File: pratt.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (319 lines) | stat: -rw-r--r-- 9,434 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
;; David M. Russinoff
;; david@russinoff.com
;; http://www.russinoff.com

(in-package "RTL")

(include-book "euclid")
(include-book "fermat")

(local (include-book "support/pratt"))

;; Also defined in the RTL library.
(defund fl (x)
  (declare (xargs :guard (real/rationalp x)))
  (floor x 1))

(set-enforce-redundancy t)
(set-inhibit-warnings "theory") ; avoid warning in the next event
(local (in-theory nil))

;; This book contains a proof of correctness of Vaughn Pratt's method of prime
;; certification.  For documentation see www.russinoff.com/papers/pratt.pdf.

;; If r is relatively prime to p, then the order of r mod p is the least k
;; such that r^k mod p = 1:

(defun find-order (r k p)
  (declare (xargs :measure (nfix (- p k))))
  (if (or (zp k) (zp p) (>= k p))
      ()
    (if (= (mod-expt r k p) 1)
        k
      (find-order r (1+ k) p))))

(defun order (r p)
  (find-order r 1 p))

(defthmd order-bounds
  (implies (and (not (zp p))
                (order r p))
           (and (not (zp (order r p)))
                (< (order r p) p))))

(defthmd order-1
  (implies (and (not (zp p))
                (order r p))
           (equal (mod-expt r (order r p) p) 1)))

(defthmd order-minimal
  (implies (and (not (zp p))
                (order r p)
                (not (zp j))
                (< j (order r p)))
           (not (equal (mod-expt r j p) 1))))

;; If k is the (non-nil) order of r mod p, then for any natural m,
;; r^m mod p = 1 iff k divides m:

(defthmd order-divides
  (implies (and (natp p)
                (> p 1)
                (natp r)
                (order r p)
                (natp m))
           (iff (equal (mod-expt r m p) 1)
                (divides (order r p) m))))

;; The maximum order mod p is p-1:

(defun max-order-p (r p)
  (and (not (zp r))
            (< r p)
            (= (order r p) (1- p))))

;; If r as order p-1, then (r mod p, r^2 mod p, ..., r^(p-1) mod p)
;; is a sequence of distinct integers between 1 and p-1, and therefore,
;; by the pigeonhole principle, a permutation of (1, 2, ..., p-1):

(defun mod-powers (r p n)
  (if (zp n)
      ()
    (cons (mod (expt r n) p)
          (mod-powers r p (1- n)))))

(defthmd powers-distinct
  (implies (and (natp p)
                (> p 1)
                (max-order-p r p)
                (natp m)
                (< m p))
           (distinct-positives (mod-powers r p m) (1- p))))

(defthmd perm-powers
  (implies (and (natp p)
                (> p 1)
                (max-order-p r p))
           (perm (positives (1- p))
                 (mod-powers r p (1- p)))))

;; If q divides p, then q divides q^k mod p:

(defthmd divides-mod-power
  (implies (and (not (zp p))
                (not (zp q))
                (not (zp k))
                (divides q p))
           (divides q (mod (expt q k) p))))

;; It follows that if q divides p and r has order p-1 mod p,
;; then since q = r^j mod p, q must divide
;;    (r^j mod p)^p-1 mod p = (r^p-1 mod p) mod p = 1,
;; and therefore q = 1:

(defthm max-order-p-prime
  (implies (and (not (zp p))
                (> p 1)
                (max-order-p r p))
           (primep p))
  :rule-classes ())

;; Thus, to establish that p is prime, it suffices to show that some r has order p-1.
;; We need a way to do this quickly

;; The function fast-mod-expt computes b^e mod n by binary exponentiation, using the
;; tail-recursive auxiliary function fast-mod-expt-mul, which computes (b^e * r) mod n:

(defun fast-mod-expt-mul (b e n r)
  (if (zp e)
      r
    (if (zp (mod e 2))
        (fast-mod-expt-mul (mod (* b b) n) (fl (/ e 2)) n r)
      (fast-mod-expt-mul (mod (* b b) n) (fl (/ e 2)) n (mod (* r b) n)))))

(defun fast-mod-expt (b e n) (fast-mod-expt-mul b e n 1))

(defthm fast-mod-expt-rewrite
  (implies (and (natp b)
                (natp e)
                (not (zp n))
                (> n 1))
           (equal (fast-mod-expt b e n)
                  (mod (expt b e) n))))

;; The execution time of fast-mod-expt is logarithmic in e.  Even so, we
;; can't compute (fast-mod-expt r k p) for k = 1, 2, ..., p-1.
;; We need one more trick.

;; A factorization of n consistes of two lists,
;;   f = (f1 f2 ... fk), where fi > 1
;;   e = (e1 e2 ... ek), where ei > 0
;; such that n = f1^e1 * f2*e2 * ... * fk*ek.

