1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
(in-package "MILAWA")
(include-book "colors")
(include-book "skeletonp")
(set-verify-guards-eagerness 2)
(set-case-split-limitations nil)
(set-well-founded-relation ord<)
(set-measure-function rank)
;; Fertilize Tactic
;;
;; Suppose (not (equal x y)) is a member of the clause. Then, we can think of
;; the clause as:
;;
;; (implies (and (equal x y)
;; ...)
;; ...)
;;
;; The fertilize tactic allows us to replace all occurrences of x with y (or
;; vice versa) throughout the entire clause.
;;
;; Why is this a sound thing to do? Assume our input goal is L1 v ... v Ln, and
;; that we are replacing x with y. So the user needs to prove:
;;
;; L1/[x<-y] v ... v Ln[x<-y]
;;
;; We can give this proof to our disjoined replace subterm builder, along with
;; the propositional axiom x != y v x = y, to prove:
;;
;; x != y v L1 v ... v Ln
;;
;; All we need to do now is also prove x = y v L1 v ... v Ln, then use cut and
;; contraction to conclude L1 v ... v Ln.
;;
;; To prove x = y v L1 v ... v Ln, notice that we either have,
;;
;; (not (equal x y)) != nil, or
;; (not (equal y x)) != nil,
;;
;; among our literals. Either of these is interchangeable for x != y. So,
;; begin with the propositional axiom:
;;
;; x != y v x = y Propositional axiom
;; (not (equal x y)) != nil v x = y Trivial manipulation
;; (L1 v ... v Ln) v x = y Multi assoc expansion
;; x = y v (L1 v ... v Ln) Commute or
;;
;; This entire process has been pretty efficient. The replacement step can be
;; expensive, but the other steps are all very cheap.
(local (defthm logic.term-listp-when-tuplep-2-of-logic.termps
(implies (and (tuplep 2 x)
(logic.termp (first x))
(logic.termp (second x)))
(equal (logic.term-listp x)
t))
:rule-classes ((:rewrite :backchain-limit-lst 1))))
(defund tactic.fertilize-okp (x)
(declare (xargs :guard (tactic.skeletonp x)))
(let ((goals (tactic.skeleton->goals x))
(tacname (tactic.skeleton->tacname x))
(extras (tactic.skeleton->extras x))
(history (tactic.skeleton->history x)))
(and (equal tacname 'fertilize)
(tuplep 2 extras)
(let ((target (first extras))
(replacement (second extras))
(prev-goals (tactic.skeleton->goals history)))
(and (logic.termp target)
(logic.termp replacement)
(consp prev-goals)
(let* ((original-goal (car prev-goals))
(other-goals (cdr prev-goals))
(eq1 (logic.function 'equal (list target replacement)))
(eq2 (logic.function 'equal (list replacement target)))
(neq1 (logic.function 'not (list eq1)))
(neq2 (logic.function 'not (list eq2))))
(and (or (memberp neq1 original-goal)
(memberp neq2 original-goal))
(equal (car goals) (logic.replace-subterm-list original-goal target replacement))
(equal (cdr goals) other-goals))))))))
(defund tactic.fertilize-env-okp (x atbl)
(declare (xargs :guard (and (tactic.skeletonp x)
(tactic.fertilize-okp x)
(logic.arity-tablep atbl))
:guard-hints (("Goal" :in-theory (enable tactic.fertilize-okp)))))
(let* ((extras (tactic.skeleton->extras x))
(target (first extras))
(replacement (second extras)))
(and (logic.term-atblp target atbl)
(logic.term-atblp replacement atbl))))
(defthm booleanp-of-tactic.fertilize-okp
(equal (booleanp (tactic.fertilize-okp x))
t)
:hints(("Goal" :in-theory (e/d (tactic.fertilize-okp)
((:executable-counterpart acl2::force))))))
(defthm booleanp-of-tactic.fertilize-env-okp
(equal (booleanp (tactic.fertilize-env-okp x atbl))
t)
:hints(("Goal" :in-theory (e/d (tactic.fertilize-env-okp)
((:executable-counterpart acl2::force))))))
(defund tactic.fertilize-tac (x target replacement)
(declare (xargs :guard (and (tactic.skeletonp x)
(logic.termp target)
(logic.termp replacement))))
(let ((goals (tactic.skeleton->goals x)))
(if (not (consp goals))
(ACL2::cw "~s0fertilize-tac failure~s1: all clauses have already been proven.~%" *red* *black*)
(let* ((original-goal (car goals))
(other-goals (cdr goals))
(eq1 (logic.function 'equal (list target replacement)))
(eq2 (logic.function 'equal (list replacement target)))
(neq1 (logic.function 'not (list eq1)))
(neq2 (logic.function 'not (list eq2))))
(cond ((and (not (memberp neq1 original-goal))
(not (memberp neq2 original-goal)))
(ACL2::cw "~s0fertilize-tac failure~s1: the proposed equality was not found in the clause.~%" *red* *black*))
(t
(tactic.extend-skeleton (cons (logic.replace-subterm-list original-goal target replacement)
