1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "if-lemmas")
(set-verify-guards-eagerness 2)
(set-case-split-limitations nil)
(set-well-founded-relation ord<)
(set-measure-function rank)
(dd.open "crewrite-trace-if-lemmas.tex")
(defderiv rw.disjoined-iff-implies-equal-if-bldr
:derive (v P (= (equal (if (? a1) (? b1) (? c1)) (if (? a2) (? b2) (? c2))) t))
:from ((proof x (v P (= (iff (? a1) (? a2)) t)))
(proof y (v P (v (!= (not (? a2)) nil) (= (equal (? b1) (? b2)) t))))
(proof z (v P (v (!= (? a2) nil) (= (equal (? c1) (? c2)) t)))))
:proof (@derive
((v P (= (iff (? a1) (? a2)) t)) (@given x) *1)
((v P (v (!= (not (? a2)) nil) (= (equal (? b1) (? b2)) t))) (@given y) *2)
((v P (v (!= (? a2) nil) (= (equal (? c1) (? c2)) t))) (@given z) *3)
((v (!= (iff x1 x2) t)
(v (! (v (!= (not x2) nil) (= (equal y1 y2) t)))
(v (! (v (!= x2 nil) (= (equal z1 z2) t)))
(= (equal (if x1 y1 z1) (if x2 y2 z2)) t)))) (build.theorem (rw.theorem-iff-implies-equal-if-combined)))
((v (!= (iff (? a1) (? a2)) t)
(v (! (v (!= (not (? a2)) nil) (= (equal (? b1) (? b2)) t)))
(v (! (v (!= (? a2) nil) (= (equal (? c1) (? c2)) t)))
(= (equal (if (? a1) (? b1) (? c1)) (if (? a2) (? b2) (? c2))) t)))) (build.instantiation @- (@sigma (x1 . (? a1)) (x2 . (? a2)) (y1 . (? b1)) (y2 . (? b2)) (z1 . (? c1)) (z2 . (? c2)))))
((v P (= (equal (if (? a1) (? b1) (? c1)) (if (? a2) (? b2) (? c2))) t)) (rw.three-disjoined-modus-ponens *1 *2 *3 @-)))
:minatbl ((if . 3)))
(defderiv rw.disjoined-iff-implies-iff-if-bldr
:derive (v P (= (iff (if (? a1) (? b1) (? c1)) (if (? a2) (? b2) (? c2))) t))
:from ((proof x (v P (= (iff (? a1) (? a2)) t)))
(proof y (v P (v (!= (not (? a2)) nil) (= (iff (? b1) (? b2)) t))))
(proof z (v P (v (!= (? a2) nil) (= (iff (? c1) (? c2)) t)))))
:proof (@derive
((v P (= (iff (? a1) (? a2)) t)) (@given x) *1)
((v P (v (!= (not (? a2)) nil) (= (iff (? b1) (? b2)) t))) (@given y) *2)
((v P (v (!= (? a2) nil) (= (iff (? c1) (? c2)) t))) (@given z) *3)
((v (!= (iff x1 x2) t)
(v (! (v (!= (not x2) nil) (= (iff y1 y2) t)))
(v (! (v (!= x2 nil) (= (iff z1 z2) t)))
(= (iff (if x1 y1 z1) (if x2 y2 z2)) t)))) (build.theorem (rw.theorem-iff-implies-iff-if-combined)))
((v (!= (iff (? a1) (? a2)) t)
(v (! (v (!= (not (? a2)) nil) (= (iff (? b1) (? b2)) t)))
(v (! (v (!= (? a2) nil) (= (iff (? c1) (? c2)) t)))
(= (iff (if (? a1) (? b1) (? c1)) (if (? a2) (? b2) (? c2))) t)))) (build.instantiation @- (@sigma (x1 . (? a1)) (x2 . (? a2)) (y1 . (? b1)) (y2 . (? b2)) (z1 . (? c1)) (z2 . (? c2)))))
((v P (= (iff (if (? a1) (? b1) (? c1)) (if (? a2) (? b2) (? c2))) t)) (rw.three-disjoined-modus-ponens *1 *2 *3 @-)))
:minatbl ((if . 3)))
(dd.close)
|