1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
(in-package "ACL2")
#|
c2i-partial.lisp
~~~~~~~~~~~~~~
In this book, we show how to do the transformation from clocks to invariants
for partial correctness proofs. Given a clock function proof I define here an
inductive invariant and a measure function that satisfies the requirements for
an inductive invariant proof.
The proof is the same as the original total correctness proofs without the
measure. So this book is essentially not commented. Please look at the
corresponding comments in the total correctness proofs.
|#
(set-match-free-default :once)
(in-theory (disable mv-nth))
;; (defun natp (n)
;; (and (integerp n)
;; (<= 0 n)))
;; (defthm natp-compound-recognizer
;; (iff (natp n)
;; (and (integerp n)
;; (<= 0 n)))
;; :rule-classes :compound-recognizer)
(in-theory (disable natp))
(encapsulate
(((partial-next *) => *)
((partial-pre *) => *)
((partial-external *) => *)
((partial-post *) => *)
((partial-clock-fn *) => *))
(local (defun partial-next (s) s))
(defun partial-run (s n) (if (zp n) s (partial-run (partial-next s) (1- n))))
(local (defun partial-pre (s) (declare (ignore s)) nil))
(local (defun partial-external (s) (declare (ignore s)) nil))
(local (defun partial-post (s) (declare (ignore s)) nil))
(local (defun partial-clock-fn (s) (declare (ignore s)) 0))
;; The constrains as usual.
(defthm partial-clock-fn-is-natp
(natp (partial-clock-fn s)))
(defthm partial-pre-is-not-partial-external
(implies (partial-pre s) (not (partial-external s))))
(defthm standard-theorem-for-partial-clocks-1
(implies (and (partial-pre s)
(partial-external (partial-run s i)))
(partial-external (partial-run s (partial-clock-fn s)))))
(defthm standard-theorem-for-partial-clocks-2
(implies (and (partial-pre s)
(partial-external (partial-run s i)))
(partial-post (partial-run s (partial-clock-fn s)))))
(defthm standard-theorem-for-partial-clocks-3
(implies (and (partial-pre s)
(partial-external (partial-run s i)))
(<= (partial-clock-fn s) i)))
)
;; The same invariant as total correctness incidentally.
(defun-sk exists-partial-pre-state (s)
(exists (init i)
(and (partial-pre init)
(natp i)
(< i (partial-clock-fn init))
(equal s (partial-run init i)))))
(local (in-theory (disable exists-partial-pre-state exists-partial-pre-state-suff)))
(defun-sk no-partial-external-partial-run (s)
(forall i
(not (partial-external (partial-run s i)))))
(defun partial-inv (s)
(if (no-partial-external-partial-run s) T
(and (exists-partial-pre-state s)
(not (partial-external s)))))
(local
(defun partial-run-fn (s n)
(if (zp n) s (partial-run-fn (partial-next s) (1- n)))))
(local
(defthm partial-run-fn-is-partial-run
(equal (partial-run s n) (partial-run-fn s n))))
(local
(in-theory (disable partial-run-fn-is-partial-run)))
(local
(defthm partial-clock-fn-is-equal-if-<
(implies (<= (partial-clock-fn s) 0)
(equal (partial-clock-fn s) 0))
:hints (("Goal"
:in-theory (disable partial-clock-fn-is-natp)
:use partial-clock-fn-is-natp))))
(local
(defthm partial-pre-has-partial-clock->0
(implies (and (partial-pre s)
(partial-external (partial-run s i)))
(< 0 (partial-clock-fn s)))
:hints (("Goal"
:cases ((> (partial-clock-fn s) 0)
(= (partial-clock-fn s) 0)))
("Subgoal 1"
:in-theory (disable standard-theorem-for-partial-clocks-1)
:use standard-theorem-for-partial-clocks-1))))
(DEFTHM partial-pre-has-partial-inv
(implies (partial-pre s)
(partial-inv s))
:hints (("Goal"
:cases ((no-partial-external-partial-run s)))
("Subgoal 2"
:use ((:instance exists-partial-pre-state-suff
(init s)
(i 0))))))
(local
(in-theory (disable no-partial-external-partial-run no-partial-external-partial-run-necc)))
(local
;; [Jared] changed this to use arithmetic-3 instead of 2
(include-book "arithmetic-3/bind-free/top" :dir :system))
(local
(defthm partial-run-is-same-for-nfix
(equal (partial-run s (nfix i))
(partial-run s i))
:hints (("Goal"
:cases ((natp i))
:in-theory (enable partial-run-fn-is-partial-run)))))
(local
(defthm partial-external-to-partial-external-partial-next
(implies (partial-external (partial-run (partial-next s) i))
(partial-external (partial-run s (1+ (nfix i)))))))
(local
(defthm no-partial-external-to-partial-external-partial-next
(implies (no-partial-external-partial-run s)
(not (partial-external (partial-run (partial-next s) i))))
:hints (("Goal"
:use ((:instance no-partial-external-partial-run-necc
(i (1+ (nfix i)))))))))
(local
(defthm no-partial-external-persists
(implies (no-partial-external-partial-run s)
(no-partial-external-partial-run (partial-next s)))
:hints (("Goal"
:use ((:instance (:definition no-partial-external-partial-run)
(s (partial-next s))))))))
