File: bvecp-raw-helpers.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (789 lines) | stat: -rw-r--r-- 20,061 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
; RTL - A Formal Theory of Register-Transfer Logic and Computer Arithmetic
; Copyright (C) 1995-2013 Advanced Mirco Devices, Inc.
;
; Contact:
;   David Russinoff
;   1106 W 9th St., Austin, TX 78703
;   http://www.russsinoff.com/
;
; See license file books/rtl/rel9/license.txt.
;
; Author: David M. Russinoff (david@russinoff.com)

(in-package "ACL2")

(set-enforce-redundancy t)

;Contains bvecp lemmas about the RTL primitives.
;Also contains type lemmas (non-negative integer, natp, etc.)

(include-book "rtl")
(include-book "rtlarr")

(include-book "bits")
(include-book "float")

(local (include-book "base"))

(set-inhibit-warnings "theory")
(local (in-theory nil))

(set-match-free-default :all)

(defun fl (x)
  (declare (xargs :guard (real/rationalp x)))
  (floor x 1))


(defun expo-measure (x)
;  (declare (xargs :guard (and (real/rationalp x) (not (equal x 0)))))
  (cond ((not (rationalp x)) 0)
	((< x 0) '(2 . 0))
	((< x 1) (cons 1 (fl (/ x))))
	(t (fl x))))

(defun expo (x)
  (declare (xargs :guard t
                  :measure (:? x)))
  (cond ((or (not (rationalp x)) (equal x 0)) 0)
	((< x 0) (expo (- x)))
	((< x 1) (1- (expo (* 2 x))))
	((< x 2) 0)
	(t (1+ (expo (/ x 2))))))

;; bits

(defthm bits-nonnegative-integerp-type
  (and (<= 0 (bits x i j))
       (integerp (bits x i j)))
  :rule-classes (:type-prescription))

;this rule is no better than bits-nonnegative-integer and might be worse
(in-theory (disable (:type-prescription bits)))

(defthm bits-bvecp
   (implies (and (<= (+ 1 i (- j)) k)
                 (case-split (integerp k))
                 )
            (bvecp (bits x i j) k)))


;; setbits

(defthm setbits-nonnegative-integer-type
  (and (integerp (setbits x w i j y))
       (<= 0 (setbits x w i j y)))
  :rule-classes (:type-prescription)
  )

;this rule is no better than setbits-nonnegative-integer-type and might be worse:
(in-theory (disable (:type-prescription setbits)))

(defthm setbits-bvecp
  (implies (and (<= w k)
                (case-split (integerp k))
                )
           (bvecp (setbits x w i j y) k)))


;; setbitn

(defthm setbitn-nonnegative-integer-type
  (and (integerp (setbitn x w n y))
       (<= 0 (setbitn x w n y)))
  :rule-classes (:type-prescription)
  )

;this rule is no better than setbits-nonnegative-integer-type and might be worse:
(in-theory (disable (:type-prescription setbitn)))

(defthm setbitn-bvecp
  (implies (and (<= w k)
                (case-split (integerp k)))
           (bvecp (setbitn x w n y) k)))



;; log<

(defthm log<-nonnegative-integer-type
  (and (integerp (log< x y))
       (<= 0 (log< x y)))
  :rule-classes (:type-prescription))

;this rule is no better than log<-nonnegative-integer-type and might be worse
(in-theory (disable (:type-prescription log<)))

(defthm log<-bvecp
  (bvecp (log< x y) 1))


;; log<=

(defthm log<=-nonnegative-integer-type
  (and (integerp (log<= x y))
       (<= 0 (log<= x y)))
  :rule-classes (:type-prescription))

;this rule is no better than log<=-nonnegative-integer-type and might be worse
(in-theory (disable (:type-prescription log<=)))

(defthm log<=-bvecp
  (bvecp (log<= x y) 1))



;; log>

(defthm log>-nonnegative-integer-type
  (and (integerp (log> x y))
       (<= 0 (log> x y)))
  :rule-classes (:type-prescription))

;this rule is no better than log>-nonnegative-integer-type and might be worse
(in-theory (disable (:type-prescription log>)))

(defthm log>-bvecp
  (bvecp (log> x y) 1))



;; log>=

(defthm log>=-nonnegative-integer-type
  (and (integerp (log>= x y))
       (<= 0 (log>= x y)))
  :rule-classes (:type-prescription))

