File: urewrite-if-lemmas.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (124 lines) | stat: -rw-r--r-- 7,291 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
;   Kookamara LLC
;   11410 Windermere Meadows
;   Austin, TX 78759, USA
;   http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
;   Permission is hereby granted, free of charge, to any person obtaining a
;   copy of this software and associated documentation files (the "Software"),
;   to deal in the Software without restriction, including without limitation
;   the rights to use, copy, modify, merge, publish, distribute, sublicense,
;   and/or sell copies of the Software, and to permit persons to whom the
;   Software is furnished to do so, subject to the following conditions:
;
;   The above copyright notice and this permission notice shall be included in
;   all copies or substantial portions of the Software.
;
;   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
;   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
;   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
;   AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
;   LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
;   FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
;   DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>

(in-package "MILAWA")
(include-book "if-lemmas")
(set-verify-guards-eagerness 2)
(set-case-split-limitations nil)
(set-well-founded-relation ord<)
(set-measure-function rank)

(dd.open "urewrite-trace-if-lemmas.tex")


(defderiv rw.iff-implies-equal-if-bldr
  :derive (= (equal (if (? a1) (? b1) (? c1)) (if (? a2) (? b2) (? c2))) t)
  :from   ((proof x (= (iff (? a1) (? a2)) t))
           (proof y (v (!= (not (? a2)) nil) (= (equal (? b1) (? b2)) t)))
           (proof z (v (!= (? a2) nil) (= (equal (? c1) (? c2)) t))))
  :proof  (@derive
           ((= (iff (? a1) (? a2)) t)                                                       (@given x) *1)
           ((v (!= (not (? a2)) nil) (= (equal (? b1) (? b2)) t))                           (@given y) *2)
           ((v (!= (? a2) nil) (= (equal (? c1) (? c2)) t))                                 (@given z) *3)
           ((v (!= (iff x1 x2) t)
              (v (! (v (!= (not x2) nil) (= (equal y1 y2) t)))
                 (v (! (v (!= x2 nil) (= (equal z1 z2) t)))
                    (= (equal (if x1 y1 z1) (if x2 y2 z2)) t))))                            (build.theorem (rw.theorem-iff-implies-equal-if-combined)))
           ((v (!= (iff (? a1) (? a2)) t)
               (v (! (v (!= (not (? a2)) nil) (= (equal (? b1) (? b2)) t)))
                  (v (! (v (!= (? a2) nil) (= (equal (? c1) (? c2)) t)))
                     (= (equal (if (? a1) (? b1) (? c1)) (if (? a2) (? b2) (? c2))) t))))   (build.instantiation @- (@sigma (x1 . (? a1)) (x2 . (? a2)) (y1 . (? b1)) (y2 . (? b2)) (z1 . (? c1)) (z2 . (? c2)))))
           ((= (equal (if (? a1) (? b1) (? c1)) (if (? a2) (? b2) (? c2))) t)               (rw.three-modus-ponens *1 *2 *3 @-)))
  :minatbl ((if . 3)))

(defderiv rw.iff-implies-iff-if-bldr
  :derive (= (iff (if (? a1) (? b1) (? c1)) (if (? a2) (? b2) (? c2))) t)
  :from   ((proof x (= (iff (? a1) (? a2)) t))
           (proof y (v (!= (not (? a2)) nil) (= (iff (? b1) (? b2)) t)))
           (proof z (v (!= (? a2) nil) (= (iff (? c1) (? c2)) t))))
  :proof  (@derive
           ((= (iff (? a1) (? a2)) t)                                                    (@given x) *1)
           ((v (!= (not (? a2)) nil) (= (iff (? b1) (? b2)) t))                          (@given y) *2)
           ((v (!= (? a2) nil) (= (iff (? c1) (? c2)) t))                                (@given z) *3)
           ((v (!= (iff x1 x2) t)
               (v (! (v (!= (not x2) nil) (= (iff y1 y2) t)))
                  (v (! (v (!= x2 nil) (= (iff z1 z2) t)))
                     (= (iff (if x1 y1 z1) (if x2 y2 z2)) t))))                          (build.theorem (rw.theorem-iff-implies-iff-if-combined)))
           ((v (!= (iff (? a1) (? a2)) t)
               (v (! (v (!= (not (? a2)) nil) (= (iff (? b1) (? b2)) t)))
                  (v (! (v (!= (? a2) nil) (= (iff (? c1) (? c2)) t)))
                     (= (iff (if (? a1) (? b1) (? c1)) (if (? a2) (? b2) (? c2))) t))))  (build.instantiation @- (@sigma (x1 . (? a1)) (x2 . (? a2)) (y1 . (? b1)) (y2 . (? b2)) (z1 . (? c1)) (z2 . (? c2)))))
           ((= (iff (if (? a1) (? b1) (? c1)) (if (? a2) (? b2) (? c2))) t)              (rw.three-modus-ponens *1 *2 *3 @-)))
  :minatbl ((if . 3)))

