1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
|
; Fastnumio - Efficient hex string I/O ops for Common Lisp streams
; Copyright (C) 2015 Centaur Technology
;
; Contact:
; Centaur Technology Formal Verification Group
; 7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
; http://www.centtech.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Jared Davis <jared@centtech.com>
(in-package "FASTNUMIO")
;(declaim (optimize (safety 3) (speed 0) (space 0)))
(declaim (optimize (speed 3) (space 1) (safety 0)))
; ----------------------------------------------------------------------------
;
; Supporting Utilities
;
; ----------------------------------------------------------------------------
(assert (< (char-code #\0) (char-code #\A)))
(assert (< (char-code #\A) (char-code #\a)))
(declaim (inline hex-digit-val))
(defun hex-digit-val (x)
(declare (type character x))
(let ((code (char-code x)))
(declare (type fixnum code))
(cond ((<= code #.(char-code #\9))
(and (<= #.(char-code #\0) code)
(the fixnum (- code #.(char-code #\0)))))
((<= code #.(char-code #\F))
(and (<= #.(char-code #\A) code)
(the fixnum (- code #.(- (char-code #\A) 10)))))
(t
(and (<= code #.(char-code #\f))
(<= #.(char-code #\a) code)
(the fixnum (- code #.(- (char-code #\a) 10))))))))
; ----------------------------------------------------------------------------
;
; Fast Hex Reading
;
; ----------------------------------------------------------------------------
; (read-hex stream) reads a hex value (e.g., FF9900) from stream and returns it
; as an integer, or returns NIL to indicate the stream does not start with a
; hex value. More details:
;
; - We accept digits in either case, e.g., 37ff or 37FF or 37Ff are all fine.
;
; - Any leading zeroes are accepted and ignored.
;
; - No hex prefixes are expected or accepted, e.g., if your stream contains
; things like #FF9900, 0xFF9900, or #xFF9900, then you will need to do
; something else to strip these leading #, 0x, or #x prefixes first.
;
; - No underscores or whitespace within the number are accepted.
;
; Internally we read things using read-char.
;
; - Although read-sequence is faster, it seems difficult to provide a nice
; interface if we use it since it may read past the number we're parsing
;
; - Read-line seems to be using a lot of memory. CCL's read-line also seems
; very slow, i.e., ~6x slower than SBCL's. So it seems better to read the
; stream directly instead of parse a string. (Well, we could provide
; functions for both, of course.)
;
; We also prefer to use unread-char instead of peek-char. This appears to be
; quite a bit faster on both CCL and SBCL.
; The general idea behind our generic read-hex function is:
;
; (1) read in as many hex characters (nibbles) as we can into an
; (ideally stack-allocated) array,
; (2) merge the nibbles in this array into a fixnum/bignum.
;
; To optimize for Lisps where we have 60+-bit fixnums, we merge the nibbles
; into contiguous, 60-bit chunks. We then merge those chunks together, using
; something like;
;
; finalans |= chunk << n*60
;
; This merging results in ephemeral/garbage bignums, which is unfortunate.
; However, it requires only one ephemeral bignum for each 60-bits of data,
; whereas merging the nibbles naively would require a bignum for each 4-bit
; chunk of data.
(defun assemble-nibbles-60 (pos nibarr)
(declare (type (array (unsigned-byte 4) *) nibarr)
(type fixnum pos))
;; POS is initially how many valid nibbles we have. I.e., nibarr[pos-1]
;; is the last valid nibble.
(let ((finalans 0) ;; Accumulator for the answer (perhaps a bignum)
(chunkidx 0) ;; Offset into finalans for this chunk (0, 60, ...)
(chunk 0) ;; Value of the current chunk we're assembling
(chunkpos 0) ;; Nibble offset into the current chunk (0, 4, ...)
