1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
|
(in-package "ACL2")
(include-book "utils")
(include-book "basic-def")
(include-book "model")
(deflabel begin-table-def)
; The valid pipeline stages in this machine are latch1, latch2 and
; retire.
(defun stage-p (stg)
(declare (xargs :guard t))
(or (equal stg 'latch1) (equal stg 'latch2) (equal stg 'retire)))
(in-theory (disable proj flushed? stage-p))
; The definition of MAETT entry which represents an instruction.
; Only a few fields are required for this example.
; Field Description
; stg The current stage of the represented instruction.
; pre-ISA The ISA state before the execution of this instruction.
; post-ISA The ISA state after the execution of this instruction.
(defstructure INST
(stg (:assert (stage-p stg) :rewrite))
(pre-ISA (:assert (ISA-state-p pre-ISA) :rewrite))
(post-ISA (:assert (ISA-state-p post-ISA) :rewrite))
(:options :guards))
(deflist INST-listp (l)
(declare (xargs :guard t))
INST-p)
; Definition of MAETT. It stores the initial ISA state, init-ISA, and
; a list of MAETT entries, trace. Each entry of trace represents
; a fetched and executed instruction. Trace stores the entries in
; the order that the ISA executes the represented instructions. ISA
; state init-ISA is the ISA state before executing the first
; instruction in trace.
(defstructure MAETT
(init-ISA (:assert (ISA-state-p init-ISA) :rewrite))
(trace (:assert (INST-listp trace) :rewrite))
(:options :guards (:conc-name MT-)))
(deflabel begin-MAETT-def)
; Function init-MT constructs the initial MAETT table for an
; flushed initial MA state. Since no instructions are fetched yet,
; trace field contains an empty list.
(defun init-MT (MA)
(declare (xargs :guard (MA-state-p MA)))
(MAETT (proj MA) nil))
; The MAETT entry representing a newly fetched instruction. Argument
; ISA is the pre-ISA state of the newly fetched instruction. In other
; words, it is the correct ISA state before executing the newly
; fetched instruction.
(defun new-inst (ISA)
(declare (xargs :guard (ISA-state-p ISA)))
(INST 'latch1
ISA
(ISA-step ISA)))
(defun step-latch1-INST (i MA)
(declare (xargs :guard (and (INST-p i) (MA-state-p MA))))
(if (b1p (stall-cond? MA))
i
(update-INST i :stg 'latch2)))
(defun step-latch2-INST (i)
(declare (xargs :guard (INST-p i)))
(update-INST i :stg 'retire))
; Function step-INST updates the MAETT entry to reflect the change of
; the state of the represented instruction. In this example, we only
; have to update the stage field as the instruction advances through the
; pipeline.
(defun step-INST (i MA)
(declare (xargs :guard (and (INST-p i) (MA-state-p MA))))
(cond ((equal (INST-stg i) 'latch1)
(step-latch1-INST i MA))
((equal (INST-stg i) 'latch2)
(step-latch2-INST i))
(t i)))
; Function step-trace updates the field, trace, of a MAETT. If a new
; instruction is fetched, an entry corresponding to the new
; instruction is added at the end of the trace. The rest of the
; entries are updated with function step-INST.
(defun step-trace (trace MA sig last-ISA)
(declare (xargs :guard (and (INST-listp trace) (MA-state-p MA)
(MA-sig-p sig)
(ISA-state-p last-ISA))))
(if (endp trace)
(if (b1p (fetch-inst? MA sig))
(list (new-inst last-ISA))
nil)
(cons (step-INST (car trace) MA)
(step-trace (cdr trace) MA sig (INST-post-ISA (car trace))))))
; Function to update an MAETT. MT-step takes arguments MA and MT,
; which are the current MA state and the corresponding MAETT, and it
; returns the updated MAETT. The new MAETT represents the next MA
; state (MA-step MA sig).