(defun prod-powers (f e)
  (if (consp f)
      (* (expt (car f) (car e))
         (prod-powers (cdr f) (cdr e)))
    1))

(defun distinct-factors (f)
  (if (consp f)
      (and (natp (car f))
           (> (car f) 1)
           (not (member (car f) (cdr f)))
           (distinct-factors (cdr f)))
    t))

(defun all-positive (e)
  (if (consp e)
      (and (not (zp (car e)))
           (all-positive (cdr e)))
    t))

(defun factorization (n f e)
  (and (distinct-factors f)
       (all-positive e)
       (= (len f) (len e))
       (= n (prod-powers f e))))

(defthm factor-divides
  (implies (and (factorization n f e)
                (member q f))
           (divides q n)))

;; We are particularly interested in prime factorizations:

(defun all-prime (f)
  (if (consp f)
      (and (primep (car f))
           (all-prime (cdr f)))
    t))

(defun prime-factorization (n f e)
  (and (factorization n f e)
       (all-prime f)))

;; This follows from Euclid's Theorem, which states that if a prime
;; divides a product, then it divides one of the factors:

(defthmd all-prime-factors
  (implies (and (prime-factorization n f e)
                (primep q)
                (divides q n))
           (member q f)))

;; If r^p-1 mod p = 1 but r is not of order p-1, then the order of r
;; must divide (p-1)/q for some prime factor q of p-1:

(defun max-order-by-factorization (r p f)
  (if (consp f)
      (and (not (= (mod-expt r (/ (1- p) (car f)) p) 1))
           (max-order-by-factorization r p (cdr f)))
    t))

;; Lucas's Theorem is the basis of Pratt certification:

(defthmd lucas
  (implies (and (natp p)
                (> p 1)
                (prime-factorization (1- p) f e)
                (not (zp r))
                (< r p)
                (= (mod-expt r (1- p) p) 1)
                (max-order-by-factorization r p f))
           (primep p)))

;; Fast version of max-order-by-factorization:

(defund fast-max-fact (r p f)
  (if (consp f)
      (and (not (= (fast-mod-expt r (/ (1- p) (car f)) p) 1))
           (fast-max-fact r p (cdr f)))
    t))

(defthm fast-max-fact-rewrite
  (implies (and (natp r)
                (natp p)
                (> p 1)
                (factorization (1- p) f e))
           (equal (fast-max-fact r p f)
                  (max-order-by-factorization r p f))))

;; In order to apply Lucas's Theorem, we must be able to factor p-1 and
;; find a primitive root of p.  Primes generally have small primitive
;; roots, so that the following may be expected to find one quickly:

(defun find-prim-root (p f k)
  (declare (xargs :measure (nfix (- p k))))
  (if (and (not (zp p)) (not (zp k)) (< k p))
      (if (and (= (fast-mod-expt k (1- p) p) 1)
               (fast-max-fact k p f))
          k
        (find-prim-root p f (1+ k)))
    ()))

;; A certificate for a prime p is either (), indicating thet p is small
;; enough to be certified by direct computation, or a list (r f e c), where
;;   r is a primitive root of p
;;   f is a list of the prime factors of p-1
;;   e is a list of the exponents corresponding to f
;;   c is a list of certificates for the members of f

;; Here is a certificate for a pretty big prime, p = 31757755568855353, where p-1 has only small
;; prime factors:

;;  (10 (2 3 31 107 223 4153 430751) (3 1 1 1 1 1 1) (() () () () () () ()))

;; Here is a certificate for 2^255 - 19:

(defun certificate-25519 ()
  '(2 (2 3 65147 74058212732561358302231226437062788676166966415465897661863160754340907) (2 1 1 1)
    (() () ()
     (2 (2 3 353 57467 132049 1923133 31757755568855353 75445702479781427272750846543864801) (1 1 1 1 1 1 1 1)
      (() () () () () ()
       (10 (2 3 31 107 223 4153 430751) (3 1 1 1 1 1 1) (() () () () () () ()))
       (7 (2 3 5 75707 72106336199 1919519569386763) (5 2 2 1 1 1)
        (() () () () () (2 (2 3 7 19 47 127 8574133) (1 1 1 1 2 1 1) (() () () () () () ())))))))))

;; A prime certificate is validated by the predicate certify-prime:

(defun certify-primes (listp p c)
  (if listp ;p is a list of primes
      (if (consp c)
          (and (consp p)
               (certify-primes () (car p) (car c))
               (certify-primes t (cdr p) (cdr c)))
        (null p))
    (if (consp c) ;p is a single prime
        (let ((r (car c))
              (f (cadr c))
              (e (caddr c))
              (c (cadddr c)))
          (and (natp p)
               (> p 1)
               (factorization (1- p) f e)
               (not (zp r))
               (< r p)
               (= (fast-mod-expt r (1- p) p) 1)
               (fast-max-fact r p f)
               (certify-primes t f c)))
      (primep p))))

(defun certify-prime (p c) (certify-primes () p c))

(defthm certification-lemma
  (implies (certify-primes listp p c)
           (if listp (all-prime p) (primep p)))
  :rule-classes ())

(defthmd certification-theorem
  (implies (certify-prime p c)
           (primep p)))

;; This is proved quite easily:

(defthmd primep-25519
  (primep (- (expt 2 255) 19))
  :hints (("Goal" :use (:instance certification-theorem
                          (p (- (expt 2 255) 19))
                          (c (certificate-25519))))))