1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
|
; Milawa - A Reflective Theorem Prover
; Copyright (C) 2005-2009 Kookamara LLC
;
; Contact:
;
; Kookamara LLC
; 11410 Windermere Meadows
; Austin, TX 78759, USA
; http://www.kookamara.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@kookamara.com>
;; Milawa implementation of UBDDs
;;
;; This file is derived from the ACL2 UBDD library that was originally
;; developed by Warren Hunt and Bob Boyer, and later extended by Jared Davis
;; and Sol Swords. See books/centaur/ubdds/ in an ACL2 distribution.
(in-package "MILAWA")
(include-book "../utilities/deflist")
(set-verify-guards-eagerness 2)
(set-case-split-limitations nil)
(set-well-founded-relation ord<)
(set-measure-function rank)
(definline hons (x y)
;; BOZO move to primitives
(mbe :logic (cons x y)
:exec (acl2::hons x y)))
(definline hons-equal (x y)
;; BOZO move to primitives
(mbe :logic (equal x y)
:exec (acl2::hons-equal x y)))
(definline atom (x)
;; BOZO move to primitives?
(not (consp x)))
(defsection ubddp
;; This is similar to the :exec version of acl2::ubddp, but we take advantage
;; of CAR/CDR's safer Milawa definitions
(defund ubddp (x)
(declare (xargs :guard t))
(cond ((equal x t) t)
((equal x nil) t)
(t (let ((a (car x))
(d (cdr x)))
(cond ((equal a t)
(cond ((equal d nil) t)
((equal d t) nil)
(t (ubddp d))))
((equal a nil)
(cond ((equal d nil) nil)
((equal d t) t)
(t (ubddp d))))
(t (and (ubddp a) (ubddp d))))))))
(defthm ubddp-when-not-consp
(implies (not (consp x))
(equal (ubddp x)
(or (equal x t)
(equal x nil))))
:hints(("Goal" :expand (ubddp x))))
(defthm booleanp-of-ubddp
(booleanp (ubddp x))
:hints(("Goal"
:in-theory (enable (:induction ubddp))
:expand (ubddp x))))
(defthm ubddp-of-cons
(equal (ubddp (cons a b))
(and (ubddp a)
(ubddp b)
(or (consp a)
(not (equal a b)))))
:hints(("Goal" :expand ((ubddp (cons a b)))))))
(deflist ubdd-listp (x)
(ubddp x)
:guard t)
(defsection ubdd.eval
;; This follows ACL2::eval-bdd, but is slightly simpler because we don't need
;; a special case for (atom values) with Milawa's safer car/cdr behavior.
(defund ubdd.eval (x values)
(declare (xargs :guard t))
(if (consp x)
(ubdd.eval (if (car values) (car x) (cdr x))
(cdr values))
(if x t nil)))
(defthm ubdd.eval-when-not-consp
(implies (not (consp x))
(equal (ubdd.eval x values)
(if x t nil)))
:hints(("Goal" :expand (ubdd.eval x values))))
(defthm ubdd.eval-of-nil
(equal (ubdd.eval nil values)
nil)
:hints(("Goal" :expand (ubdd.eval nil values))))
(defthm ubdd.eval-of-t
(equal (ubdd.eval t values)
t)
:hints(("Goal" :expand (ubdd.eval nil values))))
(defthm ubdd.eval-when-non-consp-values
(implies (and (syntaxp (not (equal values ''nil)))
(not (consp values)))
(equal (ubdd.eval x values)
(ubdd.eval x nil)))
:hints(("Goal" :expand ((ubdd.eval x values)
(ubdd.eval x nil)))))
(defthm booleanp-of-ubdd.eval
(booleanp (ubdd.eval x values))
:hints(("Goal"
:expand ((ubdd.eval x values))
:in-theory (enable (:induction ubdd.eval))
:induct (ubdd.eval x values)))))
(defprojection
:list (ubdd.eval-list x values)
:element (ubdd.eval x values)
:nil-preservingp t)
(defsection ubdd.max-depth
(defund ubdd.max-depth (x)
(declare (xargs :guard t))
(if (consp x)
(+ 1 (max (ubdd.max-depth (car x))
(ubdd.max-depth (cdr x))))
0))
(defthm ubdd.max-depth-when-not-consp
(implies (not (consp x))
(equal (ubdd.max-depth x)
0))
:hints(("Goal" :expand (ubdd.max-depth x))))
(defthm ubdd.max-depth-of-cons
(equal (ubdd.max-depth (cons a b))
(+ 1 (max (ubdd.max-depth a)
(ubdd.max-depth b))))
:hints(("Goal" :expand (ubdd.max-depth (cons a b))))))
(definline ubdd.truebranch (x)
;; Like acl2::qcar, the true branch of a ubdd. We generally leave this
;; enabled!