(defun MT-step (MT MA sig)
(declare (xargs :guard (and (MAETT-p MT) (MA-state-p MA)
(MA-sig-p sig))))
(MAETT (MT-init-ISA MT)
(step-trace (MT-trace MT) MA sig (MT-init-ISA MT))))
(deflabel end-MAETT-def)
; Function to iteratively update a MAETT, MT, for n cycles. Argument
; MA and MT are the initial MA state and the corresponding MAETT.
(defun MT-stepn (MT MA sig-list n)
(declare (xargs :guard (and (MAETT-p MT) (MA-state-p MA)
(MA-sig-listp sig-list)
(integerp n) (<= 0 n))
:verify-guards nil))
(if (zp n) MT
(if (endp sig-list) MT
(MT-stepn (MT-step MT MA (car sig-list))
(MA-step MA (car sig-list))
(cdr sig-list)
(1- n)))))
(deftheory MAETT-def
(non-rec-functions
(set-difference-theories (function-theory 'end-MAETT-def)
(function-theory 'begin-MAETT-def))
world))
(in-theory (disable MAETT-def))
;; Type proofs
(defthm ISA-state-p-proj
(implies (MA-state-p MA) (ISA-state-p (proj MA)))
:hints (("Goal" :in-theory (enable proj))))
(defthm MAETT-p-init-MT
(implies (MA-state-p MA) (MAETT-p (init-MT MA)))
:hints (("Goal" :in-theory (enable init-MT))))
(defthm inst-p-new-inst
(implies (ISA-state-p ISA) (INST-p (new-inst ISA)))
:hints (("Goal" :in-theory (enable new-inst))))
(defthm INST-p-step-INST
(implies (INST-p i) (INST-p (step-INST i MA)))
:Hints (("Goal" :in-theory (enable step-inst step-latch1-inst
step-latch2-inst))))
(defthm INST-listp-step-trace
(implies (and (INST-listp trace) (ISA-state-p ISA))
(INST-listp (step-trace trace MA sig ISA))))
(defthm MAETT-p-MT-step
(implies (and (MAETT-p MT) (MA-state-p MA) (MA-sig-p sig))
(MAETT-p (MT-step MT MA sig)))
:hints (("Goal" :in-theory (enable MT-step))))
(verify-guards MT-step)
(defthm MAETT-p-MT-stepn
(implies (and (MAETT-p MT) (MA-state-p MA) (MA-sig-listp sig-list)
(<= n (len sig-list)))
(MAETT-p (MT-stepn MT MA sig-list n))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Definition of Instruction Attributes
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Various attributes of an instruction are defined as functions which
; take the MAETT entry representing the instruction. For instance,
; the opcode of an instruction represented by MAETT entry I is defined
; as (INST-op I). In the following definitions, we define many
; attributes such as instruction word, operand registers, source
; values and result value.
(deflabel begin-INST-attrb)
(defun INST-word (i)
(declare (xargs :guard (INST-p i)))
(read-mem (ISA-pc (INST-pre-ISA i)) (ISA-mem (INST-pre-ISA i))))
(defun INST-op (i)
(declare (xargs :guard (INST-p i)))
(op-field (INST-word i)))
(defun INST-rc (i)
(declare (xargs :guard (INST-p i)))
(rc-field (INST-word i)))
(defun INST-ra (i)
(declare (xargs :guard (INST-p i)))
(ra-field (INST-word i)))
(defun INST-rb (i)
(declare (xargs :guard (INST-p i)))
(rb-field (INST-word i)))
(defun INST-ra-val (i)
(declare (xargs :guard (INST-p i)))
(read-reg (INST-ra i) (ISA-regs (INST-pre-ISA i))))
(defun INST-rb-val (i)
(declare (xargs :guard (INST-p i)))
(read-reg (INST-rb i) (ISA-regs (INST-pre-ISA i))))
(defun INST-result (i)
(declare (xargs :guard (INST-p i)))
(ALU-output (INST-op i) (INST-ra-val i) (INST-rb-val i)))
(deflabel end-INST-attrb)
(deftheory INST-attrb
(set-difference-theories (function-theory 'end-INST-attrb)
(function-theory 'begin-INST-attrb)))
(in-theory (disable INST-attrb))
(defthm word-p-INST-word
(implies (INST-p i) (word-p (INST-word i)))
:hints (("Goal" :in-theory (enable INST-word))))
(defthm opcd-p-INST-op
(implies (INST-p i) (opcd-p (INST-op i)))
