1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "colors")
(include-book "skeletonp")
(set-verify-guards-eagerness 2)
(set-case-split-limitations nil)
(set-well-founded-relation ord<)
(set-measure-function rank)
;; Conditional Equal Substitution Tactic
;;
;; This tactic allows you to use a conditional equality to split a goal into
;; three goals. Given an alleged equality of the form:
;;
;; hypterm -> (equal lhs rhs)
;;
;; We split the current goal, L1 v ... v Ln, into three new subgoals:
;;
;; (1) (not hypterm) v (equal lhs rhs) "correctness of substitution"
;; (2) hypterm v L1 v ... v Ln "applicability of substitution"
;; (3) L1/[lhs<-rhs] v ... v Ln[lhs<-rhs] "post substitution goal"
;;
;; Why is this a sound thing to do?
;;
;; a. From the proof of (1), we can prove the following for each Li (by the
;; disjoined replace subterm builder):
;;
;; (not hypterm) v Li = Li/[lhs<-rhs]
;;
;; b. From the proof of (3), we can prove (using simple expansion):
;;
;; (not hypterm) v L1/[lhs<-rhs] v ... v Ln/[lhs<-rhs]
;;
;; c. From a and b, we can prove (by the disjoined update clause builder):
;;
;; (not hypterm) v L1 v ... v Ln
;;
;; d. From c and the proof of (2), we can prove (using cut and contraction):
;;
;; L1 v ... v Ln
;;
;; Which was our original goal, and hence what we needed to prove. Together
;; with generalization, this tactic allows us to implement destructor
;; elimination. For example, suppose we want to prove:
;;
;; (implies (and (consp x)
;; (foo (car x))
;; (bar (cdr x)))
;; (baz x y))
;;
;; Then we will invoke the equal substitution tactic using:
;;
;; hypterm = (consp x)
;; lhs = x
;; rhs = (cons (car x) (cdr x))
;;
;; This generates three new goals. First, to defend the correctness of our
;; substitution, we need to show:
;;
;; (1) (implies (consp x) (equal x (cons (car x) (cdr x))))
;;
;; This ought to be trivial using the axioms about conses. Next, we need to
;; show that the substitution is applicable to the current goal. This is the
;; following implication:
;;
;; (2) (implies (and (not (consp x))
;; (consp x)
;; (foo (car x))
;; (bar (cdr x)))
;; (baz x y))
;;
;; Obviously that's easy to prove since we now have contradictory hyps. But
;; if (consp x) wasn't one of our assumptions to begin with, we might have had
;; to do some work to prove it. Finally, we have the more interesting subgoal:
;;
;; (3) (implies (and (consp (cons (car x) (cdr x)))
;; (foo (car (cons (car x) (cdr x))))
;; (bar (cdr (cons (car x) (cdr x)))))
;; (baz (cons (car x) (cdr x)) y))
;;
;; At this point, (car x) and (cdr x) would need to be generalized, giving us:
;;
;; (3') (implies (and (consp (cons x1 x2))
;; (foo (car (cons x1 x2)))
;; (bar (cdr (cons x1 x2))))
;; (baz (cons x1 x2) y))
;;
;; And now simple unconditional rewriting should immediately yield:
;;
;; (3'') (implies (and (foo x1)
;; (bar x2))
;; (baz (cons x1 x2) y))
;;
;; Which is what I'd expect from car-cdr-elim.