other-goals)
'fertilize
(list target replacement)
x)))))))
(defthm forcing-tactic.skeletonp-of-tactic.fertilize-tac
(implies (and (tactic.fertilize-tac x target replacement)
(force (logic.termp target))
(force (logic.termp replacement))
(force (tactic.skeletonp x)))
(equal (tactic.skeletonp (tactic.fertilize-tac x target replacement))
t))
:hints(("Goal" :in-theory (enable tactic.fertilize-tac))))
(defthm forcing-tactic.fertilize-okp-of-tactic.fertilize-tac
(implies (and (tactic.fertilize-tac x target replacement)
(force (logic.termp target))
(force (logic.termp replacement))
(force (tactic.skeletonp x)))
(equal (tactic.fertilize-okp (tactic.fertilize-tac x target replacement))
t))
:hints(("Goal" :in-theory (enable tactic.fertilize-tac
tactic.fertilize-okp))))
(defthm forcing-tactic.fertilize-env-okp-of-tactic.fertilize-tac
(implies (and (tactic.fertilize-tac x target replacement)
(force (logic.term-atblp target atbl))
(force (logic.term-atblp replacement atbl))
(force (tactic.skeletonp x)))
(equal (tactic.fertilize-env-okp (tactic.fertilize-tac x target replacement) atbl)
t))
:hints(("Goal" :in-theory (enable tactic.fertilize-tac
tactic.fertilize-env-okp))))
(deftheorem tactic.fertilize-lemma1-helper
:derive (v (!= (not (equal x y)) nil) (= x y))
:proof (@derive
((v (!= x y) (= x y)) (build.propositional-schema (@formula (= x y))))
((v (= x y) (!= x y)) (build.commute-or @-))
((v (= x y) (= (equal x y) nil)) (build.disjoined-not-equal-from-not-pequal @-))
((v (= x y) (!= (not (equal x y)) nil)) (build.disjoined-negative-lit-from-pequal-nil @-))
((v (!= (not (equal x y)) nil) (= x y)) (build.commute-or @-)))
:minatbl ((equal . 2)
(not . 1)))
(defund@ tactic.fertilize-lemma1 (original-goal lhs rhs)
(declare (xargs :guard (and (logic.term-listp original-goal)
(logic.termp lhs)
(logic.termp rhs)
(memberp (logic.function 'not (list (logic.function 'equal (list lhs rhs)))) original-goal))
:verify-guards nil))
(@derive
((v (!= (not (equal x y)) nil) (= x y)) (build.theorem (tactic.fertilize-lemma1-helper)))
((v (!= (not (equal lhs rhs)) nil) (= lhs rhs)) (build.instantiation @- (list (cons 'x lhs) (cons 'y rhs))))
((v original-goal (= lhs rhs)) (build.multi-assoc-expansion @- (logic.term-list-formulas original-goal)))))
(defobligations tactic.fertilize-lemma1
(build.multi-assoc-expansion
build.instantiation)
:extra-thms ((tactic.fertilize-lemma1-helper)))
(encapsulate
()
(local (in-theory (enable tactic.fertilize-lemma1-helper tactic.fertilize-lemma1)))
(verify-guards tactic.fertilize-lemma1)
(defthm tactic.fertilize-lemma1-under-iff
(iff (tactic.fertilize-lemma1 original-goal lhs rhs)
t))
(defthm forcing-logic.appealp-of-tactic.fertilize-lemma1
(implies (force (and (logic.term-listp original-goal)
(logic.termp lhs)
(logic.termp rhs)
(memberp (logic.function 'not (list (logic.function 'equal (list lhs rhs)))) original-goal)))
(equal (logic.appealp (tactic.fertilize-lemma1 original-goal lhs rhs))
t)))
(defthm forcing-logic.conclusion-of-tactic.fertilize-lemma1
(implies (force (and (logic.term-listp original-goal)
(logic.termp lhs)
(logic.termp rhs)
(memberp (logic.function 'not (list (logic.function 'equal (list lhs rhs)))) original-goal)))
(equal (logic.conclusion (tactic.fertilize-lemma1 original-goal lhs rhs))
(logic.por (clause.clause-formula original-goal)
(logic.pequal lhs rhs)))))
(defthm@ forcing-logic.proofp-of-tactic.fertilize-lemma1
(implies (force (and (logic.term-listp original-goal)
(logic.termp lhs)
(logic.termp rhs)
(memberp (logic.function 'not (list (logic.function 'equal (list lhs rhs)))) original-goal)
;; ---
(logic.term-list-atblp original-goal atbl)
(logic.term-atblp lhs atbl)
(logic.term-atblp rhs atbl)
(equal (cdr (lookup 'not atbl)) 1)
(equal (cdr (lookup 'equal atbl)) 2)
(@obligations tactic.fertilize-lemma1)))
(equal (logic.proofp (tactic.fertilize-lemma1 original-goal lhs rhs) axioms thms atbl)
t))))
;; Why is this a sound thing to do? Assume our input goal is L1 v ... v Ln, and
;; that we are replacing x with y. So the user needs to prove:
;;
;; L1/[x<-y] v ... v Ln[x<-y]
;;
;; We can give this proof to our disjoined replace subterm builder, along with
;; the propositional axiom x != y v x = y, to prove:
;;
;; x != y v L1 v ... v Ln
;;
;; All we need to do now is also prove x = y v L1 v ... v Ln, then use cut and
;; contraction to conclude L1 v ... v Ln.
