1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
|
;;; multiset.lisp
;;; - Useful lemmas about multisets
;;; - Multiset extension of a well-founded relation is a well-founded relation.
;;; Created: 10-6-99 Last Revision: 19-09-00
;;; ============================================================================
;;; To certify this book:
; Includes mods by Daron Vroon and Pete Manolios for v2-8 ordinals changes.
#|
(in-package "ACL2")
(defpkg "MUL" (union-eq *acl2-exports*
(union-eq
*common-lisp-symbols-from-main-lisp-package*
'(remove-one multiset-diff
make-ord ctoa atoc))))
(certify-book "multiset" 1)
|#
(in-package "MUL")
(include-book "../../../../ordinals/e0-ordinal")
(ACL2::set-verify-guards-eagerness 2)
;;; *****************************************************
;;; PART I: DEFINITIONS AND USEFUL LEMMAS ABOUT MULTISETS
;;; *****************************************************
;;; ============================================================================
;;; 1. Multisets (unordered lists).
;;; ============================================================================
;;; ----------------------------------------------------------------------------
;;; 1.1 equal-set and properties.
;;; ----------------------------------------------------------------------------
(defun equal-set (x y)
(declare (xargs :guard
(if (acl2::eqlable-listp y)
(true-listp x)
(if (acl2::eqlable-listp x)
(true-listp y)
nil))))
(and (subsetp x y) (subsetp y x)))
(local
(defthm subsetp-cons
(implies (subsetp l m)
(subsetp l (cons x m)))))
(local
(defthm subsetp-reflexive
(subsetp l l)))
(local
(defthm subsetp-transitive
(implies (and (subsetp l m)
(subsetp m n))
(subsetp l n))))
(acl2::defequiv equal-set)
(acl2::defcong equal-set equal (consp l) 1)
;;; ----------------------------------------------------------------------------
;;; 1.2 remove-one and properties.
;;; ----------------------------------------------------------------------------
(defun remove-one (x l)
(cond ((atom l) l)
((equal x (car l)) (cdr l))
(t (cons (car l) (remove-one x (cdr l))))))
(defthm remove-one-true-listp
(implies (true-listp l)
(true-listp (remove-one x l))))
(local
(defthm member-remove-one
(implies (and (member x l) (not (equal x y)))
(member x (remove-one y l)))))
(local
(defthm remove-one-conmute
(equal (remove-one x (remove-one y l))
(remove-one y (remove-one x l)))))
(local
(defthm remove-one-member
(implies (not (member x l))
(not (member x (remove-one y l))))))
(local
(defthm remove-one-subsetp
(subsetp (remove-one x l) l)))
;;; ----------------------------------------------------------------------------
;;; 1.3 Multiset difference and properties.
;;; ----------------------------------------------------------------------------
(defun multiset-diff (m n)
(if (atom n)
m
(multiset-diff (remove-one (car n) m) (cdr n))))
(defthm multiset-diff-true-listp
(implies (and (true-listp m)
(true-listp n))
(true-listp (multiset-diff m n))))
(local
(defthm multiset-diff-member
(implies (and (member x n) (not (member x m)))
(member x (multiset-diff n m)))))
(local
(defthm multiset-diff-removing-the-same-element
(implies (and (member x n) (member x m))
(equal (multiset-diff (remove-one x m)
(remove-one x n))
(multiset-diff m n)))))
(local
(defthm multiset-diff-nil
(not (consp (multiset-diff nil l)))))
(local
(defthm subsetp-multiset-diff
(subsetp (multiset-diff n m) n)))
(defthm multiset-diff-remove-one-not-consp
(not (consp (multiset-diff (remove-one x l) l)))
:hints (("Goal" :induct (acl2::len l))))
(defthm list-multiset-diff-1
(implies (not (member x l))
(equal (multiset-diff (list x) l)
(list x))))
(defthm list-multiset-diff-2
(implies (not (member x l))
(equal (multiset-diff l (list x))
l)))
(defthm multiset-diff-append-1
(equal (multiset-diff (append m1 m2)
(append m1 m3))
(multiset-diff m2 m3)))
;;; REMARK: An analogue property is not true for (multiset-diff (append
;;; m1 m2) (append m3 m2)) (take for example '(3 2 1 3) and '(1
;;; 3)). Nevertheless, we prove below that (multiset-diff (append m1 m2)
;;; (append m3 m2)) is exactly the same set (although not the same list
;;; in general) as (multiset-diff m1 m3). This rewrite rule will be used
;;; together with two congruence rules relating forall-exists-rel-bigger
;;; and equal-se (see 2.3 in this file). Furthermore, using functional
;;; instantiation, these two congruence rules are generated for every
;;; particular relation "rel" by defmul (see defmul.lisp).