:hints (("Goal" :in-theory (enable INST-op))))
(defthm rname-p-INST-rc
(implies (INST-p i) (rname-p (INST-rc i)))
:hints (("Goal" :in-theory (enable INST-rc))))
(defthm rname-p-INST-ra
(implies (INST-p i) (rname-p (INST-ra i)))
:hints (("Goal" :in-theory (enable INST-ra))))
(defthm rname-p-INST-rb
(implies (INST-p i) (rname-p (INST-rb i)))
:hints (("Goal" :in-theory (enable INST-rb))))
(defthm word-p-INST-ra-val
(implies (INST-p i) (word-p (INST-ra-val i)))
:hints (("Goal" :in-theory (enable INST-ra-val))))
(defthm word-p-INST-rb-val
(implies (INST-p i) (word-p (INST-rb-val i)))
:hints (("Goal" :in-theory (enable INST-rb-val))))
(defthm word-p-INST-result
(implies (INST-p i) (word-p (INST-result i)))
:hints (("Goal" :in-theory (enable INST-result ALU-output))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Defintion of INST-at
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; INST-at returns the MAETT entry whose represented instruction is at
; a particular stage.
;
; (INST-at stg MT) is nil if there is no instruction at stage stg in
; MAETT MT. If there is one, it returns the corresponding MAETT entry
; representing the instruction.
(defun trace-inst-at (stg trace)
(declare (xargs :guard (and (stage-p stg) (INST-listp trace))))
(if (endp trace) nil
(if (equal (INST-stg (car trace)) stg)
(car trace)
(trace-inst-at stg (cdr trace)))))
(defun INST-at (stg MT)
(declare (xargs :guard (and (stage-p stg) (MAETT-p MT))))
(trace-inst-at stg (MT-trace MT)))
(in-theory (disable INST-at))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Definition of invariant conditions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Invariant conditions required for the proof of correctness diagram
; are defined here. We needed seven invariant conditions.
;
; (pc-match-p MT MA)
; The program counter holds the correct value.
; (regs-match-p MT MA)
; The register file contains correct values.
; (mem-match-p MT MA)
; The memory is in the correct state.
; (ISA-chain-p MT)
; MAETT records correct ISA execution of instructions.
; (MT-inst-invariant MT MA)
; Each instruction in the pipeline satisfies "instruction invariant".
; (MT-contains-all-insts MT MA)
; MT contains all instructions currently in the pipeline of MA.
; (MT-in-order-p MT)))
; MA pipeline executes instructions in program order.
(deflabel begin-invariant-def)
; Predicate pc-match-p checks whether the program counter in the MA
; holds the correct value. The reader may ask what the correct value is.
; The answer is that the program counter should point to the
; instruction to be fetched in the next cycle. MT-pc calculates
; it from a MAETT, by first looking for the most recently fetched
; instruction I, and find the program counter value of (INST-post-ISA I).
; (INST-post-ISA I) is the ISA state after the execution of I,
; and before fetching the next instruction.
(defun trace-pc (trace ISA)
(declare (xargs :guard (and (INST-listp trace) (ISA-state-p ISA))))
(if (endp trace)
(ISA-pc ISA)
(trace-pc (cdr trace) (INST-post-ISA (car trace)))))
(defun MT-pc (MT)
(declare (xargs :guard (MAETT-p MT)))
(trace-pc (MT-trace MT) (MT-init-ISA MT)))
(defun pc-match-p (MT MA)
(declare (xargs :guard (and (MAETT-p MT) (MA-state-p MA))))
(equal (MT-pc MT) (MA-pc MA)))
; Predicate regs-match-p checks whether the register file contains the
; correct values. MT-regs calculate the correct register file
; state from a MAETT. It first looks for the earliest non-retired
; instruction I, and returns the register file of (INST-pre-ISA I).