(defund tactic.conditional-eqsubst-okp (x)
(declare (xargs :guard (tactic.skeletonp x)))
(let ((goals (tactic.skeleton->goals x))
(tacname (tactic.skeleton->tacname x))
(extras (tactic.skeleton->extras x))
(history (tactic.skeleton->history x)))
(and (equal tacname 'conditional-eqsubst)
(tuplep 3 extras)
(let ((hypterm (first extras))
(lhs (second extras))
(rhs (third extras))
(prev-goals (tactic.skeleton->goals history)))
(and (logic.termp hypterm)
(logic.termp lhs)
(logic.termp rhs)
(consp prev-goals)
(let ((new-goal1 (first goals))
(new-goal2 (second goals))
(new-goal3 (third goals))
(other-goals (cdr (cdr (cdr goals))))
(original-goal (car prev-goals)))
(and (equal new-goal1 (list (logic.function 'not (list hypterm))
(logic.function 'equal (list lhs rhs))))
(equal new-goal2 (cons hypterm original-goal))
(equal new-goal3 (logic.replace-subterm-list original-goal lhs rhs))
(equal other-goals (cdr prev-goals)))))))))
(defund tactic.conditional-eqsubst-env-okp (x atbl)
(declare (xargs :guard (and (tactic.skeletonp x)
(tactic.conditional-eqsubst-okp x)
(logic.arity-tablep atbl))
:guard-hints (("Goal" :in-theory (enable tactic.conditional-eqsubst-okp)))))
(let* ((extras (tactic.skeleton->extras x))
(hypterm (first extras))
(lhs (second extras))
(rhs (third extras)))
(and (logic.term-atblp hypterm atbl)
(logic.term-atblp lhs atbl)
(logic.term-atblp rhs atbl))))
(defthm booleanp-of-tactic.conditional-eqsubst-okp
(equal (booleanp (tactic.conditional-eqsubst-okp x))
t)
:hints(("Goal" :in-theory (e/d (tactic.conditional-eqsubst-okp)
((:executable-counterpart acl2::force))))))
(defthm booleanp-of-tactic.conditional-eqsubst-env-okp
(equal (booleanp (tactic.conditional-eqsubst-env-okp x atbl))
t)
:hints(("Goal" :in-theory (e/d (tactic.conditional-eqsubst-env-okp)
((:executable-counterpart acl2::force))))))
(defund tactic.conditional-eqsubst-tac (x hypterm lhs rhs)
;; Replace occurrences of expr with var, a new variable
(declare (xargs :guard (and (tactic.skeletonp x)
(logic.termp hypterm)
(logic.termp lhs)
(logic.termp rhs))))
(let ((goals (tactic.skeleton->goals x)))
(if (not (consp goals))
(ACL2::cw "~s0Conditional-eqsubst-tac failure~s1: all clauses have already been proven.~%" *red* *black*)
(let* ((original-goal (car goals))
(new-goal1 (list (logic.function 'not (list hypterm))
(logic.function 'equal (list lhs rhs))))
(new-goal2 (cons hypterm original-goal))
(new-goal3 (logic.replace-subterm-list original-goal lhs rhs)))
(tactic.extend-skeleton (cons new-goal1 (cons new-goal2 (cons new-goal3 (cdr goals))))
'conditional-eqsubst
(list hypterm lhs rhs)
x)))))
(defthm forcing-tactic.skeletonp-of-tactic.conditional-eqsubst-tac
(implies (and (tactic.conditional-eqsubst-tac x hypterm lhs rhs)
(force (logic.termp hypterm))
(force (logic.termp lhs))
(force (logic.termp rhs))
(force (tactic.skeletonp x)))
(equal (tactic.skeletonp (tactic.conditional-eqsubst-tac x hypterm lhs rhs))
t))
:hints(("Goal" :in-theory (enable tactic.conditional-eqsubst-tac))))
(defthm forcing-tactic.conditional-eqsubst-okp-of-tactic.conditional-eqsubst-tac
(implies (and (tactic.conditional-eqsubst-tac x hypterm lhs rhs)
(force (logic.termp hypterm))
(force (logic.termp lhs))
(force (logic.termp rhs))
(force (tactic.skeletonp x)))
(equal (tactic.conditional-eqsubst-okp (tactic.conditional-eqsubst-tac x hypterm lhs rhs))
t))
:hints(("Goal" :in-theory (enable tactic.conditional-eqsubst-tac
tactic.conditional-eqsubst-okp))))
(defthm forcing-tactic.conditional-eqsubst-env-okp-of-tactic.conditional-eqsubst-tac
(implies (and (tactic.conditional-eqsubst-tac x hypterm lhs rhs)
(force (logic.term-atblp hypterm atbl))
(force (logic.term-atblp lhs atbl))
(force (logic.term-atblp rhs atbl))
(force (tactic.skeletonp x)))
(equal (tactic.conditional-eqsubst-env-okp (tactic.conditional-eqsubst-tac x hypterm lhs rhs) atbl)
t))
:hints(("Goal" :in-theory (enable tactic.conditional-eqsubst-tac
tactic.conditional-eqsubst-env-okp))))
;; Why is this a sound thing to do?