(local
(defthm partial-run-natp-partial-next
(implies (and (equal s (partial-run init i))
(natp i))
(equal (partial-next s)
(partial-run init (1+ i))))
:rule-classes nil
:hints (("Goal"
:in-theory (enable partial-run-fn-is-partial-run)))))
(local
(defthm partial-clock-<-partial-next
(implies (and (partial-pre p)
(natp i)
(< i (partial-clock-fn p))
(partial-external (partial-run p j))
(not (partial-external (partial-run p i)))
(not (partial-external (partial-run p (1+ i)))))
(< (1+ i) (partial-clock-fn p)))
:rule-classes nil
:hints (("Goal"
:cases ((equal (1+ i) (partial-clock-fn p))))
("Subgoal 2"
:in-theory (disable partial-clock-fn-is-natp)
:use ((:instance partial-clock-fn-is-natp
(s p)))))))
(local
(defthm partial-clock-fn-<-partial-next-concretized
(implies (and (partial-pre p)
(natp i)
(< i (partial-clock-fn p))
(not (no-partial-external-partial-run p))
(not (partial-external (partial-run p i)))
(not (partial-external (partial-run p (1+ i)))))
(< (1+ i)
(partial-clock-fn p)))
:rule-classes nil
:hints (("Goal"
:use ((:instance partial-clock-<-partial-next
(j (no-partial-external-partial-run-witness p)))
(:instance (:definition no-partial-external-partial-run)
(s p)))))))
(local
(defthm partial-run-+-reduction
(implies (and (natp i)
(natp j))
(equal (partial-run s (+ i j))
(partial-run (partial-run s i) j)))
:hints (("Goal"
:in-theory (enable partial-run-fn-is-partial-run)))))
(local
(defthm weird-partial-run-+-reduction
(equal (partial-run (partial-run s i) j)
(partial-run s (+ (nfix i) (nfix j))))
:hints (("Goal"
:cases ((and (natp i) (natp j))
(natp i)
(natp j))))))
(local
(in-theory (disable partial-run-+-reduction)))
(local
(defthm no-partial-external-to-no-partial-external
(implies (not (no-partial-external-partial-run (partial-run p i)))
(not (no-partial-external-partial-run p)))
:hints (("Goal"
:in-theory (disable partial-run-+-reduction)
:use ((:instance no-partial-external-partial-run-necc
(s p)
(i (+ (nfix i) (nfix (no-partial-external-partial-run-witness
(partial-run
p i))))))
(:instance (:definition no-partial-external-partial-run)
(s (partial-run p i))))))))
(DEFTHM partial-inv-implies-partial-next-partial-inv
(implies (and (partial-inv s)
(not (partial-external (partial-next s))))
(partial-inv (partial-next s)))
:hints (("Goal"
:cases ((no-partial-external-partial-run s)))
("Subgoal 2"
:in-theory (disable fix nfix)
:use ((:instance exists-partial-pre-state-suff
(init (mv-nth 0 (exists-partial-pre-state-witness s)))
(s (partial-next s))
(i (1+ (mv-nth 1 (exists-partial-pre-state-witness s)))))
(:instance (:definition exists-partial-pre-state))
(:instance partial-run-natp-partial-next
(init (mv-nth 0 (exists-partial-pre-state-witness s)))
(i (mv-nth 1 (exists-partial-pre-state-witness s))))
(:instance partial-clock-fn-<-partial-next-concretized
(i (mv-nth 1 (exists-partial-pre-state-witness s)))
(p (mv-nth 0 (exists-partial-pre-state-witness s))))
(:instance no-partial-external-to-no-partial-external
(p (mv-nth 0 (exists-partial-pre-state-witness s)))
(i (mv-nth 1 (exists-partial-pre-state-witness s))))))))
(local
(in-theory (enable partial-run-+-reduction)))
(local
(in-theory (disable weird-partial-run-+-reduction)))
(local
(defthm partial-clock-fn-is-the-smallest
(implies (and (natp i)
(< i (partial-clock-fn p))
(partial-external (partial-run p (1+ i)))
(partial-pre p))
(equal (partial-clock-fn p) (1+ i)))
:hints (("Goal"
:cases ((equal (partial-clock-fn p) (1+ i))
(> (partial-clock-fn p) (1+ i))))
("Subgoal 2"
:in-theory (disable partial-clock-fn-is-natp)
:use ((:instance partial-clock-fn-is-natp
(s p)))))))
(local
(defthm partial-run-1-is-partial-next
(equal (partial-run s 1)
(partial-next s))
:hints (("Goal"
:use ((:instance (:definition partial-run)
(n 1)))))))
(local
(defthm partial-external-to-not-no-partial-external
(implies (partial-external (partial-next s))
(not (no-partial-external-partial-run s)))
:hints (("Goal"
:use ((:instance no-partial-external-partial-run-necc
(i 1)))))))
(DEFTHM partial-inv-and-partial-external-implies-partial-post
(implies (and (partial-inv s)
(partial-external (partial-next s)))
(partial-post (partial-next s)))
:hints (("Goal"
:do-not '(eliminate-destructors generalize fertilize)
:in-theory (e/d (exists-partial-pre-state)
(partial-run-+-reduction standard-theorem-for-partial-clocks-2
fix nfix))
:use ((:instance partial-run-natp-partial-next
(init (mv-nth 0 (exists-partial-pre-state-witness s)))
(i (mv-nth 1 (exists-partial-pre-state-witness s))))
(:instance standard-theorem-for-partial-clocks-2
(s (mv-nth 0 (exists-partial-pre-state-witness s)))
(i (1+ (mv-nth 1 (exists-partial-pre-state-witness s)))))))))
|