;;
;; To prove x = y v L1 v ... v Ln, notice that we either have,
;;
;; (not (equal x y)) != nil, or
;; (not (equal y x)) != nil,
;;
;; among our literals. Either of these is interchangeable for x != y. So,
;; begin with the propositional axiom:
;;
;; x != y v x = y Propositional axiom
;; (not (equal x y)) != nil v x = y Trivial manipulation
;; (L1 v ... v Ln) v x = y Multi assoc expansion
;; x = y v (L1 v ... v Ln) Commute or
(defund tactic.fertilize-bldr (target replacement orig-goal proof)
(declare (xargs :guard (and (logic.termp target)
(logic.termp replacement)
(logic.term-listp orig-goal)
(or (memberp (logic.function 'not (list (logic.function 'equal (list target replacement)))) orig-goal)
(memberp (logic.function 'not (list (logic.function 'equal (list replacement target)))) orig-goal))
(logic.appealp proof)
(equal (logic.conclusion proof)
(clause.clause-formula (logic.replace-subterm-list orig-goal target replacement))))))
(let* (;; target != replacement v target = replacement
(line-1 (build.propositional-schema (logic.pequal target replacement)))
;; target != replacement v L1 = L1[target<-replacement]; ...; target != replacement v Ln = Ln[target<-replacement]
(line-2 (build.disjoined-replace-subterm-list orig-goal target replacement line-1))
;; target != replacement v L1[target<-replacement] v ... v Ln[target<-replacement]
(line-3 (build.expansion (logic.pnot (logic.pequal target replacement)) proof))
;; target != replacement v L1 v ... v Ln
(line-4 (clause.disjoined-update-clause-bldr (logic.replace-subterm-list orig-goal target replacement) line-3 line-2))
;; target = replacement v L1 v ... v Ln
(line-5 (if (memberp (logic.function 'not (list (logic.function 'equal (list target replacement)))) orig-goal)
(let* (;; (L1 v ... v Ln) v target = replacement
(crock-1 (tactic.fertilize-lemma1 orig-goal target replacement))
;; target = replacement v L1 v ... v Ln
(crock-2 (build.commute-or crock-1)))
crock-2)
(let* (;; (L1 v ... v Ln) v replacement = target
(crock-1 (tactic.fertilize-lemma1 orig-goal replacement target))
;; (L1 v ... v Ln) v target = replacement
(crock-2 (build.disjoined-commute-pequal crock-1))
;; target = replacement v L1 v ... v Ln
(crock-3 (build.commute-or crock-2)))
crock-3)))
;; (L1 v ... v Ln) v (L1 v ... v Ln)
(line-6 (build.cut line-5 line-4))
;; L1 v ... v Ln
(line-7 (build.contraction line-6)))
line-7))
(defobligations tactic.fertilize-bldr
(build.propositional-schema
build.disjoined-replace-subterm-list
build.expansion
clause.disjoined-update-clause-bldr
tactic.fertilize-lemma1
build.commute-or
build.disjoined-commute-pequal
build.cut
build.contraction))
(encapsulate
()
(local (in-theory (enable tactic.fertilize-bldr)))
(defthm tactic.fertilize-bldr-under-iff
(iff (tactic.fertilize-bldr target replacement orig-goal proof)
t))
(defthm forcing-logic.appealp-of-tactic.fertilize-bldr
(implies (force (and (logic.termp target)
(logic.termp replacement)
(logic.term-listp orig-goal)
(or (memberp (logic.function 'not (list (logic.function 'equal (list target replacement)))) orig-goal)
(memberp (logic.function 'not (list (logic.function 'equal (list replacement target)))) orig-goal))
(logic.appealp proof)
(equal (logic.conclusion proof)
(clause.clause-formula (logic.replace-subterm-list orig-goal target replacement)))))
(equal (logic.appealp (tactic.fertilize-bldr target replacement orig-goal proof))
t)))
(defthm forcing-logic.conclusion-of-tactic.fertilize-bldr
(implies (force (and (logic.termp target)
(logic.termp replacement)
(logic.term-listp orig-goal)
(or (memberp (logic.function 'not (list (logic.function 'equal (list target replacement)))) orig-goal)