;;
;; a. From the proof of (1), we can prove the following for each Li (by the
;; disjoined replace subterm builder):
;;
;; (not hypterm) v Li = Li/[lhs<-rhs]
;;
;; b. From the proof of (3), we can prove (using simple expansion):
;;
;; (not hypterm) v L1/[lhs<-rhs] v ... v Ln/[lhs<-rhs]
;;
;; c. From a and b, we can prove (by the disjoined update clause builder):
;;
;; (not hypterm) v L1 v ... v Ln
;;
;; d. From c and the proof of (2), we can prove (using cut and contraction):
;;
;; L1 v ... v Ln
(defderiv tactic.conditional-eqsubst-lemma1
:derive (v (= (? hyp) nil) (= (? a) (? b)))
:from ((proof x (v (!= (not (? hyp)) nil) (!= (equal (? a) (? b)) nil))))
:proof (@derive
((v (!= (not (? hyp)) nil) (!= (equal (? a) (? b)) nil)) (@given x))
((v (!= (not (? hyp)) nil) (= (equal (? a) (? b)) t)) (build.disjoined-equal-t-from-not-nil @-))
((v (!= (not (? hyp)) nil) (= (? a) (? b))) (build.disjoined-pequal-from-equal @-))
((v (= (? a) (? b)) (!= (not (? hyp)) nil)) (build.commute-or @-))
((v (= (? a) (? b)) (= (? hyp) nil)) (build.disjoined-pequal-nil-from-negative-lit @-))
((v (= (? hyp) nil) (= (? a) (? b))) (build.commute-or @-))))
(defund tactic.conditional-eqsubst-bldr (p orig-goal proof1 proof2 proof3 lhs rhs)
(declare (xargs :guard (and (logic.formulap p)
(logic.term-listp orig-goal)
(consp orig-goal)
(logic.appealp proof1)
(logic.appealp proof2)
(logic.appealp proof3)
(logic.termp lhs)
(logic.termp rhs)
(equal (logic.conclusion proof1) (logic.por p (logic.pequal lhs rhs)))
(equal (logic.conclusion proof2) (logic.por (logic.pnot p) (clause.clause-formula orig-goal)))
(equal (logic.conclusion proof3) (clause.clause-formula (logic.replace-subterm-list orig-goal lhs rhs))))))
(let* (;; P v L1 = L1/[lhs<-rhs]; ...; P v Ln = Ln/[lhs<-rhs]
(line-1 (build.disjoined-replace-subterm-list orig-goal lhs rhs proof1))
;; P v L1/[lhs<-rhs] v ... v Ln/[lhs<-rhs]
(line-2 (build.expansion P proof3))
;; P v L1 v ... v Ln
(line-3 (clause.disjoined-update-clause-bldr (logic.replace-subterm-list orig-goal lhs rhs) line-2 line-1))
;; (L1 v ... v Ln) v (L1 v ... v Ln)
(line-4 (build.cut line-3 proof2))
;; (L1 v ... v Ln)
(line-5 (build.contraction line-4)))
line-5))
(defobligations tactic.conditional-eqsubst-bldr
(build.disjoined-replace-subterm-list
build.expansion
clause.disjoined-update-clause-bldr
build.cut
build.contraction))
(encapsulate
()
(local (in-theory (enable tactic.conditional-eqsubst-bldr)))
(defthm tactic.conditional-eqsubst-bldr-under-iff
(iff (tactic.conditional-eqsubst-bldr p orig-goal proof1 proof2 proof3 lhs rhs)
t))
(defthm forcing-logic.appealp-of-tactic.conditional-eqsubst-bldr
(implies (force (and (logic.formulap p)
(logic.term-listp orig-goal)
(consp orig-goal)
(logic.appealp proof1)
(logic.appealp proof2)
(logic.appealp proof3)
(logic.termp lhs)
(logic.termp rhs)
(equal (logic.conclusion proof1) (logic.por p (logic.pequal lhs rhs)))
(equal (logic.conclusion proof2) (logic.por (logic.pnot p) (clause.clause-formula orig-goal)))
(equal (logic.conclusion proof3) (clause.clause-formula (logic.replace-subterm-list orig-goal lhs rhs)))))
(equal (logic.appealp (tactic.conditional-eqsubst-bldr p orig-goal proof1 proof2 proof3 lhs rhs))
t)))
(defthm forcing-logic.conclusion-of-tactic.conditional-eqsubst-bldr
(implies (force (and (logic.formulap p)
(logic.term-listp orig-goal)
(consp orig-goal)
(logic.appealp proof1)
(logic.appealp proof2)
(logic.appealp proof3)
(logic.termp lhs)
(logic.termp rhs)
(equal (logic.conclusion proof1) (logic.por p (logic.pequal lhs rhs)))
(equal (logic.conclusion proof2) (logic.por (logic.pnot p) (clause.clause-formula orig-goal)))
(equal (logic.conclusion proof3) (clause.clause-formula (logic.replace-subterm-list orig-goal lhs rhs)))))
(equal (logic.conclusion (tactic.conditional-eqsubst-bldr p orig-goal proof1 proof2 proof3 lhs rhs))
(clause.clause-formula orig-goal)))
:rule-classes ((:rewrite :backchain-limit-lst 0)))