;this rule is no better than log>=-nonnegative-integer-type and might be worse
(in-theory (disable (:type-prescription log>=)))

(defthm log>=-bvecp
  (bvecp (log>= x y) 1))



;; log=

(defthm log=-nonnegative-integer-type
  (and (integerp (log= x y))
       (<= 0 (log= x y)))
  :rule-classes (:type-prescription))

;this rule is no better than log=-nonnegative-integer-type and might be worse
(in-theory (disable (:type-prescription log=)))

(defthm log=-bvecp
  (bvecp (log= x y) 1))



;; log<>

(defthm log<>-nonnegative-integer-type
  (and (integerp (log<> x y))
       (<= 0 (log<> x y)))
  :rule-classes (:type-prescription))

;this rule is no better than log<>-nonnegative-integer-type and might be worse
(in-theory (disable (:type-prescription log<>)))

(defthm log<>-bvecp
  (bvecp (log<> x y) 1))



;; logand1

(defthm logand1-nonnegative-integer-type
  (and (integerp (logand1 x y))
       (<= 0 (logand1 x y)))
  :rule-classes (:type-prescription))

;this rule is no better than logand1-nonnegative-integer-type and might be worse
(in-theory (disable (:type-prescription logand1)))

(defthm logand1-bvecp
  (bvecp (logand1 x y) 1))



;; logior1

(defthm logior1-nonnegative-integer-type
  (and (integerp (logior1 x))
       (<= 0 (logior1 x)))
  :rule-classes (:type-prescription))

;this rule is no better than logior1-nonnegative-integer-type and might be worse
(in-theory (disable (:type-prescription logior1)))

(defthm logior1-bvecp
  (bvecp (logior1 x) 1))



;; logxor1

(defthm logxor1-nonnegative-integer-type
  (and (integerp (logxor1 x))
       (<= 0 (logxor1 x)))
  :rule-classes (:type-prescription))

;this rule is no better than logxor1-nonnegative-integer-type and might be worse
(in-theory (disable (:type-prescription logxor1)))

(defthm logxor1-bvecp
  (bvecp (logxor1 x) 1))



;; lnot

(defthm lnot-nonnegative-integer-type
  (and (integerp (lnot x n))
       (<= 0 (lnot x n)))
  :rule-classes ((:type-prescription :typed-term (lnot x n))))

;lnot-nonnegative-integer-type is strictly better, and we don't need both
(in-theory (disable (:type-prescription lnot)))

(defthm lnot-bvecp
  (implies (and (<= n k)
                (case-split (integerp k)))
           (bvecp (lnot x n) k)))


;; bitn

(defthm bitn-nonnegative-integer
  (and (integerp (bitn x n))
       (<= 0 (bitn x n)))
  :rule-classes ( :type-prescription))

;this rule is no better than bitn-nonnegative-integer-type and might be worse
(in-theory (disable (:type-prescription bitn)))

(defthm bitn-bvecp
  (implies (and (<= 1 k)
                (case-split (integerp k)))
           (bvecp (bitn x n) k)))

;; shft

(defthm shft-nonnegative-integer-type
  (and (integerp (shft x s l))
       (<= 0 (shft x s l)))
  :rule-classes (:type-prescription))

;(:type-prescription shft) is no better than shft-nonnegative-integer-type and might be worse:
(in-theory (disable (:type-prescription shft)))

(defthm shft-bvecp
  (implies (and (<= n k)
                (case-split (integerp k)))
           (bvecp (shft x s n) k)))

;; cat

(defthm cat-nonnegative-integer-type
  (and (integerp (CAT X m Y N))
       (<= 0 (CAT X m Y N)))
  :rule-classes (:type-prescription))

(in-theory (disable (:type-prescription cat-nonnegative-integer-type)))

(defthm cat-bvecp
  (implies (and (<= (+ m n) k)
                (case-split (integerp k)))
           (bvecp (cat x m y n) k)))


;; logand

(defthm logand-integer-type-prescription
  (integerp (logand i j))
  :rule-classes (:type-prescription))

(defthm logand-non-negative-integer-type-prescription
  (implies (or (<= 0 i)
               (<= 0 j))
           (and (<= 0 (logand i j))
                (integerp (logand i j))))
  :rule-classes (:type-prescription))

(defthm logand-non-negative
  (implies (or (<= 0 x)
               (<= 0 y)
               )
           (<= 0 (logand x y))))