)
(declare (type (unsigned-byte 60) chunk)
(type (unsigned-byte 8) chunkpos)
(type fixnum chunkidx)
(type unsigned-byte finalans))
(loop do
;(format t "FINAL ~x, CHUNK ~x, CP ~d, CIDX ~d, POS ~d~%"
; finalans chunk chunkpos chunkidx pos)
(when (eql pos 0)
(loop-finish))
(when (eql chunkpos 60)
;; Merge the chunk we've gotten into the final answer. -- ephemeral bignums :(
;; finalans |= (chunk << chunkidx * 60)
(setf finalans
(the unsigned-byte
(logior (the unsigned-byte finalans)
(the unsigned-byte (ash chunk (the fixnum chunkidx))))))
;; Start a new chunk.
(incf chunkidx 60)
(setq chunk 0)
(setq chunkpos 0))
(decf pos)
;(format t "This nibble: ~x~%" (aref nibarr pos))
(setq chunk ;; chunk |= nibarr[pos] << chunkpos -- fixnum on 60+-bit impls
(the (unsigned-byte 60)
(logior (the (unsigned-byte 60) chunk)
(the (unsigned-byte 60)
(ash (the (unsigned-byte 4) (aref nibarr pos))
(the (unsigned-byte 8) chunkpos))))))
(incf chunkpos 4))
;(format t "Final assembly. FINAL ~x, CHUNK ~x, CIDX ~d~%" finalans chunk chunkidx)
(let ((ans (the unsigned-byte
(logior (the unsigned-byte finalans)
(the unsigned-byte (ash chunk (the fixnum chunkidx)))))))
;(format t "ANS: ~x~%" ans)
ans)))
(defmacro nib-array-init-size () 128)
(declaim (inline read-nibbles))
(defun read-nibbles (nibarr stream)
;; Returns (values some-nibble-p end nibarr)
;; some-nibble-p: were there any valid hex chars, including leading zeroes?
;; end: end of the valid area of the nibble array
;; counts how many nibbles we found, omitting leading nibbles
;; nibarr: updated nibble array
(declare (type (array (unsigned-byte 4) *) nibarr))
(let* ((end 0)
(char)
(nibble)
(nibarrlen (nib-array-init-size))
(some-nibble-p nil))
(declare (type fixnum end nibarrlen)
(type (array (unsigned-byte 4) *) nibarr))
;; Begin by skipping any leading 0 digits. (They screw up length-based
;; computations.)
(loop do
(setq char (read-char stream nil))
(setq nibble (and char (hex-digit-val char)))
(unless nibble
(loop-finish))
(setq some-nibble-p t)
(unless (eql nibble 0)
(loop-finish)))
;; Read as many hex digits as are available into the nibble array. We
;; don't know how many digits we will need, so grow the array if necessary.
(loop do
(unless nibble
(loop-finish))
(when (eql end nibarrlen)
;; Need more space, grow the array. This will generally ruin stack
;; allocation. However, we can at least get the benefit of a stack
;; allocation for the initial array, which will be sufficient for
;; numbers up to some reasonable size.
(setq nibarrlen (ash nibarrlen 1))
;(format t "Growing array to ~s~%" nibarrlen)
(setq nibarr (adjust-array nibarr nibarrlen)))
(setf (aref nibarr end) nibble)
;; advance to next character
(incf end)
(setq char (read-char stream nil))
(setq nibble (and char (hex-digit-val char))))
;; Unread the last (non-hex) character. Special case: char is NIL exactly
;; when we're at EOF, in which case we don't need to unread anything.
(when char (unread-char char stream))
(values some-nibble-p end nibarr)))
(defun read-hex (stream)
(let ((nibarr (make-array (nib-array-init-size)
:element-type '(unsigned-byte 4))))
(declare (dynamic-extent nibarr)
(type (array (unsigned-byte 4) *) nibarr))
(multiple-value-bind
(some-nibble-p end nibarr)
(read-nibbles nibarr stream)
(declare (type fixnum end)
(type (array (unsigned-byte 4) *) nibarr))
(when (eql end 0)
(return-from read-hex
(if some-nibble-p
;; No real digits but at least some zero digits,
;; so the number is 0.
0
;; Failed to read any hex digits. Just fail.
nil)))
;; Found hex digits and already decoded their nibbles into nibarr. The
;; nibble in nibarr[0] is the most significant. I now want to chunk them
;; up into fixnum-sized blobs.
