File: top.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (487 lines) | stat: -rw-r--r-- 19,130 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
;; Copyright (c) 2016, Regents of the University of Texas
;;
;; License: The MIT License (MIT)
;;
;;   Permission is hereby granted, free of charge, to any person
;;   obtaining a copy of this software and associated documentation
;;   files (the "Software"), to deal in the Software without
;;   restriction, including without limitation the rights to use,
;;   copy, modify, merge, publish, distribute, sublicense, and/or sell
;;   copies of the Software, and to permit persons to whom the
;;   Software is furnished to do so, subject to the following
;;   conditions:
;;
;;   The above copyright notice and this permission notice shall be
;;   included in all copies or substantial portions of the Software.
;;
;;   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
;;   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
;;   OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
;;   NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
;;   HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
;;   WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
;;   FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
;;   OTHER DEALINGS IN THE SOFTWARE.
;;
;; Original author: Nathan Wetzler <nathan.wetzler@gmail.com>

;; Last Modified:  2016-08-29 20:49

;; ============================= PACKAGE =============================
(in-package "PROOF-CHECKER-ITP13")


;; ============================ INCLUDES =============================

(include-book "xdoc/top" :dir :system)
;; (include-book "xdoc/debug" :dir :system)

(include-book "rat-checker")


;; ===================================================================
;; ============================== XDOC ===============================
;; ===================================================================

(defxdoc PROOF-CHECKER-ITP13
  :parents (acl2::projects)
  :short "RAT Proof Checker for ITP 2013"
  )

(xdoc::order-subtopics
 PROOF-CHECKER-ITP13
 (;Background-And-Description
  ))

;; =========================== DESCRIPTION ===========================

(defsection Description
  :extension PROOF-CHECKER-ITP13
  ;; :parents (PROOF-CHECKER-ITP13)
  ;; :short ""
  :long
"<p>This proof is the supplemental material for a paper appearing in
  Interactive Theorem Proving 2013.  A README file describes the build process.
  Build, run, and clean scripts are provided for simplicity.  The paper is
  available online as a <a
  href='http://www.cs.utexas.edu/~nwetzler/publications/itp13.pdf'>preprint</a>
  or from <a
  href='http://link.springer.com/chapter/10.1007%2F978-3-642-39634-2_18'>Springer</a>.</p>
" )

;; ============================ ABSTRACT =============================

(defsection Abstract
  :extension PROOF-CHECKER-ITP13
  ;; :parents (PROOF-CHECKER-ITP13)
  ;; :short ""
  :long
"<h2>Abstract From Paper</h2>

<p> We present a mechanically-verified proof checker developed with the ACL2
theorem-proving system that is general enough to support the growing variety of
increasingly complex satisfiability (SAT) solver techniques, including those
based on extended resolution.  A common approach to assure the correctness of
SAT solvers is to emit a proof of unsatisfiability when no solution is reported
to exist.  Contemporary proof checkers only check logical equivalence using
resolution-style inference.  However, some state-of-the-art, conflict-driven
clause-learning SAT solvers use preprocessing, inprocessing, and learning
techniques, that cannot be checked solely by resolution-style inference.  We
have developed a mechanically-verified proof checker that assures refutation
clauses preserve satisfiability.  We believe our approach is sufficiently
expressive to validate all known SAT-solver techniques.</p>

<h2>Citation</h2>

<p>Mechanical verification of SAT refutations with extended resolution Nathan
Wetzler, Marijn J. H. Heule, and Warren A. Hunt, Jr.  Interactive Theorem
Proving (ITP), volume 7998 of LNCS, pages 229-244. Springer, 2013.</p>" )


;; ===================================================================

(set-enforce-redundancy t)

;; ===================================================================
;; =========================== DEFINITIONS ===========================
;; ===================================================================


;; ========================== CLAUSE-LISTP ===========================

(defun clause-listp (clause-list)
  (declare (xargs :guard t))
  (if (atom clause-list)
      (null clause-list)
    (and (clausep (car clause-list))
         (clause-listp (cdr clause-list)))))