(encapsulate
()
(local
(defun my-occur (x l)
(cond ((atom l) 0)
((equal x (car l)) (1+ (my-occur x (cdr l))))
(t (my-occur x (cdr l))))))
(local
(defthm my-occur-append
(equal (my-occur x (append l m))
(+ (my-occur x l) (my-occur x m)))))
(local
(defthm my-occur-remove-one
(equal (my-occur x (remove-one y l))
(if (and (equal x y) (member x l))
(1- (my-occur x l))
(my-occur x l)))))
(local
(defthm subsetp-multiset-diff-member
(implies (not (member x l))
(not (member x (multiset-diff l m))))))
(local
(defthm multiset-diff-my-occur
(iff (member x (multiset-diff l m))
(> (my-occur x l) (my-occur x m)))))
(local
(defthm multiset-diff-append-2-lemma
(iff (member x (multiset-diff (append m1 m2)
(append m3 m2)))
(member x (multiset-diff m1 m3)))))
(local
(defun not-subsetp-witness (m1 m2)
(declare (xargs :verify-guards nil))
(if (atom m1)
nil
(if (member (car m1) m2)
(not-subsetp-witness (cdr m1) m2)
(car m1)))))
(local
(defthm not-subsetp-witness-lemma
(equal (subsetp m1 m2)
(implies (member (not-subsetp-witness m1 m2) m1)
(member (not-subsetp-witness m1 m2) m2)))))
(defthm multiset-diff-append-2
(equal-set (multiset-diff (append m1 m2)
(append m3 m2))
(multiset-diff m1 m3))))
;;; ----------------------------------------------------------------------------
;;; 1.4 A useful meta rule about "multiset-diff"
;;; ----------------------------------------------------------------------------
;;; This rule rewrites expressions of the form:
;;; (multiset-diff (list* x1 ... xm l)
;;; (list* y1 ... yk l))
;;; to the equivalent (w.r.t. equal-set):
;;; (multiset-diff (list x1 ... xm)
;;; (list y1 ... yk))
(defun initial-cars (l)
(if (and (consp l)
(eq (car l) 'cons)
(consp (cdr l))
(consp (cddr l))
(eq (cdddr l) 'nil))
(list 'cons (cadr l) (initial-cars (caddr l)))
''nil))
(defun last-cdr (l)
(if (and (consp l)
(eq (car l) 'cons)
(consp (cdr l))
(consp (cddr l))
(eq (cdddr l) 'nil))
(last-cdr (caddr l))
l))
(defun exclude-last-cdr-multiset-diff (x)
(if (and (consp x)
(eq (car x) 'multiset-diff)
(consp (cdr x))
(consp (cddr x))
(eq (cdddr x) 'nil))
(list 'multiset-diff
(initial-cars (cadr x))
(initial-cars (caddr x)))
x))
(acl2::defevaluator ev-multiset-diff ev-multiset-diff-list
((cons x l)
(multiset-diff l1 l2)
(equal l1 l2)))
(local
(defthm ev-multiset-diff-append-initial-cars-last-cdr
(equal (append (ev-multiset-diff (initial-cars l) a)
(ev-multiset-diff (last-cdr l) a))
(ev-multiset-diff l a))))
(defun hypothesis-multiset-diff-meta (x)
(if (and (consp x)
(consp (cdr x))
(consp (cddr x))
(eq (cdddr x) 'nil))
(list 'equal
(last-cdr (cadr x))
(last-cdr (caddr x)))
''nil))
(defthm multiset-diff-meta
(implies
(ev-multiset-diff (hypothesis-multiset-diff-meta x) a)
(equal-set (ev-multiset-diff x a)
(ev-multiset-diff (exclude-last-cdr-multiset-diff x) a)))
:rule-classes ((:meta :trigger-fns (multiset-diff)))
:hints (("Goal"
:use ((:instance
multiset-diff-append-2
(m1 (ev-multiset-diff (initial-cars (cadr x)) a))
(m2 (ev-multiset-diff (last-cdr (cadr x)) a))
(m3 (ev-multiset-diff (initial-cars (caddr x)) a))))
:in-theory (disable initial-cars))))
;;; **********************************************
;;; PART II: WELL-FOUNDEDNES OF MULTISET RELATIONS
;;; **********************************************
;;; ============================================================================
;;; 2. Multiset extension of a well-founded relation is a well-founded
;;; relation.
