1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
(in-package "ACL2")
#|
concrete-ltl.lisp
~~~~~~~~~~~~~~~~~
In this book, we define functions to reason about concrete semantics of
LTL. This book is shipped with the certification of our compositional reduction
paper for the purpose of demonstration. We first define a mutually recusrive
clique that defines the semantics of LTL and then we define a single recursive
function to justify that definition. We then go ahead and prove some properties
about the functions. Our goal is to prove the properties that are necessary
about the mutually recursive4 clique as the properties we wish to export about
semantics of LTL. For conjunctive and cone of influence reductions, we need
basically two properties.
(1) That the ltl semantics can be decomposed over conjunction. (Obvious from
definition)
(2) That it is oblivious to paths that are bisimilar.
We have removed the second part of the theorems from this book, primarily
because it was taking a humongous amount of time in v2-6, and I did not have
the guts to see how much time it takes to prove in v2-7. And further, we
contend that if we have defined the semantics of ltl such that the theorem
cannot be proved, then we need to consider redefining the semantics of
LTL. (This book, I hope will provide enough evidence that the semantics can be
defined.) Hence we reasoned completely using a function that is encapsulated
and known to satisfy this property. If the reader feels unsatisfied with this,
we can provide the actual theorems about ltl-periodic-path-emantics, (which are
actually slightly more general than those I exported from the constrained
functions).
|#
(include-book "ltl")
;; Added for compatibility with previous versions of ACL2.
(include-book "../../../../ordinals/e0-ordinal")
(set-well-founded-relation e0-ord-<)
(mutual-recursion
(defun ltl-periodic-path-semantics (f init prefix cycle label)
(declare (xargs :measure (cons (1+ (acl2-count f)) 0)))
(cond ((atom f)
(if (ltl-constantp f)
(equal f 'true)
(memberp f (<- label init))))
((equal (len f) 3)
(case (second f)
(& (and (ltl-periodic-path-semantics (first f) init prefix cycle
label)
(ltl-periodic-path-semantics (third f) init prefix cycle
label)))
(+ (or (ltl-periodic-path-semantics (first f) init prefix cycle
label)
(ltl-periodic-path-semantics (third f) init prefix cycle
label)))
(U (let* ((found-and-index
(find-state-satisfying-formula
(third f) init prefix cycle label
(+ 1 (len prefix) (len cycle))))
(found (first found-and-index))
(index (second found-and-index)))
(if (not found)
nil
(ltl-periodic-path-semantics* (first f) init prefix
cycle label index))))
(W (let* ((found-and-index
(find-state-satisfying-formula
(third f) init prefix cycle label
(+ 1 (len prefix) (len cycle))))
(found (first found-and-index))
(index (second found-and-index)))
(if (not found)
(ltl-periodic-path-semantics* (first f) init prefix
cycle label
(+ 1 (len prefix) (len cycle)))
(ltl-periodic-path-semantics* (first f) init prefix
cycle label index))))
(t nil)))
((equal (len f) 2)
(case (first f)
(~ (not (ltl-periodic-path-semantics (second f) init prefix cycle
label)))
(G (ltl-periodic-path-semantics* (second f) init prefix
cycle label
(+ 1 (len prefix) (len cycle))))
(F (let* ((found-and-index
(find-state-satisfying-formula
(second f) init prefix cycle label
(+ 1 (len prefix) (len cycle))))
(found (first found-and-index)))
(if found t nil)))
(X (ltl-periodic-path-semantics (second f) (first prefix)
(if (endp (rest prefix))
cycle
(rest prefix))
cycle
label))
(t nil)))
(t nil)))
(defun ltl-periodic-path-semantics* (f init prefix cycle label dist)
(declare (xargs :measure (cons (1+ (acl2-count f)) (nfix dist))))
(if (zp dist) t
(and (ltl-periodic-path-semantics f init prefix cycle label)
(ltl-periodic-path-semantics* f (first prefix)
(if (endp (rest prefix))
cycle
(rest prefix))
cycle label (1- dist)))))
(defun find-state-satisfying-formula (f init prefix cycle label dist)
(declare (xargs :measure (cons (1+ (acl2-count f)) (nfix dist))))
(cond ((zp dist) (list nil 0))
((ltl-periodic-path-semantics f init prefix cycle label)
(list t 0))
(t (let* ((found-and-index
(find-state-satisfying-formula
f (first prefix)
(if (endp (rest prefix)) cycle (rest prefix))
cycle label (1- dist)))
(found (first found-and-index))
(ndx (second found-and-index)))
(list found (1+ ndx))))))
)
;; Now we have ther semantics of LTL that we will call the spec. We now proceed
;; to define a singly recursive version that is equivalent to the spec. Our
;; proofs will be using the singly recursive definition critically in order to
;; get us to what we want.