;; ========================== NEGATE-CLAUSE ==========================
;; ======================== NEGATE-ASSIGNMENT ========================

(defun negate-clause (clause)
  (declare (xargs :guard (clausep clause)))
  (if (atom clause)
      nil
    (cons (negate (car clause))
          (negate-clause (cdr clause)))))

(defun negate-assignment (assignment)
  (declare (xargs :guard (assignmentp assignment)))
  (if (atom assignment)
      nil
    (cons (negate (car assignment))
          (negate-assignment (cdr assignment)))))


;; ======================== UNIT-PROPAGATION =========================

(defun num-undef (formula assignment)
  (declare (xargs :guard (and (formulap formula)
                              (assignmentp assignment))))
  (if (atom formula)
      0
    (if (undefp (evaluate-clause (car formula) assignment))
        (1+ (num-undef (cdr formula) assignment))
      (num-undef (cdr formula) assignment))))


(defun unit-propagation (formula assignment)
  (declare (xargs :guard (and (formulap formula)
                              (assignmentp assignment))
                  :measure (num-undef formula assignment)))
  (mv-let (unit-literal unit-clause)
          (find-unit-clause formula assignment)
          (declare (ignorable unit-clause))
          (if (not unit-literal)
              assignment
            (unit-propagation formula (cons unit-literal assignment)))))

           
;; ========================= REMOVE-LITERAL ==========================

(defun remove-literal (literal clause)
  (declare (xargs :guard (and (literalp literal)
                              (clausep clause))))
  (if (atom clause)
      nil
    (if (equal (car clause) literal)
        (remove-literal literal (cdr clause))
      (cons (car clause)
            (remove-literal literal (cdr clause))))))


;; =========================== RESOLUTION ============================

(defun resolution (lit A B)
  (declare (xargs :guard (and (literalp lit)
                              (clausep A)
                              (clausep B))))
  (union (remove-literal lit A)
         (remove-literal (negate lit) B)))


;; ============================== RATp ===============================

(defun tautologyp (clause)
  (declare (xargs :guard (literal-listp clause)))
  (not (no-conflicting-literalsp clause)))

(defun ATp (formula clause)
  (declare (xargs :guard (and (formulap formula)
                              (clausep clause))))
  (falsep (evaluate-formula formula
                            (unit-propagation formula
                                              (negate-clause clause)))))

(defun RATp1 (clause-list formula clause literal)
  (declare (xargs :guard (and (clause-listp clause-list)
                              (formulap formula)
                              (clausep clause)
                              (literalp literal))))
  (if (atom clause-list)
      t
    (if (not (member (negate literal) (car clause-list)))
        (RATp1 (cdr clause-list) formula clause literal)
      (let ((resolvent (resolution literal clause (car clause-list))))
       (if (tautologyp resolvent)
           (RATp1 (cdr clause-list) formula clause literal)
         (and (ATp formula resolvent)
              (RATp1 (cdr clause-list) formula clause literal)))))))

(defun RATp (formula clause literal)
  (declare (xargs :guard (and (formulap formula)
                              (clausep clause)
                              (literalp literal))))
  (RATp1 formula formula clause literal))


;; ======================= VERIFY-UNSAT-PROOF ========================

(defun verify-clause (clause formula)
  (declare (xargs :guard (and (clausep clause)
                              (formulap formula))))
  (or (ATp formula clause)
      (and (not (atom clause))
           (RATp formula clause (car clause)))))

(defun verify-proof (clause-list formula)
  (declare (xargs :guard (and (formulap formula)
                              (clause-listp clause-list))))
  (if (atom clause-list)
      t
    (if (verify-clause (car clause-list) formula)
        (verify-proof (cdr clause-list) (cons (car clause-list) formula))
      nil)))