;;; ============================================================================
;;; ----------------------------------------------------------------------------
;;; 2.1 A general well-founded relation
;;; ----------------------------------------------------------------------------
;;; Definition of a general well-founded relation on a set:
;;; - mp: the measure property defining the set.
;;; - rel: the well-founded relation defined on elements satisfying mp.
;;; - fn: the embedding justifying the well-foundedness of rel.
(encapsulate
((mp (x) booleanp)
(rel (x y) booleanp)
(fn (x) o-p))
(local (defun mp (x) (declare (ignore x)) nil))
(local (defun rel (x y) (declare (ignore x y)) nil))
(local (defun fn (x) (declare (ignore x)) 1))
(defthm mp-o-p-fn
(implies (mp x) (o-p (fn x))))
(defthm rel-o<-fn
(implies (and (mp x)
(mp y)
(rel x y))
(o< (fn x) (fn y))))
(defthm rel-well-founded-relation-on-mp
(and (implies (mp x) (o-p (fn x)))
(implies (and (mp x)
(mp y)
(rel x y))
(o< (fn x) (fn y))))
:rule-classes :well-founded-relation))
;;; daron: now we convert ops to the e0-ordinalps:
(defmacro fn0 (x)
`(ctoa (fn ,x)))
(defthm mp-e0-ordinalp-fn0
(implies (mp x) (e0-ordinalp (fn0 x))))
(defthm rel-e0-ord-<-fn0
(implies (and (mp x)
(mp y)
(rel x y))
(e0-ord-< (fn0 x) (fn0 y))))
;;; REMARK: For our purpouses, we need another property about "fn", its
;;; values must be greater than 0. Thus, we define a new measure
;;; function "fn1" equal to "fn" except for integers, where 1 is added.
(defun add1-if-integer (x)
(if (integerp x) (1+ x) x))
(local
(defmacro fn1 (x)
`(add1-if-integer (fn0 ,x))))
;;; We prove now that fn1 is also an embedding, with the aditional
;;; property that never returns zero
(local
(defthm e0-ord-<-add1-if-integer
(implies (and (e0-ordinalp x) (e0-ordinalp y) (e0-ord-< x y))
(e0-ord-< (add1-if-integer x) (add1-if-integer y)))))
(local
(defthm add1-if-integer-e0-ordinalp-not-equal-0
(implies (e0-ordinalp x)
(not (equal (add1-if-integer x) 0)))))
(local
(defthm add1-if-integer-e0-ordinalp
(implies (e0-ordinalp x)
(e0-ordinalp (add1-if-integer x)))))
(local (in-theory (disable add1-if-integer)))
(local
(defthm fn-e0-ordinalp
(implies (mp x)
(e0-ordinalp (fn0 x)))))
; :hints (("Goal" :use rel-e0-ordinalp-embedding-on-mp))))
;;; Here they are:
(local
(defthm fn1-e0-ordinalp
(implies (mp x)
(and (e0-ordinalp (fn1 x))
(not (equal (fn1 x) 0))))))
(local
(defthm rel-well-founded-relation-on-mp-rewrite
(implies (and (mp x)
(mp y)
(rel x y))
(e0-ord-< (fn1 x) (fn1 y)))
:hints (("Goal" :use rel-well-founded-relation-on-mp))))
;;; ----------------------------------------------------------------------------
;;; 2.2 Induced multiset relation
;;; ----------------------------------------------------------------------------
;;; Now we define the multiset extension on multisets of elements with
;;; the MP-property. We need to define:
;;; - The measure property defining multisets of elements:
;;; mp-true-listp.
;;; - The well-founded relation: mul-rel.
;;; - The embedding justifying well-foundedness: mp-fn-e0-ord.
