1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
|
;; Copyright (c) 2016, Regents of the University of Texas
;;
;; License: The MIT License (MIT)
;;
;; Permission is hereby granted, free of charge, to any person
;; obtaining a copy of this software and associated documentation
;; files (the "Software"), to deal in the Software without
;; restriction, including without limitation the rights to use,
;; copy, modify, merge, publish, distribute, sublicense, and/or sell
;; copies of the Software, and to permit persons to whom the
;; Software is furnished to do so, subject to the following
;; conditions:
;;
;; The above copyright notice and this permission notice shall be
;; included in all copies or substantial portions of the Software.
;;
;; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
;; EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
;; OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
;; NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
;; HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
;; WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
;; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
;; OTHER DEALINGS IN THE SOFTWARE.
;;
;; Original author: Nathan Wetzler <nathan.wetzler@gmail.com>
;; Last Modified: 2016-08-29 20:49
;; ============================= PACKAGE =============================
(in-package "PROOF-CHECKER-ITP13")
;; ============================ INCLUDES =============================
(include-book "xdoc/top" :dir :system)
;; (include-book "xdoc/debug" :dir :system)
(include-book "rat-checker")
;; ===================================================================
;; ============================== XDOC ===============================
;; ===================================================================
(defxdoc PROOF-CHECKER-ITP13
:parents (acl2::projects)
:short "RAT Proof Checker for ITP 2013"
)
(xdoc::order-subtopics
PROOF-CHECKER-ITP13
(;Background-And-Description
))
;; =========================== DESCRIPTION ===========================
(defsection Description
:extension PROOF-CHECKER-ITP13
;; :parents (PROOF-CHECKER-ITP13)
;; :short ""
:long
"<p>This proof is the supplemental material for a paper appearing in
Interactive Theorem Proving 2013. A README file describes the build process.
Build, run, and clean scripts are provided for simplicity. The paper is
available online as a <a
href='http://www.cs.utexas.edu/~nwetzler/publications/itp13.pdf'>preprint</a>
or from <a
href='http://link.springer.com/chapter/10.1007%2F978-3-642-39634-2_18'>Springer</a>.</p>
" )
;; ============================ ABSTRACT =============================
(defsection Abstract
:extension PROOF-CHECKER-ITP13
;; :parents (PROOF-CHECKER-ITP13)
;; :short ""
:long
"<h2>Abstract From Paper</h2>
<p> We present a mechanically-verified proof checker developed with the ACL2
theorem-proving system that is general enough to support the growing variety of
increasingly complex satisfiability (SAT) solver techniques, including those
based on extended resolution. A common approach to assure the correctness of
SAT solvers is to emit a proof of unsatisfiability when no solution is reported
to exist. Contemporary proof checkers only check logical equivalence using
resolution-style inference. However, some state-of-the-art, conflict-driven
clause-learning SAT solvers use preprocessing, inprocessing, and learning
techniques, that cannot be checked solely by resolution-style inference. We
have developed a mechanically-verified proof checker that assures refutation
clauses preserve satisfiability. We believe our approach is sufficiently
expressive to validate all known SAT-solver techniques.</p>
<h2>Citation</h2>
<p>Mechanical verification of SAT refutations with extended resolution Nathan
Wetzler, Marijn J. H. Heule, and Warren A. Hunt, Jr. Interactive Theorem
Proving (ITP), volume 7998 of LNCS, pages 229-244. Springer, 2013.</p>" )
;; ===================================================================
(set-enforce-redundancy t)
;; ===================================================================
;; =========================== DEFINITIONS ===========================
;; ===================================================================
;; ========================== CLAUSE-LISTP ===========================
(defun clause-listp (clause-list)
(declare (xargs :guard t))
(if (atom clause-list)
(null clause-list)
(and (clausep (car clause-list))
(clause-listp (cdr clause-list)))))
;; ========================== NEGATE-CLAUSE ==========================
;; ======================== NEGATE-ASSIGNMENT ========================
(defun negate-clause (clause)
(declare (xargs :guard (clausep clause)))
(if (atom clause)
nil
(cons (negate (car clause))
(negate-clause (cdr clause)))))
(defun negate-assignment (assignment)
(declare (xargs :guard (assignmentp assignment)))
(if (atom assignment)
nil
(cons (negate (car assignment))
(negate-assignment (cdr assignment)))))
;; ======================== UNIT-PROPAGATION =========================
(defun num-undef (formula assignment)
(declare (xargs :guard (and (formulap formula)
(assignmentp assignment))))
(if (atom formula)
0
(if (undefp (evaluate-clause (car formula) assignment))
(1+ (num-undef (cdr formula) assignment))
(num-undef (cdr formula) assignment))))