(defthm@ forcing-logic.proofp-of-tactic.conditional-eqsubst-bldr
(implies (force (and (logic.formulap p)
(logic.term-listp orig-goal)
(consp orig-goal)
(logic.appealp proof1)
(logic.appealp proof2)
(logic.appealp proof3)
(logic.termp lhs)
(logic.termp rhs)
(equal (logic.conclusion proof1) (logic.por p (logic.pequal lhs rhs)))
(equal (logic.conclusion proof2) (logic.por (logic.pnot p) (clause.clause-formula orig-goal)))
(equal (logic.conclusion proof3) (clause.clause-formula (logic.replace-subterm-list orig-goal lhs rhs)))
;; ---
(logic.term-list-atblp orig-goal atbl)
(logic.proofp proof1 axioms thms atbl)
(logic.proofp proof2 axioms thms atbl)
(logic.proofp proof3 axioms thms atbl)
(@obligations tactic.conditional-eqsubst-bldr)))
(equal (logic.proofp (tactic.conditional-eqsubst-bldr p orig-goal proof1 proof2 proof3 lhs rhs) axioms thms atbl)
t))))
(defund tactic.conditional-eqsubst-compile (x proofs)
(declare (xargs :guard (and (tactic.skeletonp x)
(tactic.conditional-eqsubst-okp x)
(logic.appeal-listp proofs)
(equal (clause.clause-list-formulas (tactic.skeleton->goals x))
(logic.strip-conclusions proofs)))
:verify-guards nil))
(let* ((extras (tactic.skeleton->extras x))
(history (tactic.skeleton->history x))
(orig-goal (car (tactic.skeleton->goals history)))
(hypterm (first extras))
(lhs (second extras))
(rhs (third extras)))
(cons (tactic.conditional-eqsubst-bldr (logic.pequal hypterm ''nil)
orig-goal
(tactic.conditional-eqsubst-lemma1 (first proofs))
(second proofs)
(third proofs)
lhs rhs)
(cdr (cdr (cdr proofs))))))
(defobligations tactic.conditional-eqsubst-compile
(tactic.conditional-eqsubst-lemma1
tactic.conditional-eqsubst-bldr))
(encapsulate
()
(local (in-theory (enable tactic.conditional-eqsubst-okp
tactic.conditional-eqsubst-env-okp
tactic.conditional-eqsubst-compile
logic.term-formula)))
(local (defthm crock
(implies (equal (clause.clause-list-formulas goals) (logic.strip-conclusions proofs))
(equal (logic.conclusion (first proofs))
(clause.clause-formula (first goals))))))
(local (defthm crock2
(implies (equal (clause.clause-list-formulas goals) (logic.strip-conclusions proofs))
(equal (logic.conclusion (second proofs))
(clause.clause-formula (second goals))))))
(local (defthm crock3
(implies (equal (clause.clause-list-formulas goals) (logic.strip-conclusions proofs))
(equal (logic.conclusion (third proofs))
(clause.clause-formula (third goals))))))
(local (defthm len-1-when-not-cdr
(implies (not (cdr x))
(equal (equal (len x) 1)
(consp x)))
:rule-classes ((:rewrite :backchain-limit-lst 0))))
(verify-guards tactic.conditional-eqsubst-compile)
(defthm forcing-logic.appeal-listp-of-tactic.conditional-eqsubst-compile
(implies (force (and (tactic.skeletonp x)
(tactic.conditional-eqsubst-okp x)
(logic.appeal-listp proofs)
(equal (clause.clause-list-formulas (tactic.skeleton->goals x))
(logic.strip-conclusions proofs))))
(equal (logic.appeal-listp (tactic.conditional-eqsubst-compile x proofs))
t)))
(defthm forcing-logic.strip-conclusions-of-tactic.conditional-eqsubst-compile
(implies (force (and (tactic.skeletonp x)
(tactic.conditional-eqsubst-okp x)
(logic.appeal-listp proofs)
(equal (clause.clause-list-formulas (tactic.skeleton->goals x))
(logic.strip-conclusions proofs))))
(equal (logic.strip-conclusions (tactic.conditional-eqsubst-compile x proofs))
(clause.clause-list-formulas (tactic.skeleton->goals (tactic.skeleton->history x))))))
(defthm@ forcing-logic.proof-listp-of-tactic.conditional-eqsubst-compile
(implies (force (and (tactic.skeletonp x)
(tactic.conditional-eqsubst-okp x)
(logic.appeal-listp proofs)
(equal (clause.clause-list-formulas (tactic.skeleton->goals x))
(logic.strip-conclusions proofs))
;; ---
(tactic.skeleton-atblp x atbl)
(tactic.conditional-eqsubst-env-okp x atbl)
(logic.proof-listp proofs axioms thms atbl)
(@obligations tactic.conditional-eqsubst-compile)))
(equal (logic.proof-listp (tactic.conditional-eqsubst-compile x proofs) axioms thms atbl)
t))))
|