;;; Measure property
(defun mp-true-listp (l)
(if (atom l)
(equal l nil)
(and (mp (car l)) (mp-true-listp (cdr l)))))
;;; Multiset relation
(defun exists-rel-bigger (x l)
(cond ((atom l) nil)
((rel x (car l)) t)
(t (exists-rel-bigger x (cdr l)))))
(defun forall-exists-rel-bigger (l m)
(if (atom l)
t
(and (exists-rel-bigger (car l) m)
(forall-exists-rel-bigger (cdr l) m))))
(defun mul-rel (n m)
(let ((m-n (multiset-diff m n))
(n-m (multiset-diff n m)))
(and (consp m-n) (forall-exists-rel-bigger n-m m-n))))
;;; Embedding
(defun insert-e0-ord-< (x l)
(cond ((atom l) (cons x l))
((not (e0-ord-< x (car l))) (cons x l))
(t (cons (car l) (insert-e0-ord-< x (cdr l))))))
(defun map-fn-e0-ord (l)
(declare (xargs :guard (mp-true-listp l)))
(if (consp l)
(insert-e0-ord-< (add1-if-integer (fn0 (car l)))
(map-fn-e0-ord (cdr l)))
0))
;;; ----------------------------------------------------------------------------
;;; 2.3 An interesting congruence.
;;; ----------------------------------------------------------------------------
;;; These rules are used in conjunction with rewite rules that simplify
;;; multiset differences (w.r.t equal or equal-set)
;;; REMARK: These two congruence rules will be instantiated by every
;;; defmul macro to prove the analogues for every particular rel.
(encapsulate
()
(local (defthm exists-rel-bigger-subsetp
(implies (and
(exists-rel-bigger x a)
(subsetp a b))
(exists-rel-bigger x b))))
(acl2::defcong equal-set iff (forall-exists-rel-bigger l m) 2))
(encapsulate
()
(local
(defthm forall-exists-rel-bigger-subsetp
(implies (and
(forall-exists-rel-bigger b l)
(subsetp a b))
(forall-exists-rel-bigger a l))))
(acl2::defcong equal-set iff (forall-exists-rel-bigger l m) 1))
(in-theory
(disable
equal-set-implies-iff-forall-exists-rel-bigger-2
equal-set-implies-iff-forall-exists-rel-bigger-1))
;;; ----------------------------------------------------------------------------
;;; 2.4 Some ad hoc lemmas about ordinals.
;;; ----------------------------------------------------------------------------
(local
(defthm weak-e0-ord-<-trichotomy
(implies (e0-ord-< o1 o2)
(not (e0-ord-< o2 o1)))))
(local (in-theory (disable weak-e0-ord-<-trichotomy)))
(local
(defthm e0-ord-<-trichotomy
(implies (and (e0-ordinalp o1)
(e0-ordinalp o2)
(not (equal o1 o2))
(not (e0-ord-< o1 o2)))
(e0-ord-< o2 o1))
:rule-classes :type-prescription))
(defthm e0-ord-<-irreflexive
(not (e0-ord-< x x)))
(local (in-theory (disable e0-ord-<-irreflexive)))
(local
(defthm e0-ord-<-transitive-corollary
(implies (and (e0-ordinalp o1)
(e0-ordinalp o3)
(e0-ord-< o3 o2)
(not (e0-ord-< o1 o2)))
(e0-ord-< o3 o1))
:rule-classes :type-prescription
:hints (("Goal" :in-theory (enable e0-ord-<-trichotomy)))))
;;; ----------------------------------------------------------------------------
;;; 2.5 Well-foundedness of mul-rel
;;; ----------------------------------------------------------------------------
;;; Our goal is to prove that mul-rel is a well-founded relation on elements
;;; satisfying mp-true-listp. We have to prove:
;;; 1) If (mp-true-listp m), the (map-fn-e0-ord m) is an ordinal.
;;; 2) If l and m are mp-true-listp and (mul-rel n m), then
;;; (e0-ord-< (map-fn-e0-ord n) (map-fn-e0-ord m))
;;; ············································································
;;; 2.5.1 The measure is an ordinal.