(defun proofp (proof formula)
  (declare (xargs :guard (formulap formula)))
  (and (clause-listp proof)
       (verify-proof proof formula)))

(defconst *empty-clause* nil)

(defun refutationp (proof formula)
  (declare (xargs :guard (formulap formula)))
  (and (proofp proof formula)
       (member *empty-clause* proof)))



(defun solutionp (solution formula)
  (declare (xargs :guard (formulap formula)))
  (and (assignmentp solution)
       (truep (evaluate-formula formula solution))))

(defun-sk exists-solution (formula)
  (exists assignment (solutionp assignment formula)))


;; ===================================================================
;; ============================= ATP NIL =============================
;; ===================================================================

(defthm evaluate-formula-unit-propagation-nil
  (implies (and (assignmentp solution)
                (truep (evaluate-formula formula solution)))
           (not (falsep (evaluate-formula formula
                                          (unit-propagation formula nil))))))

(defthm *empty-clause*-lemma
  (implies (solutionp solution formula)
           (not (ATp formula *empty-clause*))))


;; ===================================================================
;; =============================== ATp ===============================
;; ===================================================================

(defthm find-unit-clause-and-member-negate-implies-truep-negate-assignment
  (implies (and (formulap formula)
                (assignmentp solution)
                (truep (evaluate-formula formula solution))
                (mv-nth 0 (find-unit-clause formula assignment))
                (member (negate (mv-nth 0 (find-unit-clause
                                           formula
                                           assignment)))
                        solution))
           (truep (evaluate-clause (negate-assignment assignment)
                                   solution))))


(defthm ATp-lemma-induction
  (implies (and (falsep (evaluate-formula formula
                                          (unit-propagation formula
                                                            assignment)))
                (truep (evaluate-formula formula solution))
                (formulap formula)
                (assignmentp assignment)
                (assignmentp solution))
           (truep (evaluate-clause (negate-assignment assignment) solution))))


(defthm ATp-lemma
  (implies (and (ATp formula clause)
                (exists-solution formula)
                (formulap formula)
                (clausep clause))
           (exists-solution (cons clause formula))))


;; ===================================================================
;; ============================== RATp ===============================
;; ============================ FALSE-EC =============================
;; ===================================================================

;; ========================= MODIFY-SOLUTION =========================

(defun modify-solution (solution literal)
  (cons literal
        (remove-literal literal
                        (remove-literal (negate literal)
                                        solution))))


(defthm member-implies-truep-evaluate-clause-modify-solution
  (implies (and (clausep clause)
                (assignmentp solution)
                (member literal clause))
           (truep (evaluate-clause clause
                                   (modify-solution solution literal)))))

(defthm truep-EC-and-not-member-negate-implies-truep-EC-modify-solution
  (implies (and (not (member (negate literal) clause))
                (truep (evaluate-clause clause solution)))
           (truep (evaluate-clause clause
                                   (modify-solution solution literal)))))


;; ========================= RATP TAUTOLOGY ==========================

(defthm conflicting-literal-resolvent-implies-true-EC-modify-solution
  (implies (and (clausep clause)
                (clausep rat-clause)
                (member literal rat-clause)
                (member (negate literal) clause)
                (not (no-conflicting-literalsp (resolution literal rat-clause clause)))
                (falsep (evaluate-clause rat-clause solution))
                (truep (evaluate-clause clause solution)))
           (truep (evaluate-clause clause (modify-solution solution
                                                           literal)))))


;; ========================= RATP MAIN CASE ==========================

(defthm true-EC-resolution-implies-true-EC-modify-solution
  (implies (and (clausep rat-clause)
                (clausep clause)
                (literalp literal)
                (no-conflicting-literalsp (resolution literal rat-clause
                                                      clause))
                (assignmentp solution)
                (member literal rat-clause)
                (member (negate literal) clause)
                (truep (evaluate-clause clause solution))
                (falsep (evaluate-clause rat-clause solution))
                (truep (evaluate-clause (resolution literal rat-clause clause)
                                        solution)))
           (truep (evaluate-clause clause (modify-solution solution literal)))))