(defun unit-propagation (formula assignment)
(declare (xargs :guard (and (formulap formula)
(assignmentp assignment))
:measure (num-undef formula assignment)))
(mv-let (unit-literal unit-clause)
(find-unit-clause formula assignment)
(declare (ignorable unit-clause))
(if (not unit-literal)
assignment
(unit-propagation formula (cons unit-literal assignment)))))
;; ========================= REMOVE-LITERAL ==========================
(defun remove-literal (literal clause)
(declare (xargs :guard (and (literalp literal)
(clausep clause))))
(if (atom clause)
nil
(if (equal (car clause) literal)
(remove-literal literal (cdr clause))
(cons (car clause)
(remove-literal literal (cdr clause))))))
;; =========================== RESOLUTION ============================
(defun resolution (lit A B)
(declare (xargs :guard (and (literalp lit)
(clausep A)
(clausep B))))
(union (remove-literal lit A)
(remove-literal (negate lit) B)))
;; ============================== RATp ===============================
(defun tautologyp (clause)
(declare (xargs :guard (literal-listp clause)))
(not (no-conflicting-literalsp clause)))
(defun ATp (formula clause)
(declare (xargs :guard (and (formulap formula)
(clausep clause))))
(falsep (evaluate-formula formula
(unit-propagation formula
(negate-clause clause)))))
(defun RATp1 (clause-list formula clause literal)
(declare (xargs :guard (and (clause-listp clause-list)
(formulap formula)
(clausep clause)
(literalp literal))))
(if (atom clause-list)
t
(if (not (member (negate literal) (car clause-list)))
(RATp1 (cdr clause-list) formula clause literal)
(let ((resolvent (resolution literal clause (car clause-list))))
(if (tautologyp resolvent)
(RATp1 (cdr clause-list) formula clause literal)
(and (ATp formula resolvent)
(RATp1 (cdr clause-list) formula clause literal)))))))
(defun RATp (formula clause literal)
(declare (xargs :guard (and (formulap formula)
(clausep clause)
(literalp literal))))
(RATp1 formula formula clause literal))
;; ======================= VERIFY-UNSAT-PROOF ========================
(defun verify-clause (clause formula)
(declare (xargs :guard (and (clausep clause)
(formulap formula))))
(or (ATp formula clause)
(and (not (atom clause))
(RATp formula clause (car clause)))))
(defun verify-proof (clause-list formula)
(declare (xargs :guard (and (formulap formula)
(clause-listp clause-list))))
(if (atom clause-list)
t
(if (verify-clause (car clause-list) formula)
(verify-proof (cdr clause-list) (cons (car clause-list) formula))
nil)))
(defun proofp (proof formula)
(declare (xargs :guard (formulap formula)))
(and (clause-listp proof)
(verify-proof proof formula)))
(defconst *empty-clause* nil)
(defun refutationp (proof formula)
(declare (xargs :guard (formulap formula)))
(and (proofp proof formula)
(member *empty-clause* proof)))
(defun solutionp (solution formula)
(declare (xargs :guard (formulap formula)))
(and (assignmentp solution)
(truep (evaluate-formula formula solution))))
(defun-sk exists-solution (formula)
(exists assignment (solutionp assignment formula)))
;; ===================================================================
;; ============================= ATP NIL =============================
;; ===================================================================
(defthm evaluate-formula-unit-propagation-nil
(implies (and (assignmentp solution)
(truep (evaluate-formula formula solution)))
(not (falsep (evaluate-formula formula
(unit-propagation formula nil))))))
(defthm *empty-clause*-lemma
(implies (solutionp solution formula)
(not (ATp formula *empty-clause*))))
;; ===================================================================
;; =============================== ATp ===============================
;; ===================================================================
(defthm find-unit-clause-and-member-negate-implies-truep-negate-assignment
(implies (and (formulap formula)
(assignmentp solution)
(truep (evaluate-formula formula solution))
(mv-nth 0 (find-unit-clause formula assignment))
(member (negate (mv-nth 0 (find-unit-clause
formula
assignment)))
solution))
(truep (evaluate-clause (negate-assignment assignment)
solution))))
(defthm ATp-lemma-induction
(implies (and (falsep (evaluate-formula formula
(unit-propagation formula
assignment)))
(truep (evaluate-formula formula solution))
(formulap formula)
(assignmentp assignment)
(assignmentp solution))
(truep (evaluate-clause (negate-assignment assignment) solution))))
(defthm ATp-lemma
(implies (and (ATp formula clause)
(exists-solution formula)
(formulap formula)
(clausep clause))
(exists-solution (cons clause formula))))
;; ===================================================================
;; ============================== RATp ===============================
;; ============================ FALSE-EC =============================
;; ===================================================================
;; ========================= MODIFY-SOLUTION =========================
(defun modify-solution (solution literal)
(cons literal
(remove-literal literal
(remove-literal (negate literal)
solution))))
(defthm member-implies-truep-evaluate-clause-modify-solution
(implies (and (clausep clause)
(assignmentp solution)
(member literal clause))
(truep (evaluate-clause clause
(modify-solution solution literal)))))