; The register is updated when an instruction retires. So the
; register file in the MA holds the results of all retired
; instruction, but none of the partially executed instructions,
; including I.
(defun trace-regs (trace ISA)
(declare (xargs :guard (and (INST-listp trace) (ISA-state-p ISA))))
(if (endp trace)
(ISA-regs ISA)
(if (not (equal (INST-stg (car trace)) 'retire))
(ISA-regs ISA)
(trace-regs (cdr trace) (INST-post-ISA (car trace))))))
(defun MT-regs (MT)
(declare (xargs :guard (MAETT-p MT)))
(trace-regs (MT-trace MT) (MT-init-ISA MT)))
(defun regs-match-p (MT MA)
(declare (xargs :guard (and (MAETT-p MT) (MA-state-p MA))))
(equal (MT-regs MT) (MA-regs MA)))
; Memory state does not change in this model. The memory of the MA state
; should be equal to that of the initial ISA state.
(defun mem-match-p (MT MA)
(declare (xargs :guard (and (MAETT-p MT) (MA-state-p MA))))
(equal (MA-mem MA) (ISA-mem (MT-init-ISA MT))))
; MAETT represents the sequence of instructions as a list, where each
; element of the list represents an instruction. Each entry
; has pre-ISA and post-ISA fields, which store the ISA state before
; and after executing the represented instruction. This ISA
; states form a sort of chain. Suppose MT has a list of instruction
; entries (I_0 I_1 I_2 ...). I_0 represents the first instruction to be
; executed, I_1 represents the second and so on. Then following
; equations hold:
; (ISA-step (INST-pre-ISA I_0)) = (INST-post-ISA I_0)
; (INST-post-ISA I_0) = (INST-pre-ISA I_1)
; (ISA-step (INST-pre-ISA I_1)) = (INST-post-ISA I_1)
; (INST-post-ISA I_1) = (INST-pre-ISA I_2)
; ....
; This relations are checked by the predicate ISA-chain-p. In other
; words, ISA-chain-p checks whether the correct sequence of ISA states
; are stored in the MAETT. Following picture may help the reader to
; understand the relations of pre-ISA and post-ISA.
;
; (INST-pre-ISA i_0)
; | execution of i_0
; v
; (INST-post-ISA i_0) = (INST-pre-ISA i_1)
; | execution of i_1
; v
; (INST-post-ISA i_1) = (INST-pre-ISA i_2)
; ...
(defun ISA-chain-trace-p (trace ISA)
(declare (xargs :guard (and (INST-listp trace) (ISA-state-p ISA))))
(if (endp trace)
T
(and (equal (INST-pre-ISA (car trace)) ISA)
(equal (ISA-step ISA)
(INST-post-ISA (car trace)))
(ISA-chain-trace-p (cdr trace) (ISA-step ISA)))))
(defun ISA-chain-p (MT)
(declare (xargs :guard (MAETT-p MT)))
(ISA-chain-trace-p (MT-trace MT) (MT-init-ISA MT)))
; Each instruction should satisfy some invariant conditions at each
; stage of the pipeline. Mostly, these conditions are about the
; intermediate values stored in the pipeline latches.
;
; For instance, field latch1-op of latch latch1 in the MA state hould
; hold the operand of instruction at stage latch1. If you see the
; definition of inst-latch1-inv, you can find the corresponding
; equation as the second conjunct of the body of the definition.
;
; Predicate inst-invariant checks whether instruction entry i and the
; corresponding MA state satisfies these stage-dependent invariant.
; MT-inst-invariant checks all instructions in the MAETT satisfies
; inst-invariant.
; The condition that instruction should satisfy at state latch1.