(declare (xargs :guard t))
(if (consp x) (car x) x))
(definline ubdd.falsebranch (x)
;; Like acl2::ubdd.falsebranch, the false branch of a ubdd. We generally
;; leave this enabled!
(declare (xargs :guard t))
(if (consp x) (cdr x) x))
(defsection ubdd.badguy
(defund ubdd.badguy-aux (x y)
;; Returns (CONS SUCCESSP VALUES)
(declare (xargs :measure (+ (rank x) (rank y))
:hints(("Goal"
:in-theory (enable ubdd.truebranch
ubdd.falsebranch)))))
(if (or (consp x) (consp y))
;; At least one of them is a cons. We descend both trees and try to
;; discover a path that will break their equality.
(let* ((try1 (ubdd.badguy-aux (ubdd.truebranch x) (ubdd.truebranch y)))
(try1-successp (car try1))
(try1-values (cdr try1)))
(if try1-successp
(cons t (cons t try1-values))
(let* ((try2 (ubdd.badguy-aux (ubdd.falsebranch x) (ubdd.falsebranch y)))
(try2-successp (car try2))
(try2-values (cdr try2)))
(if try2-successp
(cons t (cons nil try2-values))
(cons nil nil)))))
;; Otherwise, both are atoms. If they are equal, then we have failed to
;; find a conflicting path. But if they are not equal, then this path
;; violates their success.
(cons (not (equal x y)) nil)))
(defthm ubdd.badguy-aux-when-not-consps
(implies (and (not (consp x))
(not (consp y)))
(equal (ubdd.badguy-aux x y)
(cons (not (equal x y)) nil)))
:hints(("Goal" :expand (ubdd.badguy-aux x y))))
(defthmd ubdd.badguy-aux-lemma1
(implies (and (car (ubdd.badguy-aux x y))
(ubddp x)
(ubddp y))
(equal (equal (ubdd.eval x (cdr (ubdd.badguy-aux x y)))
(ubdd.eval y (cdr (ubdd.badguy-aux x y))))
nil))
:hints(("Goal"
:in-theory (enable (:induction ubdd.badguy-aux))
:induct (ubdd.badguy-aux x y)
:expand ((ubdd.badguy-aux x y)
(ubdd.badguy-aux x t)
(ubdd.badguy-aux x nil)
(ubdd.badguy-aux t y)
(ubdd.badguy-aux nil y)
(:free (bdd val1 vals)
(ubdd.eval bdd (cons val1 vals)))))))
(defthmd ubdd.badguy-aux-lemma2
(implies (and (ubddp x)
(ubddp y))
(equal (car (ubdd.badguy-aux x y))
(not (equal x y))))
:hints(("Goal"
:in-theory (enable (:induction ubdd.badguy-aux))
:induct (ubdd.badguy-aux x y)
:expand ((ubdd.badguy-aux x y)
(ubdd.badguy-aux x t)
(ubdd.badguy-aux x nil)
(ubdd.badguy-aux t y)
(ubdd.badguy-aux nil y)))))
(defthm ubdd.badguy-aux-lemma3
(<= (len (cdr (ubdd.badguy-aux x y)))
(max (ubdd.max-depth x) (ubdd.max-depth y)))
:hints(("Goal"
:in-theory (enable (:induction ubdd.badguy-aux))
:induct (ubdd.badguy-aux x y)
:expand ((ubdd.badguy-aux x y)
;; not necessary, but these speed up the proof
(ubdd.max-depth x)
(ubdd.max-depth y)))))
(defund ubdd.badguy-extend (lst n)
(declare (xargs :guard (natp n)
:measure (nfix n)))
(cond ((zp n)
lst)
((consp lst)
(cons (car lst) (ubdd.badguy-extend (cdr lst) (- n 1))))
(t
(cons nil (ubdd.badguy-extend lst (- n 1))))))
(defthm ubdd.badguy-extend-when-zp
(implies (zp n)
(equal (ubdd.badguy-extend lst n)
lst))
:hints(("Goal" :expand (ubdd.badguy-extend lst n))))
(defthm ubdd.badguy-extend-of-cons
(equal (ubdd.badguy-extend (cons a b) n)
(cons a (ubdd.badguy-extend b (- n 1))))
:hints(("Goal" :expand (ubdd.badguy-extend (cons a b) n))))
(defthm len-of-ubdd.badguy-extend
(equal (len (ubdd.badguy-extend lst n))
(max (len lst) n))
:hints(("Goal"