(defderiv rw.equal-of-if-x-y-y-bldr
  :derive (= (equal (if (? a1) (? b) (? c)) (? d)) t)
  :from   ((proof x (= (iff (? a1) (? a2)) t))
           (proof y (v (!= (not (? a2)) nil) (= (equal (? b) (? d)) t)))
           (proof z (v (!= (? a2) nil) (= (equal (? c) (? d)) t))))
  :proof  (@derive
           ((= (iff (? a1) (? a2)) t)                                          (@given x) *1)
           ((v (!= (not (? a2)) nil) (= (equal (? b) (? d)) t))                (@given y) *2)
           ((v (!= (? a2) nil) (= (equal (? c) (? d)) t))                      (@given z) *3)
           ((v (!= (iff x1 x2) t)
                (v (! (v (!= (not x2) nil) (= (equal y w) t)))
                   (v (! (v (!= x2 nil) (= (equal z w) t)))
                      (= (equal (if x1 y z) w) t))))                           (build.theorem (rw.theorem-equal-of-if-x-y-y)))
           ((v (!= (iff (? a1) (? a2)) t)
               (v (! (v (!= (not (? a2)) nil) (= (equal (? b) (? d)) t)))
                  (v (! (v (!= (? a2) nil) (= (equal (? c) (? d)) t)))
                     (= (equal (if (? a1) (? b) (? c)) (? d)) t))))            (build.instantiation @- (@sigma (x1 . (? a1)) (x2 . (? a2)) (y . (? b)) (z . (? c)) (w . (? d)))))
           ((= (equal (if (? a1) (? b) (? c)) (? d)) t)                        (rw.three-modus-ponens *1 *2 *3 @-)))
  :minatbl ((if . 3)))

(defderiv rw.iff-of-if-x-y-y-bldr
  :derive (= (iff (if (? a1) (? b) (? c)) (? d)) t)
  :from   ((proof x (= (iff (? a1) (? a2)) t))
           (proof y (v (!= (not (? a2)) nil) (= (iff (? b) (? d)) t)))
           (proof z (v (!= (? a2) nil) (= (iff (? c) (? d)) t))))
  :proof  (@derive
           ((= (iff (? a1) (? a2)) t)                                      (@given x) *1)
           ((v (!= (not (? a2)) nil) (= (iff (? b) (? d)) t))              (@given y) *2)
           ((v (!= (? a2) nil) (= (iff (? c) (? d)) t))                    (@given z) *3)
           ((v (!= (iff x1 x2) t)
             (v (! (v (!= (not x2) nil) (= (iff y w) t)))
                (v (! (v (!= x2 nil) (= (iff z w) t)))
                   (= (iff (if x1 y z) w) t))))                            (build.theorem (rw.theorem-iff-of-if-x-y-y)))
           ((v (!= (iff (? a1) (? a2)) t)
               (v (! (v (!= (not (? a2)) nil) (= (iff (? b) (? d)) t)))
                  (v (! (v (!= (? a2) nil) (= (iff (? c) (? d)) t)))
                     (= (iff (if (? a1) (? b) (? c)) (? d)) t))))          (build.instantiation @- (@sigma (x1 . (? a1)) (x2 . (? a2)) (y . (? b)) (z . (? c)) (w . (? d)))))
           ((= (iff (if (? a1) (? b) (? c)) (? d)) t)                      (rw.three-modus-ponens *1 *2 *3 @-)))
  :minatbl ((if . 3)))


(dd.close)