(defthm truep-EC-and-not-member-negate-implies-truep-EC-modify-solution
(implies (and (not (member (negate literal) clause))
(truep (evaluate-clause clause solution)))
(truep (evaluate-clause clause
(modify-solution solution literal)))))
;; ========================= RATP TAUTOLOGY ==========================
(defthm conflicting-literal-resolvent-implies-true-EC-modify-solution
(implies (and (clausep clause)
(clausep rat-clause)
(member literal rat-clause)
(member (negate literal) clause)
(not (no-conflicting-literalsp (resolution literal rat-clause clause)))
(falsep (evaluate-clause rat-clause solution))
(truep (evaluate-clause clause solution)))
(truep (evaluate-clause clause (modify-solution solution
literal)))))
;; ========================= RATP MAIN CASE ==========================
(defthm true-EC-resolution-implies-true-EC-modify-solution
(implies (and (clausep rat-clause)
(clausep clause)
(literalp literal)
(no-conflicting-literalsp (resolution literal rat-clause
clause))
(assignmentp solution)
(member literal rat-clause)
(member (negate literal) clause)
(truep (evaluate-clause clause solution))
(falsep (evaluate-clause rat-clause solution))
(truep (evaluate-clause (resolution literal rat-clause clause)
solution)))
(truep (evaluate-clause clause (modify-solution solution literal)))))
(defthm ATp-and-truep-evaluate-clause-implies-truep-evaluate-clause-modify-solution
(implies (and (formulap formula)
(clausep clause)
(assignmentp solution)
(clausep rat-clause)
(literalp literal)
(member literal rat-clause)
(member (negate literal) clause)
(ATp formula (resolution literal rat-clause clause))
(truep (evaluate-formula formula solution))
(truep (evaluate-clause clause solution))
(falsep (evaluate-clause rat-clause solution))
(no-conflicting-literalsp (resolution literal rat-clause clause)))
(truep (evaluate-clause clause (modify-solution solution literal)))))
;; ========================= RATP INDUCTION ==========================
(defthm truep-EC-and-RATp1-implies-truep-EC-modify-solution
(implies (and (formulap formula)
(clausep clause)
(assignmentp solution)
(clausep rat-clause)
(RATp1 clause-list formula RAT-clause literal)
(member clause clause-list)
(member literal RAT-clause)
(truep (evaluate-clause clause solution))
(subsetp clause-list formula)
(truep (evaluate-formula formula solution))
(falsep (evaluate-clause RAT-clause solution)))
(truep (evaluate-clause clause (modify-solution solution literal)))))
(defthm truep-evaluate-formula-and-RATp-implies-truep-evaluate-formula-modify-solution
(implies (and (formulap formula)
(clausep clause)
(assignmentp solution)
(RATp formula clause literal)
(truep (evaluate-formula formula solution))
(member literal clause)
(falsep (evaluate-clause clause solution)))
(truep (evaluate-formula formula
(modify-solution solution literal)))))
(defthm exists-solution-and-RATp-and-truep-implies-exists-solution
(implies (and (formulap formula)
(clausep clause)
(assignmentp solution)
(truep (evaluate-formula formula solution))
(RATp formula clause literal)
(member literal clause)
(falsep (evaluate-clause clause solution)))
(exists-solution (cons clause formula))))
;; ===================================================================
;; ============================ UNDEF-EC =============================
;; ===================================================================
(defthm truep-EF-and-undefp-EF-cons-implies-exists-solution
(implies (and (formulap formula)
(clausep clause)
(assignmentp solution)
(truep (evaluate-formula formula solution))
(undefp (evaluate-formula (cons clause formula) solution)))
(exists-solution (cons clause formula))))
;; ===================================================================
;; ============================ TRUEP-EC =============================
;; ===================================================================
(defthm solutionp-and-truep-EF-cons-implies-exists-solution
(implies (and (formulap formula)
(clausep clause)
(assignmentp solution)
(truep (evaluate-formula formula solution))
(truep (evaluate-clause clause solution)))
(exists-solution (cons clause formula))))
;; ===================================================================
;; =========================== CASE-SPLIT ============================
;; ===================================================================
(defthm solutionp-and-RATp-implies-exists-solution-cons
(implies (and (formulap formula)
(clausep clause)
(solutionp solution formula)
(RATp formula clause literal)
(member literal clause))
(exists-solution (cons clause formula))))
(defthm RATp-lemma
(implies (and (formulap formula)
(clausep clause)
(member literal clause)
(exists-solution formula)
(RATp formula clause literal))
(exists-solution (cons clause formula))))
(defthm verify-proof-induction
(implies (and (clause-listp clause-list)
(formulap formula)
(exists-solution formula)
(member *empty-clause* clause-list))
(not (verify-proof clause-list formula))))
;; ===================================================================
;; =========================== MAIN PROOF ============================
;; ===================================================================
(defthm main-theorem
(implies (and (formulap formula)
(refutationp clause-list formula))
(not (exists-solution formula))))
|