(defthm ATp-and-truep-evaluate-clause-implies-truep-evaluate-clause-modify-solution
  (implies (and (formulap formula)
                (clausep clause)
                (assignmentp solution)
                (clausep rat-clause)
                (literalp literal)
                (member literal rat-clause)
                (member (negate literal) clause)
                (ATp formula (resolution literal rat-clause clause))
                (truep (evaluate-formula formula solution))
                (truep (evaluate-clause clause solution))
                (falsep (evaluate-clause rat-clause solution))
                (no-conflicting-literalsp (resolution literal rat-clause clause)))
           (truep (evaluate-clause clause (modify-solution solution literal)))))


;; ========================= RATP INDUCTION ==========================

(defthm truep-EC-and-RATp1-implies-truep-EC-modify-solution
  (implies (and (formulap formula)
                (clausep clause)
                (assignmentp solution)
                (clausep rat-clause)
                (RATp1 clause-list formula RAT-clause literal)
                (member clause clause-list)
                (member literal RAT-clause)
                (truep (evaluate-clause clause solution))
                (subsetp clause-list formula)
                (truep (evaluate-formula formula solution))
                (falsep (evaluate-clause RAT-clause solution)))
           (truep (evaluate-clause clause (modify-solution solution literal)))))

(defthm truep-evaluate-formula-and-RATp-implies-truep-evaluate-formula-modify-solution
  (implies (and (formulap formula)
                (clausep clause)
                (assignmentp solution)
                (RATp formula clause literal)
                (truep (evaluate-formula formula solution))
                (member literal clause)
                (falsep (evaluate-clause clause solution)))
           (truep (evaluate-formula formula
                                    (modify-solution solution literal)))))


(defthm exists-solution-and-RATp-and-truep-implies-exists-solution
  (implies (and (formulap formula)
                (clausep clause)
                (assignmentp solution)
                (truep (evaluate-formula formula solution))
                (RATp formula clause literal)
                (member literal clause)
                (falsep (evaluate-clause clause solution)))
           (exists-solution (cons clause formula))))


;; ===================================================================
;; ============================ UNDEF-EC =============================
;; ===================================================================

(defthm truep-EF-and-undefp-EF-cons-implies-exists-solution
  (implies (and (formulap formula)
                (clausep clause)
                (assignmentp solution)
                (truep (evaluate-formula formula solution))
                (undefp (evaluate-formula (cons clause formula) solution)))
           (exists-solution (cons clause formula))))


;; ===================================================================
;; ============================ TRUEP-EC =============================
;; ===================================================================

(defthm solutionp-and-truep-EF-cons-implies-exists-solution
  (implies (and (formulap formula)
                (clausep clause)
                (assignmentp solution)
                (truep (evaluate-formula formula solution))
                (truep (evaluate-clause clause solution)))
           (exists-solution (cons clause formula))))

;; ===================================================================
;; =========================== CASE-SPLIT ============================               
;; ===================================================================

(defthm solutionp-and-RATp-implies-exists-solution-cons
  (implies (and (formulap formula)
                (clausep clause)
                (solutionp solution formula)
                (RATp formula clause literal)
                (member literal clause))
           (exists-solution (cons clause formula))))

(defthm RATp-lemma
  (implies (and (formulap formula)
                (clausep clause)
                (member literal clause)
                (exists-solution formula)
                (RATp formula clause literal))
           (exists-solution (cons clause formula))))

(defthm verify-proof-induction
  (implies (and (clause-listp clause-list)
                (formulap formula)
                (exists-solution formula)
                (member *empty-clause* clause-list))
           (not (verify-proof clause-list formula))))


;; ===================================================================
;; =========================== MAIN PROOF ============================
;; ===================================================================

(defthm main-theorem
  (implies (and (formulap formula)
                (refutationp clause-list formula))
           (not (exists-solution formula))))