File: gauss.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (188 lines) | stat: -rw-r--r-- 5,061 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
;; David M. Russinoff
;; david@russinoff.com
;; http://www.russinoff.com

(in-package "RTL")

(local (include-book "support/gauss"))

;; Also defined in the RTL library.
(defund fl (x)
  (declare (xargs :guard (real/rationalp x)))
  (floor x 1))

(set-enforce-redundancy t)
(set-inhibit-warnings "theory") ; avoid warning in the next event
(local (in-theory nil))

;; This book contains a proof of Gauss's Lemma:  Let p be prime and assume that
;; m is not divisible by p.  Let mu be the number of elements of the set
;;    {mod(m,p), mod(2*m,p), ..., mod(((p-1)/2)*m}
;; that exceed (p-1)/2.  Then m is a quadratic residue mod p iff mu is even.

;; As a corollary, we also prove the Second Supplement to the Law of Quadratic
;; Reciprocity: 2 is a quadratic residue mod p iff mod(p,8) is either 1 or 7.

;; The proof depends on euler's criterion::

(include-book "euler")

(defun mu (n m p)
  (if (zp n)
      0
    (if (> (mod (* m n) p) (/ (1- p) 2))
	(1+ (mu (1- n) m p))
      (mu (1- n) m p))))

(defun reflections (n m p)
  (if (zp n)
      ()
    (if (> (mod (* m n) p) (/ (1- p) 2))
        (cons (- p (mod (* m n) p))
              (reflections (1- n) m p))
      (cons (mod (* m n) p)
	    (reflections (1- n) m p)))))

;; We shall show that reflections((p-1)/2,m,p) is a list of length (p-1)/2 of distinct
;; integers between 1 and (p-1)/2, and therefore a permutation of (1, 2, ..., (p-1)/2),
;; which implies that the product of its elements is ((p-1)/2)!.

(defthm len-reflections
    (implies (natp n)
	     (equal (len (reflections n m p)) n)))

(defthm mod-distinct-reflect
    (implies (and (primep p)
		  (not (zp i))
		  (< i (/ p 2))
		  (not (zp j))
		  (< j (/ p 2))
		  (not (= j i))
		  (integerp m)
		  (not (divides p m)))
	     (not (equal (+ (mod (* m i) p) (mod (* m j) p)) p))))

(defthm reflections-distinct-positives
    (implies (and (primep p)
		  (not (= p 2))
		  (integerp m)
		  (not (divides p m))
		  (integerp n)
		  (< n (/ p 2)))
	     (distinct-positives (reflections n m p) (/ (1- p) 2)))
  :rule-classes ())

;; This result allows us to compute the product of the elements of
;; reflections((p-1)/2,m,p):

(defthm perm-reflections
    (implies (and (primep p)
		  (not (= p 2))
		  (integerp m)
		  (not (divides p m)))
	     (perm (positives (/ (1- p) 2))
		   (reflections (/ (1- p) 2) m p)))
  :rule-classes ())

(defthm times-list-reflections
    (implies (and (primep p)
		  (not (= p 2))
		  (integerp m)
		  (not (divides p m)))
           (equal (times-list (reflections (+ -1/2 (* 1/2 p)) m p))
                  (fact (/ (1- p) 2)))))

;;  We have an alternative method for computing the same product:

(defthm times-list-reflection-mod-prods
    (implies (and (not (zp p))
		  (integerp m)
		  (integerp n))
	     (equal (mod (times-list (reflections n m p)) p)
		    (if (evenp (mu n m p))
			(mod (times-list (mod-prods n m p)) p)
		      (mod (- (times-list (mod-prods n m p))) p))))
  :rule-classes ())

;; Gauss's Lemma follows from the equation of the two expressions
;; for the product.  We consider two cases according to the parity
;; of mu:

(defthm euler-mu-even
    (implies (and (primep p)
		  (not (= p 2))
		  (integerp m)
		  (not (divides p m))
		  (evenp (mu (/ (1- p) 2) m p)))
	     (= (mod (expt m (/ (1- p) 2)) p) 1))
  :rule-classes ())

(defthm euler-mu-odd
    (implies (and (primep p)
		  (not (= p 2))
		  (integerp m)
		  (not (divides p m))
		  (oddp (mu (/ (1- p) 2) m p)))
	     (= (mod (expt m (/ (1- p) 2)) p) (- p 1)))
  :rule-classes ())

(defthm gauss-lemma
    (implies (and (primep p)
		  (not (= p 2))
		  (integerp m)
		  (not (divides p m)))
	     (iff (evenp (mu (/ (1- p) 2) m p))
		  (residue m p)))
  :rule-classes ())

;; For the proof of the Second Supplement, we show first that
;;   mu((p-1)/2,2,p) = (p-1)/2 - fl((p-1)/4):

(defthm mu-0-rewrite
    (implies (and (not (zp p))
		  (natp n)
		  (<= (* 2 n) (/ (1- p) 2)))
	     (equal (mu n 2 p) 0)))

(defthm mu-rewrite-lemma-1
    (implies (and (primep p)
		  (not (= p 2))
		  (natp k)
		  (<= (* 2 k) (/ (1- p) 2))
		  (< (/ (1- p) 2) (* 2 (1+ k)))
		  (integerp n)
		  (<= k n)
		  (<= n (/ (1- p) 2)))
	     (= (mu n 2 p) (- n k)))
  :rule-classes ())

(defthm mu-rewrite-lemma-2
    (implies (and (primep p)
		  (not (= p 2)))
	     (equal (mu (+ -1/2 (* 1/2 p)) 2 p)
		    (- (/ (1- p) 2) (fl (/ (1- p) 4))))))

;; Let k = fl(p/8) and m = mod(p,8).  Then p = 8*k + m.  It follows that
;;   mu((p-1)/2,2,p) = 2*k + (m-1)/2 - fl((m-1)/4):

(defthmd mu-rewrite-lemma-3
    (implies (and (primep p)
		  (not (= p 2)))
	     (equal (mod p 8)
		    (- p (* 8 (fl (/ p 8)))))))

(defthm mu-rewrite
    (implies (and (primep p)
		  (not (= p 2)))
	     (equal (mu (+ -1/2 (* 1/2 p)) 2 p)
		    (+ (* 2 (fl (/ p 8))) (- (/ (1- (mod p 8)) 2) (fl (/ (1- (mod p 8)) 4)))))))

;; The desired result now follows by a simple case analysis:

(defthm second-supplement
    (implies (and (primep p)
		  (not (= p 2)))
	     (iff (residue 2 p)
		  (or (= (mod p 8) 1)
		      (= (mod p 8) 7))))
  :rule-classes ())