1-eqtrace-bldr
rw.trans1-eqtrace-okp
lemma-1-for-forcing-logic.appealp-of-rw.trans1-eqtrace-bldr
lemma-2-for-forcing-logic.appealp-of-rw.trans1-eqtrace-bldr
lemma-3-for-forcing-logic.appealp-of-rw.trans1-eqtrace-bldr
lemma-4-for-forcing-logic.appealp-of-rw.trans1-eqtrace-bldr)))
(defthm forcing-rw.trans1-eqtrace-bldr-under-iff
(iff (rw.trans1-eqtrace-bldr x box proofs)
t))
(defthm forcing-logic.appealp-of-rw.trans1-eqtrace-bldr
(implies (force (and (rw.eqtracep x)
(rw.hypboxp box)
(rw.trans1-eqtrace-okp x)
(rw.eqtrace-okp x box)
(logic.appeal-listp proofs)
(equal (logic.strip-conclusions proofs) (rw.eqtrace-formula-list (rw.eqtrace->subtraces x) box))))
(equal (logic.appealp (rw.trans1-eqtrace-bldr x box proofs))
t)))
(defthm forcing-logic.conclusion-of-rw.trans1-eqtrace-bldr
(implies (force (and (rw.eqtracep x)
(rw.hypboxp box)
(rw.trans1-eqtrace-okp x)
(rw.eqtrace-okp x box)
(logic.appeal-listp proofs)
(equal (logic.strip-conclusions proofs) (rw.eqtrace-formula-list (rw.eqtrace->subtraces x) box))))
(equal (logic.conclusion (rw.trans1-eqtrace-bldr x box proofs))
(rw.eqtrace-formula x box)))
:rule-classes ((:rewrite :backchain-limit-lst 0)))
(defthm@ forcing-logic.proofp-of-rw.trans1-eqtrace-bldr
(implies (force (and (rw.eqtracep x)
(rw.hypboxp box)
(rw.trans1-eqtrace-okp x)
(rw.eqtrace-okp x box)
(logic.appeal-listp proofs)
(equal (logic.strip-conclusions proofs) (rw.eqtrace-formula-list (rw.eqtrace->subtraces x) box))
;; ---
(logic.proof-listp proofs axioms thms atbl)
(equal (cdr (lookup 'iff atbl)) 2)
(@obligations rw.trans1-eqtrace-bldr)))
(equal (logic.proofp (rw.trans1-eqtrace-bldr x box proofs) axioms thms atbl)
t)))
(verify-guards rw.trans1-eqtrace-bldr))
|