(memberp (logic.function 'not (list (logic.function 'equal (list replacement target)))) orig-goal))
(logic.appealp proof)
(equal (logic.conclusion proof)
(clause.clause-formula (logic.replace-subterm-list orig-goal target replacement)))))
(equal (logic.conclusion (tactic.fertilize-bldr target replacement orig-goal proof))
(clause.clause-formula orig-goal)))
:rule-classes ((:rewrite :backchain-limit-lst 0)))
(defthm@ forcing-logic.proofp-of-tactic.fertilize-bldr
(implies (force (and (logic.termp target)
(logic.termp replacement)
(logic.term-listp orig-goal)
(or (memberp (logic.function 'not (list (logic.function 'equal (list target replacement)))) orig-goal)
(memberp (logic.function 'not (list (logic.function 'equal (list replacement target)))) orig-goal))
(logic.appealp proof)
(equal (logic.conclusion proof)
(clause.clause-formula (logic.replace-subterm-list orig-goal target replacement)))
;; ---
(logic.term-list-atblp orig-goal atbl)
(logic.term-atblp target atbl)
(logic.term-atblp replacement atbl)
(logic.proofp proof axioms thms atbl)
(equal (cdr (lookup 'equal atbl)) 2)
(equal (cdr (lookup 'not atbl)) 1)
(@obligations tactic.fertilize-bldr)))
(equal (logic.proofp (tactic.fertilize-bldr target replacement orig-goal proof) axioms thms atbl)
t))))
(defund tactic.fertilize-compile (x proofs)
(declare (xargs :guard (and (tactic.skeletonp x)
(tactic.fertilize-okp x)
(logic.appeal-listp proofs)
(equal (clause.clause-list-formulas (tactic.skeleton->goals x))
(logic.strip-conclusions proofs)))
:verify-guards nil))
(let* ((extras (tactic.skeleton->extras x))
(history (tactic.skeleton->history x))
(orig-goal (car (tactic.skeleton->goals history)))
(target (first extras))
(replacement (second extras)))
(cons (tactic.fertilize-bldr target
replacement
orig-goal
(first proofs))
(cdr proofs))))
(defobligations tactic.fertilize-compile
(tactic.fertilize-bldr))
(encapsulate
()
(local (in-theory (enable tactic.fertilize-okp
tactic.fertilize-env-okp
tactic.fertilize-compile
logic.term-formula)))
(local (defthm crock
(implies (equal (clause.clause-list-formulas goals) (logic.strip-conclusions proofs))
(equal (logic.conclusion (first proofs))
(clause.clause-formula (first goals))))))
(verify-guards tactic.fertilize-compile)
(defthm forcing-logic.appeal-listp-of-tactic.fertilize-compile
(implies (force (and (tactic.skeletonp x)
(tactic.fertilize-okp x)
(logic.appeal-listp proofs)
(equal (clause.clause-list-formulas (tactic.skeleton->goals x))
(logic.strip-conclusions proofs))))
(equal (logic.appeal-listp (tactic.fertilize-compile x proofs))
t)))
(defthm forcing-logic.strip-conclusions-of-tactic.fertilize-compile
(implies (force (and (tactic.skeletonp x)
(tactic.fertilize-okp x)
(logic.appeal-listp proofs)
(equal (clause.clause-list-formulas (tactic.skeleton->goals x))
(logic.strip-conclusions proofs))))
(equal (logic.strip-conclusions (tactic.fertilize-compile x proofs))
(clause.clause-list-formulas (tactic.skeleton->goals (tactic.skeleton->history x))))))
(defthm@ forcing-logic.proof-listp-of-tactic.fertilize-compile
(implies (force (and (tactic.skeletonp x)
(tactic.fertilize-okp x)
(logic.appeal-listp proofs)
(equal (clause.clause-list-formulas (tactic.skeleton->goals x))
(logic.strip-conclusions proofs))
;; ---
(tactic.skeleton-atblp x atbl)
(tactic.fertilize-env-okp x atbl)
(logic.proof-listp proofs axioms thms atbl)
(equal (cdr (lookup 'equal atbl)) 2)
(equal (cdr (lookup 'not atbl)) 1)
(@obligations tactic.fertilize-compile)))
(equal (logic.proof-listp (tactic.fertilize-compile x proofs) axioms thms atbl)
t))))
|