(defun inst-latch1-inv (i MA)
(declare (xargs :guard (and (INST-p i) (MA-state-p MA))))
(and (b1p (latch1-valid? (MA-latch1 MA)))
(equal (latch1-op (MA-latch1 MA)) (INST-op i))
(equal (latch1-rc (MA-latch1 MA)) (INST-rc i))
(equal (latch1-ra (MA-latch1 MA)) (INST-ra i))
(equal (latch1-rb (MA-latch1 MA)) (INST-rb i))))
; The condition that instruction should satisfy at state latch2.
(defun inst-latch2-inv (i MA)
(declare (xargs :guard (and (INST-p i) (MA-state-p MA))))
(and (b1p (latch2-valid? (MA-latch2 MA)))
(equal (latch2-op (MA-latch2 MA)) (INST-op i))
(equal (latch2-rc (MA-latch2 MA)) (INST-rc i))
(equal (latch2-ra-val (MA-latch2 MA)) (INST-ra-val i))
(equal (latch2-rb-val (MA-latch2 MA)) (INST-rb-val i))))
; Instruction invariant that i should satisfy regardless of its stage.
(defun inst-invariant (i MA)
(declare (xargs :guard (and (INST-p i) (MA-state-p MA))))
(cond ((equal (INST-stg i) 'latch1)
(inst-latch1-inv i MA))
((equal (INST-stg i) 'latch2)
(inst-latch2-inv i MA))
(t t)))
(defun trace-inst-invariant (trace MA)
(declare (xargs :guard (and (INST-listp trace) (MA-state-p MA))))
(if (endp trace) t
(and (inst-invariant (car trace) MA)
(trace-inst-invariant (cdr trace) MA))))
(defun MT-inst-invariant (MT MA)
(declare (xargs :guard (and (MAETT-p MT) (MA-state-p MA))))
(trace-inst-invariant (MT-trace MT) MA))
; If field latch1-valid? of an MA state is on, the corresponding MAETT
; contains an entry representing the instruction at latch1. Similarly
; for latch2.
(defun MT-contains-all-insts (MT MA)
(declare (xargs :guard (and (MAETT-p MT) (MA-state-p MA))))
(and (implies (b1p (latch1-valid? (MA-latch1 MA)))
(inst-at 'latch1 MT))
(implies (b1p (latch2-valid? (MA-latch2 MA)))
(inst-at 'latch2 MT))))
; This pipelined machine executes instructions in program order.
; The instruction at latch1 is younger than the instruction at latch2,
; and the instruction at latch2 is younger than any retired
; instructions. This fact is checked by MT-in-order-p, assuming that
; instructions are recorded in program order in a MAETT.
(defun trace-in-order-p (trace)
(declare (xargs :guard (INST-listp trace)))
(if (endp trace)
t
(if (equal (INST-stg (car trace)) 'latch1)
(endp (cdr trace))
(if (equal (INST-stg (car trace)) 'latch2)
(and (not (trace-inst-at 'latch2 (cdr trace)))
(not (trace-inst-at 'retire (cdr trace)))
(trace-in-order-p (cdr trace)))
(trace-in-order-p (cdr trace))))))
(defun MT-in-order-p (MT)
(declare (xargs :guard (MAETT-p MT)))
(trace-in-order-p (MT-trace MT)))
; The definition of invariant.
(defun invariant (MT MA)
(declare (xargs :guard (and (MAETT-p MT) (MA-state-p MA))))
(and (pc-match-p MT MA)
(regs-match-p MT MA)
(mem-match-p MT MA)
(ISA-chain-p MT)
(MT-inst-invariant MT MA)
(MT-contains-all-insts MT MA)
(MT-in-order-p MT)))
(deflabel end-invariant-def)
(deftheory invariant-def
(set-difference-theories (function-theory 'end-invariant-def)
(function-theory 'begin-invariant-def)))
(deftheory non-rec-invariant-def
(non-rec-functions (theory 'invariant-def) world))
(in-theory (disable non-rec-invariant-def))
|