;;; ············································································
(local
(defthm e0-ordinalp-insert-e0-ord-<
(implies (and (e0-ordinalp l)
(e0-ordinalp o)
(not (equal o 0)))
(e0-ordinalp (insert-e0-ord-< o l)))
:hints (("Goal" :in-theory (enable weak-e0-ord-<-trichotomy)))))
(local
(defthm e0-ordinalp-map-fn-e0-ord
(implies (mp-true-listp m)
(e0-ordinalp (map-fn-e0-ord m)))))
;;; ············································································
;;; 2.5.2 The measure is an embedding
;;; ············································································
;;; SKETCH OF THE PROOF:
;;; Let N and M such that (mul-rel N M). We have to prove that
;;; (e0-ord-< (map-fn-e0-ord N) (map-fn-e0-ord M))
;;; Suppose (fn x) and (fn y) are the biggest
;;; (w.r.t. e0-ord-<) elements of fn[N] and fn[M], respectively. Since
;;; they are ordinals, three cases are possible:
;;; 1) (fn x) < (fn y). Done.
;;; 2) (fn x) > (fn y). This is not possible: in that case x is in N-M
;;; and by the multiset order definition, exists z in M-N such that (rel
;;; x z) and consequently (fn z) > (fn x) >= (fn y). This is a
;;; contradiction with the fact that (fn y) is the biggest element of
;;; fn[M].
;;; 3) (fn x) = (fn y). In that case, x is in M, since otherwise it
;;; would exist z in M-N such that (rel z x) and the same contradiction
;;; as in case 2) appears. So N-{x} and M-{x} are multisets and N-{x}
;;; bigger than M-{x} w.r.t. multiset relation with the property that
;;; the ordinal mesures of these two multisets are respectively the
;;; cdr's of the ordinal measures of N and M. Induction hypothesis can
;;; be applied here.
;;;
;;; We must define an induction scheme to mimic this proof sketch.
;;; This will be done later by induction-multiset
;;; But we previously prove some lemmas...
;;; max-fn1-list (an element in l with maximal (fn1 ..)) and properties.
;;; ······································································
(local
(defun max-fn1-list (l)
(declare (xargs :verify-guards nil))
(cond ((atom l) nil)
((atom (cdr l)) (car l))
(t (let ((max-cdr (max-fn1-list (cdr l))))
(if (e0-ord-< (fn1 max-cdr) (fn1 (car l)))
(car l)
max-cdr))))))
(local
(defthm max-fn1-list-member
(implies (consp l)
(member (max-fn1-list l) l))))
(local
(defthm mp-member-true-listp
(implies (and (mp-true-listp l)
(member x l))
(mp x))
:rule-classes :type-prescription))
(local
(defthm max-fn1-listp-mp
(implies (and (consp l) (mp-true-listp l))
(mp (max-fn1-list l)))))
(local
(defthm max-fn1-list-maximal
(implies (member x l)
(not (e0-ord-< (fn1 (max-fn1-list l)) (fn1 x))))
:hints (("Goal" :in-theory (enable e0-ord-<-irreflexive)))))
;;; An "alternative definition" of "map-fn-e0-ord".
;;; ···············································
(local
(encapsulate
()
(local
(defthm insert-e0-ord-<-conmute
(implies (and (e0-ordinalp x) (e0-ordinalp y))
(equal (insert-e0-ord-< x (insert-e0-ord-< y l))
(insert-e0-ord-< y (insert-e0-ord-< x l))))
:hints (("Goal" :in-theory (enable
weak-e0-ord-<-trichotomy
e0-ord-<-trichotomy
e0-ord-<-transitive-corollary)))))
(local
(defthm another-definition-of-map-fn-e0-ord-lemma
(implies (and (mp-true-listp l) (member x l))
(equal (map-fn-e0-ord l)
(insert-e0-ord-< (fn1 x)
(map-fn-e0-ord (remove-one x l)))))
:rule-classes nil))
(local
(defun bigger-than-list (x l)
(declare (xargs :verify-guards nil))
(cond ((atom l) t)
((e0-ord-< x (car l)) nil)
(t (bigger-than-list x (cdr l))))))
(local
(defthm bigger-than-list-insert
(implies (and (bigger-than-list x l)
(not (e0-ord-< x y)))
(bigger-than-list x (insert-e0-ord-< y l)))))
(local
(defthm bigger-than-list-max-fn1-map-fn-e0-ord-subsetp
(implies (subsetp m l)
(bigger-than-list (fn1 (max-fn1-list l))
(map-fn-e0-ord m)))
:rule-classes nil))
(local
(defthm bigger-than-list-max-fn1-map-fn-e0-ord-remove-one
(implies (equal (fn1 x) (fn1 (max-fn1-list l)))
(bigger-than-list (fn1 x) (map-fn-e0-ord (remove-one x l))))
:hints (("Goal"
:use (:instance bigger-than-list-max-fn1-map-fn-e0-ord-subsetp
(m (remove-one x l)))))))
(local
(defthm bigger-than-list-insert-e0-ord-<-cons
(implies (bigger-than-list (fn1 x) l)
(equal (insert-e0-ord-< (fn1 x) l)
(cons (fn1 x) l)))))
(defthm another-definition-of-map-fn-e0-ord
(implies (and (equal (fn1 x) (fn1 (max-fn1-list l)))
(mp-true-listp l)
(member x l))
(equal (map-fn-e0-ord l)
(cons (fn1 x) (map-fn-e0-ord (remove-one x l)))))
:hints (("Goal" :use another-definition-of-map-fn-e0-ord-lemma))
:rule-classes ((:definition
; The :install-body field was added by Matt Kaufmann 3/25/06, after v2-9-4, in
; order to avoid an error caused by an attempt to install this rule for :expand
; hints in the presence of free variable X in the hypothesis.