(assemble-nibbles-60 end nibarr))))
; ----------------------------------------------------------------------------
;
; Scary Unsafe Hex Reading
;
; ----------------------------------------------------------------------------
; To try to get better performance, we go under the hood and create bignums
; from whole cloth. We can reuse the nibble array stuff from above and just
; write a custom function to combine the nibbles.
;
; We start with some supporting code for chunking nibbles into u32s. This
; code will be useful on both CCL (where bignums are made up out of 32-bit
; chunks) and on SBCL (where they are made of 64-bit chunks).
;
; Our starting point is the nibble array, which is populated from [0...END)
; with valid hex nibbles, with the most significant nibble at nibarr[0]. It
; is easy to see how many 64/32-bit chunks we will need: we can fit 16/8
; nibbles into such a chunk. The only trickiness is that we will need to
; construct the least significant 32-bit chunks from the END of the nibble
; array.
;
; Example: suppose we found 11 nibbles. Then there are nibbles in nibarr[0]
; through nibarr[10]. In this case, the least significant u32 is found in
; nibarr[3]...nibarr[10], with its most significant nibble in nibarr[3] and its
; least significant nibble in nibarr[10].
(defun u32-from-nibarr (end nibarr)
;; This extracts up to 8 nibbles (32 bits) from the nibble array, reading
;; backwards from index END-1. END should not be zero but may be the
;; array length.
(declare (type fixnum end)
(type (array (unsigned-byte 4) *) nibarr))
(let ((ans 0)
(start (max 0 (- end 8))))
(declare (type (unsigned-byte 32) ans)
(type fixnum start))
(loop do
(setq ans (the (unsigned-byte 32)
(logior (the (unsigned-byte 32) (ash ans 4))
(aref nibarr start))))
(incf start)
(when (eql start end)
(loop-finish)))
ans))
;; Basic demo/test
(let ((nibarr (make-array 16 :element-type '(unsigned-byte 4))))
;; Populate nibarr with FEDCBA98765
(setf (aref nibarr 0) #xf)
(setf (aref nibarr 1) #xe)
(setf (aref nibarr 2) #xd)
(setf (aref nibarr 3) #xc)
(setf (aref nibarr 4) #xb)
(setf (aref nibarr 5) #xa)
(setf (aref nibarr 6) #x9)
(setf (aref nibarr 7) #x8)
(setf (aref nibarr 8) #x7)
(setf (aref nibarr 9) #x6)
(setf (aref nibarr 10) #x5)
(assert (equal (u32-from-nibarr 11 nibarr) #xCBA98765))
(assert (equal (u32-from-nibarr 10 nibarr) #xDCBA9876))
(assert (equal (u32-from-nibarr 9 nibarr) #xEDCBA987))
(assert (equal (u32-from-nibarr 8 nibarr) #xFEDCBA98))
(assert (equal (u32-from-nibarr 7 nibarr) #xFEDCBA9))
(assert (equal (u32-from-nibarr 6 nibarr) #xFEDCBA))
(assert (equal (u32-from-nibarr 5 nibarr) #xFEDCB))
(assert (equal (u32-from-nibarr 4 nibarr) #xFEDC))
(assert (equal (u32-from-nibarr 3 nibarr) #xFED))
(assert (equal (u32-from-nibarr 2 nibarr) #xFE))
(assert (equal (u32-from-nibarr 1 nibarr) #xF))
)
#+(and sbcl 64-bit)
(progn
;; Basic sanity checking to see if we still understand the internal API.
(assert (equal sb-bignum::digit-size 64))
(assert (equal (sb-bignum::%bignum-ref (1- (expt 2 80)) 0) (1- (expt 2 64))))
(assert (equal (sb-bignum::%bignum-ref (1- (expt 2 80)) 1) (1- (expt 2 16))))
(assert (typep (1- (expt 2 64)) 'sb-bignum::bignum-element-type))
(let* ((x #xfeedf00ddeadd00ddeadbeef99998888)
(digit (sb-bignum::%bignum-ref x 0))
(high32 (sb-bignum::%digit-logical-shift-right digit 32))
(low32 (logand digit #xFFFFFFFF)))
(assert (typep high32 'fixnum))
(assert (typep low32 'fixnum))
(assert (typep high32 '(unsigned-byte 32)))
(assert (typep low32 '(unsigned-byte 32)))
(assert (equal high32 #xdeadbeef))
(assert (equal low32 #x99998888))))
#||
;; This is just scratchwork that may be useful when trying to understand SBCL's
;; bignum representation.