(defthm bvecp-logand-alternate
  (implies (and (integerp n)
                (<= 0 n)
                (bvecp x n)
                (bvecp y n))
           (bvecp (logand x y) n)))


;; logior

(defthm logior-integer-type-prescription
  (integerp (logior i j))
  :rule-classes (:type-prescription))

(defthm logior-non-negative-integer-type-prescription
  (implies (and (<= 0 i)
                (<= 0 j))
           (and (<= 0 (logior i j))
                (integerp (logior i j))))
  :rule-classes (:type-prescription))

(defthm logior-non-negative
  (implies (and (<= 0 i)
                (<= 0 j)
                )
           (<= 0 (logior i j))))

(defthm bvecp-logior-alternate
  (implies (and (integerp n)
                (<= 0 n)
                (bvecp x n)
                (bvecp y n))
           (bvecp (logior x y) n)))

;; logxor
;!!fix this to have lemmas like logand,logior above
(defthm natp-logxor-alternate-2
    (implies (and (integerp x) (<= 0 x)
		  (integerp y) (<= 0 y))
	     (and (integerp (logxor x y))
		  (<= 0 (logxor x y))))
  :rule-classes (:rewrite :type-prescription))

(defthm bvecp-logxor-alternate
  (implies (and (integerp n)
                (<= 0 n)
                (bvecp x n)
                (bvecp y n))
           (bvecp (logxor x y) n)))


;; mulcat

(defund mulcat (l n x)

; We introduce mbe not because we want particularly fast execution, but because
; the existing logic definition does not satisfy the guard of cat, which can't
; be changed because of the guard of bits.

  (declare (xargs :guard (and (integerp l)
                              (< 0 l)
                              (acl2-numberp n)
                              (natp x))))
  (mbe :logic (if (and (integerp n) (> n 0))
                  (cat (mulcat l (1- n) x)
                       (* l (1- n))
                       x
                       l)
                0)
       :exec  (cond ((eql n 1)
                     (bits x (1- l) 0))
                    ((and (integerp n) (> n 0))
                     (cat (mulcat l (1- n) x)
                          (* l (1- n))
                          x
                          l))
                    (t 0))))

(defthm mulcat-nonnegative-integer-type
  (and (integerp (mulcat l n x))
       (<= 0 (mulcat l n x)))
  :rule-classes (:type-prescription))

;this rule is no better than mulcat-nonnegative-integer-type and might be worse
(in-theory (disable (:type-prescription mulcat-nonnegative-integer-type)))

(defthm mulcat-bvecp
  (implies (and (>= p (* l n))
                (case-split (integerp p))
                (case-split (natp l)))
           (bvecp (mulcat l n x) p)))


;; mod-

;finish this section (will have to change comp2-inv?)

#|
(defthm mod--nonnegative-integer-type
  (and (integerp (mod- l n x))
       (<= 0 (mod- l n x)))
  :rule-classes (:type-prescription)
  )

;this rule is no better than mod--nonnegative-integer-type and might be worse
(in-theory (disable (:type-prescription mod-)))
|#

#| mod- is now a macro!
(defthm mod--bvecp
  (implies (and (bvecp x n)
                (bvecp y n)
                (integerp n)
                (>= n 0))
           (bvecp (mod- x y n) n)))
|#

;; encode

(defthm encode-nonnegative-integer-type
  (and (integerp (encode x n))
       (<= 0 (encode x n)))
  :rule-classes (:type-prescription))

;this rule is no better than encode-nonnegative-integer-type and might be worse:
(in-theory (disable (:type-prescription encode)))

(defthm encode-bvecp-old
  (implies (and (<= (+ 1 (expo n)) k)
                (case-split (integerp k)))
           (bvecp (encode x n) k)))


;; decode

(defthm decode-nonnegative-integer-type
  (and (integerp (decode x n))
       (<= 0 (decode x n)))
  :rule-classes (:type-prescription))

;this rule is no better than decode-nonnegative-integer-type and might be worse:
(in-theory (disable (:type-prescription decode)))

(defthm decode-bvecp
  (implies (and (<= n k)
                (case-split (integerp k))
                )
           (bvecp (decode x n) k)))





(DEFTHM UNKNOWN-upper-bound
  (< (UNKNOWN KEY SIZE N) (expt 2 size))
  :RULE-CLASSES
  (:REWRITE (:linear :trigger-terms ((UNKNOWN KEY SIZE N)))))