:install-body nil
:controller-alist ((map-fn-e0-ord t)))))))
;;; REMARK:
;;; It's very interesting the use of this definition rule and
;;; the free variables in it, essential for expanding in an adequate
;;; manner for the induction scheme in map-fn-e0-ord-measure. Note that
;;; this rule has "x" as a free variable. We put the first hypotesis
;;; (equal (fn1 x) (fn1 (max-fn1-list l))), and the rule will only be
;;; used (and "x" conveniently instantiated) if such condition is among
;;; the assumptions. Contrary to most of cases, this is pretty good for
;;; our purpouses. (see "Subgoal *1/6" (where it is used) and "Subgoal
;;; *1/4" (where it is not used) of
;;; map-fn-e0-ord-measure, in the expansion of (map-fn-e0-ord m))
;;; Once we used the following commented rule, but with that rule
;;; definition of map-fn-e0-ord is expanded. This is convenient for
;;; Subgoal *1/6 but not for Subgoal *1/4 where we need
;;; (map-fn-e0-ord m) to be expanded to the expression :
;;; (cons (max-fn-list l) (map-fn-e0-ord (remove-one (max-fn-list l) m)))
;;; and not to the expression:
;;; (cons (max-fn-list l) (map-fn-e0-ord (remove-one (max-fn-list m) m)))
;;; Such expression would be obtained if the following rewrite rule
;;; were used:
;;; (defthm another-definition-of-map-fn-e0-ord-rewrite-rule
;;; (implies (and (mp-true-listp l) (consp l))
;;; (equal (map-fn-e0-ord l)
;;; (cons (fn1 (max-fn1-list l))
;;; (map-fn-e0-ord
;;; (remove-one (max-fn1-list l) l)))))
;;; :hints (("Goal"
;;; :use ((:instance
;;; another-definition-of-map-fn-e0-ord
;;; (x (max-fn1-list l)))))))
;;; Solution: The rule another-definition-of-map-fn-e0-ord-rewrite-rules
;;; (see below) rewrites car and cdr of map-fn-e0-ord and the criteria
;;; of expanding definitions, when applied to e0-ord-<, determines that
;;; those rules are applied in (map-fn-e0-ord l) and NOT in
;;; (map-fn-e0-ord m). In this case, the role of the free variables is
;;; essential.