#+(and sbcl 64-bit)
(defun construct-u64-from-u32s (high low)
(declare (type (unsigned-byte 32) high low))
(if (logbitp 31 high)
;; Top bit is 1, so we need an extra digit to avoid treating this as unsigned.
(let ((ans (sb-bignum:%allocate-bignum 2))
(digit (sb-bignum::bignum-logical-ior (sb-bignum::bignum-ashift-left high 32) low)))
(setf (sb-bignum::%bignum-ref ans 0) digit)
(setf (sb-bignum::%bignum-ref ans 1) 0)
ans)
;; The top bit is 0, so we don't need an extra digit.
(let ((ans (sb-bignum:%allocate-bignum 1))
(digit (sb-bignum::bignum-logical-ior (sb-bignum::bignum-ashift-left high 32) low)))
(setf (sb-bignum::%bignum-ref ans 0) digit))))
(defun my-test (n)
(declare (type (unsigned-byte 64) n))
(let* ((high (ash n -32))
(low (logand n (1- (expt 2 32))))
(ans (construct-u64-from-u32s high low)))
(assert (typep ans '(unsigned-byte 64)))
(assert (equal ans n))
(if (typep ans 'fixnum)
(format t "Fixnum~%")
(format t "Bignum~%"))))
(my-test (1- (expt 2 64)))
(my-test #x1000000000000000)
(loop for i from 1 to 10000 do (my-test i))
(loop for i from (- (expt 2 62) 1000) to (+ (expt 2 62) 1000) do (my-test i))
(loop for i from (- (expt 2 63) 1000) to (+ (expt 2 63) 1000) do (my-test i))
(loop for i from (- (expt 2 64) 1000) to (1- (expt 2 64)) do (my-test i))
||#
#+(and sbcl 64-bit)
(defun bignum-from-nibarr (end nibarr)
(declare (type (array (unsigned-byte 4) *) nibarr)
(type fixnum end))
(let* ((bits-needed (* 4 end))
(u64s-needed (+ 1 (ash (1- bits-needed) -6)))
(u64s-for-normalize u64s-needed)
(low32 0)
(high32 0)
(u64pos 0)
(ans))
(declare (type (unsigned-byte 32) low32 high32)
(type fixnum u64pos))
; (format t "~d nibbles, so ~d bits needed, so alloc ~d u64s~%" end bits-needed u64s-needed)
; (format t "End mod 16 is ~d~%" (logand end #xF))
; (format t "Most significant nibble is ~d~%" (aref nibarr 0))
(cond ((and (eql (the (unsigned-byte 4) (logand end #xF)) 0)
(> (the (unsigned-byte 4) (aref nibarr 0)) 7))
;; The number of nibbles we have is a multiple of 16, and the most
;; significant nibble (nibarr[0]) is large enough that its most
;; significant bit is set. We need an extra, leading zero bignum
;; digit because otherwise this will look like a signed number.
; (format t "Need extra digit to avoid signed result.~%")
(setq ans (sb-bignum:%allocate-bignum (+ 1 u64s-needed)))
(setf (sb-bignum::%bignum-ref ans u64s-needed) 0)
(incf u64s-for-normalize))
(t
;; Otherwise, we don't need an extra digit, so just allocate the
;; number of digits that we actually do need.
; (format t "No extra digit is necessary to avoid signedness.~%")
(setq ans (sb-bignum:%allocate-bignum u64s-needed))))
(loop do
; (format t "looping, end = ~d~%" end)
(when (eql end 0)
(loop-finish))
; (format t "reading low~%")
(setq low32 (u32-from-nibarr end nibarr))
(setq end (max 0 (- end 8)))
; (format t "got low = #x~x, end is now ~d~%" low32 end)
(setq high32 (if (eql end 0)
0
(u32-from-nibarr end nibarr)))
(setq end (max 0 (- end 8)))
; (format t "got high = #x~x, end is now ~d~%" high32 end)
; (format t "Installing chunk ~d <-- #x~x,#x~x~%" u64pos high32 low32)
(setf (sb-bignum::%bignum-ref ans u64pos)
(logior (sb-bignum::%ashl high32 32)
low32))
(incf u64pos))
;; This normalization apparently handles the case where the bignum we are
;; constructing isn't necessary and we can just coerce it into a fixnum.