;BOZO dup?
(defthm bv-arrp-implies-nonnegative-integerp
  (implies (bv-arrp obj size)
           (and (INTEGERP (ag index obj))
                (<= 0 (ag index obj))))
  :rule-classes (:rewrite :type-prescription)
  )


; land

(defthm land-nonnegative-integer-type
  (and (integerp (land x y n))
       (<= 0 (land x y n)))
  :rule-classes (:type-prescription))

;(:type-prescription land) is no better than land-nonnegative-integer-type and might be worse:
(in-theory (disable (:type-prescription binary-land)))

;drop this if we plan to keep natp enabled?
(defthm land-natp
  (natp (land x y n)))

(defthm land-bvecp
  (implies (and (<= n k)
                (case-split (integerp k)))
           (bvecp (land x y n) k)))

;; lior


(defthm lior-nonnegative-integer-type
  (and (integerp (lior x y n))
       (<= 0 (lior x y n)))
  :rule-classes (:type-prescription))

;(:type-prescription lior) is no better than lior-nonnegative-integer-type and might be worse:
(in-theory (disable (:type-prescription binary-lior)))

;drop this if we plan to keep natp enabled?
(defthm lior-natp
  (natp (lior x y n)))

(defthm lior-bvecp
  (implies (and (<= n k)
                (case-split (integerp k)))
           (bvecp (lior x y n) k)))

;; lxor


(defthm lxor-nonnegative-integer-type
  (and (integerp (lxor x y n))
       (<= 0 (lxor x y n)))
  :rule-classes (:type-prescription))

;(:type-prescription lxor) is no better than lxor-nonnegative-integer-type and might be worse:
(in-theory (disable (:type-prescription binary-lxor)))

;drop this if we plan to keep natp enabled?
(defthm lxor-natp
  (natp (lxor x y n)))

(defthm lxor-bvecp
  (implies (and (<= n k)
                (case-split (integerp k)))
           (bvecp (lxor x y n) k)))

;; cat


(defthm cat-nonnegative-integer-type
  (and (integerp (CAT X m Y N))
       (<= 0 (CAT X m Y N)))
  :rule-classes (:type-prescription)
  )

;this rule is no better than cat-nonnegative-integer-type and might be worse
(in-theory (disable (:type-prescription binary-cat)))

;just a rewrite rule
(defthm cat-natp
  (natp (cat x m y n)))

(defthm cat-bvecp
  (implies (and (<= (+ m n) k)
                (case-split (integerp k)))
           (bvecp (cat x m y n) k)))

;would like to remove some of this stuff

;;;;;;;;;;;;;;;;;;; other helpful lemmas

(defthm nonneg-+
  (implies (and (<= 0 x)
                (<= 0 y))
           (<= 0 (+ x y))))

(defthm integerp-+
  (implies (and (integerp x)
                (integerp y))
           (integerp (+ x y))))

#|
;should be a forward-chaining rule?
(defthm bvecp-implies-natp
  (implies (bvecp x k)
           (and (integerp x)
                (>= x 0))))

;free var
;should be a forward-chaining rule?
(defthm bvecp-implies-rationalp
  (implies (bvecp x k)
           (rationalp x)))
|#

;why do we have this?
(defthm unknown-upper-bound
  (< (unknown key size n) (expt 2 size))
  :rule-classes
  (:rewrite (:linear :trigger-terms ((unknown key size n)))))

(defthm bv-arrp-implies-nonnegative-integerp
  (implies (bv-arrp obj size)
           (and (INTEGERP (ag index obj))
                (<= 0 (ag index obj))))
  :rule-classes (:rewrite :type-prescription))

;(local (in-theory (enable floor-fl)))

;These next two are for the bus unit bvecp lemmas:

;could use (local (in-theory (enable expt-compare-with-double)))
;remove?
(defthm bits-does-nothing-hack
  (implies (and (< x (expt 2 i))
                (integerp x)
                (<= 0 x)
                (integerp i)
                (<= 0 i))
           (equal (BITS (* 2 x) i 0)
                  (* 2 x))))

;remove?
(defthm bits-does-nothing-hack-2
  (implies (and (< x (expt 2 i))
                (integerp x)
                (<= 0 x)
                (integerp i)
                (<= 0 i))
           (equal (bits (+ 1 (* 2 x)) i 0)
                  (+ 1 (* 2 x)))))