(local
(defthm another-definition-of-map-fn-e0-ord-rewrite-rules
(implies (and (mp-true-listp l)
(consp l))
(and (equal (car (map-fn-e0-ord l)) (fn1 (max-fn1-list l)))
(equal (cdr (map-fn-e0-ord l))
(map-fn-e0-ord (remove-one (max-fn1-list l) l)))))
:hints (("Goal" :use (:instance
another-definition-of-map-fn-e0-ord
(x (max-fn1-list l)))))))
;;; Expansion of the definition of (map-fn-e0-ord l) and (map-fn-e0-ord
;;; m) is always tried. The above rules help the system to satisfy the
;;; criteria for function expansion in the cases where it is really
;;; needed. (see "Subgoal *1/6" or "Subgoal *1/4" of
;;; map-fn-e0-ord-measure)
;;; Needed for forall-exists-rel-bigger-max-fn1-list
;;; ················································
;;; We prove forall-exists-rel-bigger-max-fn1-list-lemma, establishing
;;; that if (mul-rel n m), and x is in n and not in m, then (fn1 x) is
;;; strictly smaller than (fn1 (max-fn1-list m)). This property will be
;;; used to show forall-exists-rel-bigger-max-fn1-list, essential for
;;; handling cases *1/7 and *1/6 of our map-fn-e0-ord-measure. And also
;;; is used to show
;;; forall-exists-rel-bigger-max-fn1-list-lemma-corollary, for handling
;;; case *1/5
(local
(defthm member-fn1-ordinal
(implies (and (member x l) (mp-true-listp l))
(e0-ordinalp (fn1 x)))))
(local
(defthm mp-true-listp-remove-one
(implies (mp-true-listp l)
(mp-true-listp (remove-one x l)))))
(defthm mp-true-listp-multiset-diff
(implies (mp-true-listp m)
(mp-true-listp (multiset-diff m n))))
(local
(encapsulate
()
(local
(defun exists-rel-bigger-witness (x l)
(declare (xargs :verify-guards nil))
(cond ((atom l) nil)
((rel x (car l)) (car l))
(t (exists-rel-bigger-witness x (cdr l))))))
(local
(defthm exists-rel-bigger-witness-main-property-lemma
(implies (and (mp-true-listp l) (exists-rel-bigger x l))
(mp (exists-rel-bigger-witness x l)))))
(local
(defthm exists-rel-bigger-witness-main-property
(implies (exists-rel-bigger x l)
(rel x (exists-rel-bigger-witness x l)))))
(local
(defthm forall-exists-rel-bigger-lemma
(implies (and
(forall-exists-rel-bigger l1 l2)
(member x l1)
(mp-true-listp l1)
(mp-true-listp l2))
(e0-ord-< (fn1 x) (fn1 (exists-rel-bigger-witness x l2))))))
(local
(defthm member-multiset-diff-exists-rel-bigger-witness-lemma
(implies (and
(forall-exists-rel-bigger l1 l2)
(member x l1)
(subsetp l2 l3))
(member (exists-rel-bigger-witness x l2) l3))))
(local
(defthm member-multiset-diff-exists-rel-bigger-witness
(implies (and
(member x n)
(not (member x m))
(forall-exists-rel-bigger (multiset-diff n m)
(multiset-diff m n)))
(member (exists-rel-bigger-witness x (multiset-diff m n)) m))))
(defthm forall-exists-rel-bigger-max-fn1-list-lemma
(implies (and
(consp m)
(mp-true-listp n)
(mp-true-listp m)
(member x n)
(not (member x m))
(forall-exists-rel-bigger (multiset-diff n m)
(multiset-diff m n)))
(e0-ord-< (fn1 x) (fn1 (max-fn1-list m))))
:hints (("Goal" :use ((:instance
e0-ord-<-transitive-corollary
(o3 (fn1 x))
(o2 (fn1
(exists-rel-bigger-witness
x
(multiset-diff m n))))
(o1 (fn1 (max-fn1-list m))))))))))
;;; Previous lemmas to map-fn-e0-ord-measure, handling every subgoal
;;; ································································
;;; Needed for "Subgoal *1/8":
(local
(defthm max-fn1-e0-ordinalp
(implies (and (consp l) (mp-true-listp l))
(e0-ordinalp (fn1 (max-fn1-list l))))))
(local
(defthm max-fn1-e0-ord-trichotomy-<
(implies (and
(mp-true-listp n) (mp-true-listp m) (consp n) (consp m)
(not (equal (fn1 (max-fn1-list n))
(fn1 (max-fn1-list m))))
(not (e0-ord-< (fn1 (max-fn1-list n))