:in-theory (enable (:induction ubdd.badguy-extend))
:expand ((ubdd.badguy-extend lst n)
(ubdd.badguy-extend lst 1)))))
(local (defun eval-extend-induct (x lst n)
(declare (xargs :measure (nfix n)))
(if (zp n)
(cons lst x)
(if (atom lst)
(list (eval-extend-induct (car x) lst (- n 1))
(eval-extend-induct (cdr x) lst (- n 1)))
(list (eval-extend-induct (car x) (cdr lst) (- n 1))
(eval-extend-induct (cdr x) (cdr lst) (- n 1)))))))
(defthm ubdd.eval-of-ubdd.badguy-extend
(equal (ubdd.eval x (ubdd.badguy-extend lst n))
(ubdd.eval x lst))
:hints (("goal"
:induct (eval-extend-induct x lst n)
:expand ((ubdd.badguy-extend lst n)
(ubdd.eval x lst)
(ubdd.eval x nil)
(:free (x val1 vals)
(ubdd.eval x (cons val1 vals)))))))
(defund ubdd.badguy (x y)
;; like badguy-aux except that we always know the values returned
;; have the max depth allowed
(declare (xargs :guard t))
(let* ((aux (ubdd.badguy-aux x y))
(different-p (car aux))
(values (ubdd.badguy-extend (cdr aux)
(max (ubdd.max-depth x)
(ubdd.max-depth y)))))
(cons different-p values)))
(defthm len-of-ubdd.badguy
(equal (len (cdr (ubdd.badguy x y)))
(max (ubdd.max-depth x)
(ubdd.max-depth y)))
:hints(("Goal" :in-theory (e/d (ubdd.badguy)
(ubdd.badguy-aux-lemma3))
:use ((:instance ubdd.badguy-aux-lemma3)))))
(defthmd ubdd.badguy-differentiates
(implies (and (car (ubdd.badguy x y))
(ubddp x)
(ubddp y))
(not (equal (ubdd.eval x (cdr (ubdd.badguy x y)))
(ubdd.eval y (cdr (ubdd.badguy x y))))))
:hints(("Goal" :in-theory (enable ubdd.badguy
ubdd.badguy-aux-lemma1))))
(defthm car-of-ubdd.badguy
(implies (and (ubddp x)
(ubddp y))
(equal (car (ubdd.badguy x y))
(not (equal x y))))
:hints(("Goal" :in-theory (enable ubdd.badguy
ubdd.badguy-aux-lemma2)))))
;; [Jared]: It'd probably make sense to automate ubdd.badguy-differentiates
;; like we do in the ACL2 UBDD library, and if we get into heavy proofs about
;; UBDD operations (e.g., bddify) then we might well want to do this. But for
;; now I'm going to just do things more manually.
(defsection ubdd.not
(defund ubdd.not (x)
(declare (xargs :guard t))
(if (consp x)
(hons (ubdd.not (car x))
(ubdd.not (cdr x)))
(if x nil t)))
(defthm consp-of-ubdd.not
(equal (consp (ubdd.not x))
(consp x))
:hints(("Goal"
:in-theory (enable (:induction ubdd.not))
:expand (ubdd.not x))))
(defthmd lemma1-for-ubddp-of-ubdd.not
(implies (and (not (equal a t))
(ubddp a))
(iff (ubdd.not a)
t))
:hints(("Goal" :expand ((ubddp a)
(ubdd.not a)))))
(defthmd lemma2-for-ubddp-of-ubdd.not
(implies (and a
(ubddp a))
(equal (equal t (ubdd.not a))
nil))
:hints(("Goal" :expand ((ubddp a)
(ubdd.not a)))))
(defthm ubddp-of-ubdd.not
(implies (force (ubddp x))
(equal (ubddp (ubdd.not x))
t))
:hints(("Goal"
:in-theory (enable (:induction ubdd.not)
lemma1-for-ubddp-of-ubdd.not
lemma2-for-ubddp-of-ubdd.not)
:expand ((ubdd.not x)))))
(defthm ubdd.eval-of-ubdd.not
(equal (ubdd.eval (ubdd.not x) values)
(not (ubdd.eval x values)))
:hints(("Goal"
:in-theory (enable (:induction ubdd.eval))
:expand ((ubdd.not x)
(ubdd.eval x values)
(:free (a b) (ubdd.eval (cons a b) values)))))))
(definline ubdd.cons (truebranch falsebranch)
;; Like acl2::qcons, builds a ubdd from the true/false branches. We generally
;; leave this enabled!