(setq ans (sb-bignum::%normalize-bignum ans u64s-for-normalize))
;;(assert (equal u64pos u64s-needed))
; (format t "Ans is #x~x~%" ans)
; (format t "Type-of ans is ~s~%" (type-of ans))
ans))
(defun scary-unsafe-read-hex (stream)
(let ((nibarr (make-array (nib-array-init-size)
:element-type '(unsigned-byte 4))))
(declare (dynamic-extent nibarr)
(type (array (unsigned-byte 4) *) nibarr))
(multiple-value-bind
(some-nibble-p end nibarr)
(read-nibbles nibarr stream)
(declare (type fixnum end)
(type (array (unsigned-byte 4) *) nibarr))
(when (eql end 0)
(return-from scary-unsafe-read-hex
(if some-nibble-p
;; No real digits but at least some zero digits,
;; so the number is 0.
0
;; Failed to read any hex digits. Just fail.
nil)))
#+(not (and sbcl 64-bit))
(assemble-nibbles-60 end nibarr)
#+(and sbcl 64-bit)
(if (< end 16)
;; Don't bother with any bignum nonsense
(assemble-nibbles-60 end nibarr)
(bignum-from-nibarr end nibarr)))))
;; (defun single-test (n)
;; (let* ((str (let ((stream (make-string-output-stream)))
;; (format stream "~x" n)
;; (get-output-stream-string stream)))
;; (ans (let ((stream (make-string-input-stream str)))
;; (scary-unsafe-read-hex stream))))
;; (equal n ans)))
; ----------------------------------------------------------------------------
;
; Basic Correctness Tests
;
; ----------------------------------------------------------------------------
(let ((tests (append
(list #xbeef
#x1beef
#x12beef
#x123beef
#xdeadbeef
#x1deadbeef
#x12deadbeef
#x123deadbeef
#x1234deadbeef
#x12345deadbeef
#x123456deadbeef
#x1234567deadbeef
(- (expt 2 60) 3)
(- (expt 2 60) 2)
(- (expt 2 60) 1)
#x5544FEDCBA9876543210
(expt 2 60)
(+ (expt 2 60) 1)
(+ (expt 2 60) 2)
(+ (expt 2 60) 3)
(+ (expt 2 60) 4)
(+ (expt 2 60) 15)
(+ (expt 2 60) 16)
(+ (expt 2 60) #xf0)
(expt 2 64)
(1- (expt 2 64))
(expt 2 80)
(1- (expt 2 80)))
(loop for i from 0 to 100 collect i)
(loop for i from 0 to 200 collect (ash 1 i))
(loop for i from 0 to 200 collect (1- (ash 1 i)))
(loop for n from 1 to 200 append ;; borders near powers of 2
(loop for i from (max 0 (- (expt 2 n) 10))
to (+ (expt 2 n) 10)
collect i))
(loop for i from 1 to 100 collect (random (expt 2 1024)))
)))
(loop for test in tests do
;(format t "Testing ~x~%" test)
(let* ((str (let ((stream (make-string-output-stream)))
(format stream "~x" test)
(get-output-stream-string stream)))
(v1 (let ((stream (make-string-input-stream str)))
(read-hex stream)))
(v2 (let ((stream (make-string-input-stream str)))
(scary-unsafe-read-hex stream))))
(or (equal test v1)
(error "V1 Failure: ~x --> str ~s, v1 ~x" test str v1))
(or (equal test v2)
(error "V2 Failure: ~x --> str ~s, v2 ~x" test str v2)))
;; Test leading zero
(let* ((str (let ((stream (make-string-output-stream)))
(format stream "0~x" test)
(get-output-stream-string stream)))
(v1 (let ((stream (make-string-input-stream str)))
(read-hex stream)))
(v2 (let ((stream (make-string-input-stream str)))
(scary-unsafe-read-hex stream))))
(or (equal test v1)
(error "V1 Failure: ~x --> str ~s, v1 ~x" test str v1))
(or (equal test v2)
(error "V2 Failure: ~x --> str ~s, v2 ~x" test str v2)))
;; Two leading zeroes
(let* ((str (let ((stream (make-string-output-stream)))
(format stream "00~x" test)
(get-output-stream-string stream)))
(v1 (let ((stream (make-string-input-stream str)))
(read-hex stream)))
(v2 (let ((stream (make-string-input-stream str)))
(scary-unsafe-read-hex stream))))
(or (equal test v1)
(error "V1 Failure: ~x --> str ~s, v1 ~x" test str v1))
(or (equal test v2)
(error "V2 Failure: ~x --> str ~s, v2 ~x" test str v2))))
:ok)
#||
; I believe that we could do much better if there were some way to directly
; construct a bignum. Below is a fledgling attempt to write a function to
; do this for X86-64 CCL, but I don't think it's working quite yet, and
; it is certainly scary and fragile to do this.