(fn1 (max-fn1-list m)))))
(e0-ord-< (fn1 (max-fn1-list m))
(fn1 (max-fn1-list n))))
:hints (("Goal"
:use (:instance e0-ord-<-trichotomy
(o1 (add1-if-integer (fn0 (max-fn1-list n))))
(o2 (add1-if-integer (fn0 (max-fn1-list m)))))))))
;;; Needed for "Subgoal *1/7":
;;; - another-definition-of-map-fn-e0-ord-rewrite-rules
;;; - max-fn1-e0-ord-trichotomy-< and
(local
(defthm forall-exists-rel-bigger-max-fn1-list
(implies (and (consp n)
(consp m)
(mp-true-listp n)
(mp-true-listp m)
(forall-exists-rel-bigger (multiset-diff n m)
(multiset-diff m n)))
(not (e0-ord-< (fn1 (max-fn1-list m)) (fn1 (max-fn1-list n)))))
:hints (("Goal"
:use (:instance forall-exists-rel-bigger-max-fn1-list-lemma
(x (max-fn1-list n)))
:in-theory (enable weak-e0-ord-<-trichotomy)))))
;;; Needed for "Subgoal *1/6":
;;; - another-definition-of-map-fn-e0-ord-rewrite-rules and
(local
(defthm consp-map-fn1
(implies (consp l) (consp (map-fn-e0-ord l)))
:rule-classes :type-prescription))
;;; Needed for "Subgoal *1/5":
(local
(defthm forall-exists-rel-bigger-max-fn1-list-lemma-corollary
(implies (and (consp n)
(consp m)
(mp-true-listp n)
(mp-true-listp m)
(equal (fn1 (max-fn1-list n))
(fn1 (max-fn1-list m)))
(forall-exists-rel-bigger (multiset-diff n m)
(multiset-diff m n)))
(member (max-fn1-list n) m))
:hints (("Goal" :use ((:instance forall-exists-rel-bigger-max-fn1-list-lemma
(x (max-fn1-list n))))))))
;;; Needed for "Subgoal *1/4":
;;; - another-definition-of-map-fn-e0-ord
;;; - another-definition-of-map-fn-e0-ord-rewrite-rules
;;; - max-fn1-list-member
;;; - mp-true-listp-remove-one
;;; - multiset-diff-removing-the-same-element and
;;; Needed for "Subgoal *1/3" and "Subgoal *1/2":
;;; - multiset-diff-nil
;;; Subgoal *1/1 is solved simply expanding definitions
;;; At last: map-fn-e0-ord-measure.
;;; ·······························
(local
(encapsulate
()
;;; Induction scheme.
(local
(defun induction-multiset (n m)
(declare (xargs :measure (acl2::len n)
:verify-guards nil))
(cond ((atom n) (if (atom m) 1 2))
((atom m) 3)
(t (let* ((max-m (max-fn1-list m))
(max-n (max-fn1-list n))
(fn1-max-m (fn1 max-m))
(fn1-max-n (fn1 max-n)))
(cond ((equal fn1-max-m fn1-max-n)
(if (member max-n m)
(induction-multiset
(remove-one max-n n)
(remove-one max-n m))
5))
((e0-ord-< fn1-max-n fn1-max-m) 6)
((e0-ord-< fn1-max-m fn1-max-n) 7)
(t 8)))))))
(defthm map-fn-e0-ord-measure
(implies (and (mp-true-listp n)
(mp-true-listp m)
(mul-rel n m))
(e0-ord-< (map-fn-e0-ord n)
(map-fn-e0-ord m)))
:hints (("Goal" :induct (induction-multiset n m))))))
;;; ########################################################################
;;; THE MAIN THEOREM OF THIS BOOK:
;;; The multiset relation induced by a well-founded relation is well-founded
;;; ########################################################################
;;; The main theorem exported by this book:
(defthm multiset-extension-of-rel-well-founded-1
(and (implies (mp-true-listp x) (e0-ordinalp (map-fn-e0-ord x)))
(implies (and (mp-true-listp x)
(mp-true-listp y)
(mul-rel x y))
(e0-ord-< (map-fn-e0-ord x) (map-fn-e0-ord y)))))
;;;added for the new ordinals:
(defun map-fn-op (x)
(declare (xargs :verify-guards nil))
(atoc (map-fn-e0-ord x)))
(defthm multiset-extension-of-rel-well-founded
(and (implies (mp-true-listp x) (o-p (map-fn-op x)))
(implies (and (mp-true-listp x)
(mp-true-listp y)
(mul-rel x y))
(o< (map-fn-op x) (map-fn-op y))))
:hints (("goal"
:use ((:instance ACL2::e0-ordinal-well-founded-cnf
(ACL2::x (map-fn-e0-ord x))
(ACL2::y (map-fn-e0-ord y))))))
:rule-classes :well-founded-relation)
|