(declare (xargs :guard t))
(if (if (equal truebranch t)
(equal falsebranch t)
(and (equal truebranch nil)
(equal falsebranch nil)))
truebranch
(hons truebranch falsebranch)))
(defsection ubdd.ite
;; This is still more complex than absolutely necessary, e.g., it lets us
;; take advantage of UBDD.NOT where possible. But it doesn't do quite so
;; much as the ACL2 Q-ITE macro to optimize the order of evaluation, etc.
(local (in-theory (disable ubdd.eval-when-non-consp-values
same-length-prefixes-equal-cheap
not-equal-when-less
not-equal-when-less-two
car-when-memberp-of-singleton-list-cheap
consp-when-true-listp-cheap
car-when-memberp-and-not-memberp-of-cdr-cheap
consp-when-nonempty-subset-cheap
consp-when-memberp-cheap
cdr-when-true-listp-with-len-free-past-the-end
consp-of-cdr-when-memberp-not-car-cheap
consp-of-cdr-when-len-two-cheap
natp-of-len-free
consp-of-cdr-when-tuplep-2-cheap
consp-of-cdr-when-tuplep-3-cheap
consp-of-cdr-with-len-free
consp-when-natp-cheap
cdr-under-iff-with-len-free-in-bound
cdr-under-iff-when-true-listp-with-len-free)))
(defund ubdd.ite (x y z)
(declare (xargs :guard t))
(if (consp x)
(let ((y (if (hons-equal x y) t y)) ;; (IF X X Z) = (IF X T Z)
(z (if (hons-equal x z) nil z))) ;; (IF X Y X) = (IF X Y NIL)
(cond
((hons-equal y z) y) ;; (IF X Y Y) = Y
((and (equal y t) (equal z nil)) x) ;; (IF X T NIL) = X
((and (equal y nil) (equal z t)) (ubdd.not x)) ;; (IF X NIL T) = (NOT X)
(t
(ubdd.cons (ubdd.ite (car x)
(ubdd.truebranch y)
(ubdd.truebranch z))
(ubdd.ite (cdr x)
(ubdd.falsebranch y)
(ubdd.falsebranch z))))))
(if (equal x nil)
z
y)))
(defthm ubdd.ite-of-t
(equal (ubdd.ite t x y)
x)
:hints(("Goal" :expand (ubdd.ite t x y))))
(defthm ubdd.ite-of-nil
(equal (ubdd.ite nil x y)
y)
:hints(("Goal" :expand (ubdd.ite nil x y))))
(local (defun ubdd.ite-induct (x y z)
(cond ((not x) (list x y z))
((atom x) nil)
(t (let ((y (if (equal x y) t y))
(z (if (equal x z) nil z)))
(list (ubdd.ite-induct (car x)
(ubdd.truebranch y)
(ubdd.truebranch z))
(ubdd.ite-induct (cdr x)
(ubdd.falsebranch y)
(ubdd.falsebranch z))))))))
(defthm ubddp-of-ubdd.ite
(implies (and (force (ubddp x))
(force (ubddp y))
(force (ubddp z)))
(equal (ubddp (ubdd.ite x y z))
t))
:hints(("Goal"
:in-theory (disable car-cdr-elim)
:induct (ubdd.ite-induct x y z)
:expand ((:free (y z) (ubdd.ite x y z))
(ubddp x)
(ubddp y)
(ubddp z)))))
(local (defun ubdd.ite-induct-vals (x y z vals)
(cond ((not x) (list x y z vals))
((atom x) nil)
(t (let ((y (if (equal x y) t y))
(z (if (equal x z) nil z)))
(cond ((car vals)
(ubdd.ite-induct-vals (car x)
(ubdd.truebranch y)
(ubdd.truebranch z)
(cdr vals)))
(t
(ubdd.ite-induct-vals (cdr x)
(ubdd.falsebranch y)
(ubdd.falsebranch z)
(cdr vals)))))))))
(defthm ubdd.eval-of-ubdd.ite
(equal (ubdd.eval (ubdd.ite x y z) values)
(if (ubdd.eval x values)
(ubdd.eval y values)
(ubdd.eval z values)))
:hints(("Goal"
:in-theory (disable car-cdr-elim)
:do-not '(generalize fertilize eliminate-destructors)
:induct (ubdd.ite-induct-vals x y z values)
:expand ((:free (y z) (ubdd.ite x y z))
(:free (a b) (ubdd.eval (cons a b) values))
(ubdd.eval x values)
(ubdd.eval y values)
(ubdd.eval z values))))))
(defthm canonicalize-ubdd.not
(implies (force (ubddp x))
(equal (ubdd.not x)
(ubdd.ite x nil t)))
:hints(("Goal"
:use ((:instance ubdd.badguy-differentiates
(x (ubdd.not x))
(y (ubdd.ite x nil t)))))))
;; Once we get everything into a ubdd.ite form, we'll often want to apply
;; some of the simple reductions you would expect. The order of these
;; rules is important --- to avoid loops, you want the T and NIL cases
;; to come last.