;is this one too expensive?
(defthm bvecp-def
  (implies (and (< x (expt 2 k))
                (integerp x)
                (<= 0 x)
                )
           (bvecp x k))
  :rule-classes ((:rewrite :backchain-limit-lst (1 nil nil))))


; The two events following the next local include-book were added by Matt
; K. June 2004: Some proofs require calls of expt to be evaluated, but some
; calls are just too large (2^2^n for large n).  So we use the following hack,
; which allows calls of 2^n for n<130 to be evaluated even when the
; executable-counterpart of expt is disabled.  The use of 130 is somewhat
; arbitrary, chosen in the hope that it suffices for relieving of hyps related
; to widths of bit vectors


(defun expt-exec (r i)
  (declare (xargs :guard
                  (and (acl2-numberp r)
                       (integerp i)
                       (not (and (eql r 0) (< i 0))))))
  (mbe :logic (hide (expt r i)) ; hide may avoid potential loop
       :exec (expt r i)))

(defthm expt-2-evaluator
  (implies (syntaxp (and (quotep n)
                         (natp (cadr n))
                         (< (cadr n) 130)
                         ))
           (equal (expt 2 n)
                  (expt-exec 2 n))))


;remove these?


;;;;;;;;;;;;;;;;;;; We can probably eliminate the following if the translator
;;;;;;;;;;;;;;;;;;; would always use 0 instead of nil when case/casex
;;;;;;;;;;;;;;;;;;; statements have no default.

;maybe leave this one?

#|
(defthm bvecp-1-values
  (implies (and (bvecp x 1)
                (not (equal x 0)))
           (equal (equal x 1) t)))

(defthm bvecp-2-values
  (implies (and (bvecp x 2)
                (not (equal x 2))
                (not (equal x 1))
                (not (equal x 0)))
           (equal (equal x 3) t)))

(defthm bvecp-3-values
  (implies (and (bvecp x 3)
                (not (equal x 6))
                (not (equal x 5))
                (not (equal x 4))
                (not (equal x 3))
                (not (equal x 2))
                (not (equal x 1))
                (not (equal x 0)))
           (equal (equal x 7) t)))

(defthm bvecp-4-values
  (implies (and (bvecp x 4)
                (not (equal x 14))
                (not (equal x 13))
                (not (equal x 12))
                (not (equal x 11))
                (not (equal x 10))
                (not (equal x 9))
                (not (equal x 8))
                (not (equal x 7))
                (not (equal x 6))
                (not (equal x 5))
                (not (equal x 4))
                (not (equal x 3))
                (not (equal x 2))
                (not (equal x 1))
                (not (equal x 0)))
           (equal (equal x 15) t)))

(defthm bvecp-5-values
  (implies (and (bvecp x 5)
                (not (equal x 30))
                (not (equal x 29))
                (not (equal x 28))
                (not (equal x 27))
                (not (equal x 26))
                (not (equal x 25))
                (not (equal x 24))
                (not (equal x 23))
                (not (equal x 22))
                (not (equal x 21))
                (not (equal x 20))
                (not (equal x 19))
                (not (equal x 18))
                (not (equal x 17))
                (not (equal x 16))
                (not (equal x 15))
                (not (equal x 14))
                (not (equal x 13))
                (not (equal x 12))
                (not (equal x 11))
                (not (equal x 14))
                (not (equal x 13))
                (not (equal x 12))
                (not (equal x 11))
                (not (equal x 10))
                (not (equal x 9))
                (not (equal x 8))
                (not (equal x 7))
                (not (equal x 6))
                (not (equal x 5))
                (not (equal x 4))
                (not (equal x 3))
                (not (equal x 2))
                (not (equal x 1))
                (not (equal x 0)))
           (equal (equal x 31) t)))
|#

#|
;can remove these two?
(defthm natp-*
  (implies (and (integerp x)
                (>= x 0)
                (integerp y)
                (>= y 0))
           (and (integerp (* x y))
                (>= (* x y) 0))))

(defthm natp-+
  (implies (and (integerp x)
                (>= x 0)
                (integerp y)
                (>= y 0))
           (and (integerp (+ x y))
                (>= (+ x y) 0))))
|#

#|
;drop?
(defthm bits-bvecp-fw
  (implies (equal n (- (1+ i) j))
           (bvecp (bits x i j) n))
  :rule-classes
  ((:forward-chaining :trigger-terms ((bits x i j)))))
|#