#+(and Clozure x86-64)
(progn
;; Make sure we still properly understand the fixnum/bignum boundary.
(assert (typep (1- (expt 2 60)) 'fixnum))
(assert (not (typep (expt 2 60) 'fixnum))))
;; #+(and Clozure x86-64)
;; (defun assemble-nibbles-ccl64 (pos nibarr)
;; (declare (type (array (unsigned-byte 4) *) nibarr)
;; (type fixnum pos))
;; (if (<= pos 15)
;; ;; Not going to need a bignum anyway, so no need for anything fancy.
;; (progn
;; (format t "Falling back to assemble-nibbles-60 because there are only ~d chars.~%" pos)
;; (assemble-nibbles-60 pos nibarr))
;; (let ((finalans
;; ;; Create a bignum of the appropriate length. We'll smash its
;; ;; bits in a moment. We need room for 4*pos nibbles.
;; (ccl::%allocate-bignum the unsigned-byte (ash 1 (1- (the fixnum (ash pos 2))))))
;; (chunkidx 0) ;; Offset into finalans for this chunk (0, 1, ...)
;; (chunk 0) ;; Value of the current chunk we're assembling
;; (chunkpos 0) ;; Nibble offset into the current chunk (0, 4, ...)
;; )
;; (declare (type (unsigned-byte 32) chunk)
;; (type (unsigned-byte 8) chunkpos)
;; (type fixnum chunkidx)
;; (type unsigned-byte finalans))
;; (format t "Shift thing is ~x~%" finalans)
;; (format t "VECSIZE is ~d~%" (ccl::uvsize finalans))
;; (loop do
;; (format t "FINAL ~x, CHUNK ~x, CP ~d, CIDX ~d, POS ~d~%"
;; finalans chunk chunkpos chunkidx pos)
;; (when (eql pos 0)
;; (loop-finish))
;; (when (eql chunkpos 32)
;; ;; Merge the chunk we've gotten into the final answer.
;; (setf (ccl::uvref finalans chunkidx) chunk)
;; ;; Start a new chunk.
;; (incf chunkidx 1)
;; (setq chunk 0)
;; (setq chunkpos 0))
;; (decf pos)
;; (format t "This nibble: ~x~%" (aref nibarr pos))
;; (setq chunk ;; chunk |= nibarr[pos] << chunkpos
;; (the (unsigned-byte 32)
;; (logior (the (unsigned-byte 32) chunk)
;; (the (unsigned-byte 32)
;; (ash (the (unsigned-byte 4) (aref nibarr pos))
;; (the (unsigned-byte 8) chunkpos))))))
;; (incf chunkpos 4))
;; (format t "Final assembly. FINAL ~x, CHUNK ~x, CIDX ~d~%" finalans chunk chunkidx)
;; (setf (ccl::uvref finalans chunkidx) chunk)
;; (format t "After final installation: ~x~%" finalans)
;; finalans)))
||#
|