;; !!! I think we should maybe be able to get some more of these
;; hypothesis free if we change ubdd.ite around a bit so that it
;; coerces atoms into booleans. Would performance be okay?
(defthm |(ubdd.ite x (ubdd.ite y nil t) z)|
(implies (and (syntaxp (not (equal z ''t))) ;; Prevents loops (see next rule)
(force (ubddp x))
(force (ubddp y))
(force (ubddp z)))
(equal (ubdd.ite x (ubdd.ite y nil t) z)
(ubdd.ite y
(ubdd.ite x nil z)
(ubdd.ite x t z))))
:hints(("Goal"
:use ((:instance ubdd.badguy-differentiates
(x (ubdd.ite x (ubdd.ite y nil t) z))
(y (ubdd.ite y
(ubdd.ite x nil z)
(ubdd.ite x t z))))))))
(defthm |(ubdd.ite x (ubdd.ite y nil t) t)|
;; ACL2's loop-stopper works.
(implies (and (force (ubddp x))
(force (ubddp y))
(force (ubddp z)))
(equal (ubdd.ite x (ubdd.ite y nil t) t)
(ubdd.ite y (ubdd.ite x nil t) t)))
:hints(("Goal"
:use ((:instance ubdd.badguy-differentiates
(x (ubdd.ite x (ubdd.ite y nil t) t))
(y (ubdd.ite y (ubdd.ite x nil t) t)))))))
(defthm |(ubdd.ite (ubdd.ite a b c) x y)|
(implies (and (force (ubddp a))
(force (ubddp b))
(force (ubddp c))
(force (ubddp x))
(force (ubddp y)))
(equal (ubdd.ite (ubdd.ite a b c) x y)
(ubdd.ite a
(ubdd.ite b x y)
(ubdd.ite c x y))))
:hints(("Goal"
:use ((:instance ubdd.badguy-differentiates
(x (ubdd.ite (ubdd.ite a b c) x y))
(y (ubdd.ite a
(ubdd.ite b x y)
(ubdd.ite c x y))))))))
(defthm |(ubdd.ite x y y)|
(equal (ubdd.ite x y y)
y)
:hints(("Goal" :expand (ubdd.ite x y y))))
(defthm |(ubdd.ite x x y)|
(implies (and (force (ubddp x))
(force (ubddp y)))
(equal (ubdd.ite x x y)
(ubdd.ite x t y)))
:hints(("Goal"
:use ((:instance ubdd.badguy-differentiates
(x (ubdd.ite x x y))
(y (ubdd.ite x t y)))))))
(defthm |(ubdd.ite x y x)|
(equal (ubdd.ite x y x)
(ubdd.ite x y nil))
:hints(("Goal" :expand ((ubdd.ite x y x)
(ubdd.ite x y nil)))))
(defthm |(ubdd.ite x t nil)|
(implies (force (ubddp x))
(equal (ubdd.ite x t nil)
x))
:hints(("Goal" :expand (ubdd.ite x t nil))))
(defthm |(ubdd.ite non-nil y z)|
(implies (and (atom x) x)
(equal (ubdd.ite x y z)
y))
:hints(("Goal" :expand (ubdd.ite x y z))))
|