(defun ltl-semantics-single-recursion (f init prefix cycle label dist index)
(declare (xargs :measure (cons (1+ (acl2-count f)) (if (equal index 0) 0 (nfix dist)))
:otf-flg nil))
(if (equal index 0)
(cond ((atom f)
(if (ltl-constantp f)
(equal f 'true)
(memberp f (<- label init))))
((equal (len f) 3)
(case (second f)
(& (and (ltl-semantics-single-recursion (first f) init prefix cycle
label dist 0)
(ltl-semantics-single-recursion (third f) init prefix cycle
label dist 0)))
(+ (or (ltl-semantics-single-recursion (first f) init prefix cycle
label dist 0)
(ltl-semantics-single-recursion (third f) init prefix cycle
label dist 0)))
(U (let* ((found-and-index
(ltl-semantics-single-recursion
(third f) init prefix cycle label
(+ 1 (len prefix) (len cycle))
2))
(found (first found-and-index))
(ndx (second found-and-index)))
(if (not found)
nil
(ltl-semantics-single-recursion (first f) init prefix
cycle label ndx 1))))
(W (let* ((found-and-index
(ltl-semantics-single-recursion
(third f) init prefix cycle label
(+ 1 (len prefix) (len cycle))
2))
(found (first found-and-index))
(ndx (second found-and-index)))
(if (not found)
(ltl-semantics-single-recursion (first f) init prefix
cycle label
(+ 1 (len prefix) (len
cycle))
1)
(ltl-semantics-single-recursion (first f) init prefix
cycle label ndx 1))))
(t nil)))
((equal (len f) 2)
(case (first f)
(~ (not (ltl-semantics-single-recursion (second f) init prefix cycle
label dist 0)))
(G (ltl-semantics-single-recursion (second f) init prefix
cycle label
(+ 1 (len prefix) (len cycle)) 1))
(F (let* ((found-and-index
(ltl-semantics-single-recursion
(second f) init prefix cycle label
(+ 1 (len prefix) (len cycle))
2))
(found (first found-and-index)))
(if found T nil)))
(X (ltl-semantics-single-recursion (second f) (first prefix)
(if (endp (rest prefix))
cycle
(rest prefix))
cycle
label dist 0))
(t nil)))
(t nil))
(if (equal index 1)
(if (zp dist) t
(and (ltl-semantics-single-recursion f init prefix cycle label dist 0)
(ltl-semantics-single-recursion f (first prefix)
(if (endp (rest prefix))
cycle
(rest prefix))
cycle label (1- dist)
1)))
(if (equal index 2)
(cond ((zp dist) (list nil 0))
((ltl-semantics-single-recursion f init prefix cycle label dist 0)
(list t 0))
(t (let* ((found-and-index
(ltl-semantics-single-recursion
f (first prefix)
(if (endp (rest prefix)) cycle (rest prefix))
cycle label (1- dist) 2))
(found (first found-and-index))
(ndx (second found-and-index)))
(list found (1+ ndx)))))
nil))))
;; So do we believe that this big hodge-podge is same as the mutually recursive
;; code? Well, let us prove it.
(local
;; [Jared] added this because the following proof broke when I built it into ACL2.
(in-theory (disable FOLD-CONSTS-IN-+)))
(defthm single-and-mutually-recursive-code-same
(equal (ltl-semantics-single-recursion f init prefix cycle label dist index)
(if (equal index 0)
(ltl-periodic-path-semantics f init prefix cycle label)
(if (equal index 1)
(ltl-periodic-path-semantics* f init prefix cycle label dist)
(if (equal index 2)
(find-state-satisfying-formula f init prefix cycle
label dist)
nil))))
:rule-classes nil)
(defthm ltl-semantics-is-boolean
(if (not (equal i 2))
(booleanp (ltl-semantics-single-recursion f init prefix cycle label
dist i))
(and (booleanp (first (ltl-semantics-single-recursion f init prefix
cycle label dist
i)))
(integerp (second (ltl-semantics-single-recursion f init prefix
cycle label dist
i)))))
:rule-classes nil)
(defthm ltl-semantics-0-is-boolean
(booleanp (ltl-semantics-single-recursion f init prefix cycle label dist 0))
:hints (("Goal"
:use ((:instance single-and-mutually-recursive-code-same
(index 0)))))
:rule-classes :type-prescription)
(defthm ltl-semantics-1-boolean
(booleanp (ltl-semantics-single-recursion f init prefix cycle label dist 1))
:hints (("Goal"
:use ((:instance single-and-mutually-recursive-code-same
(index 1)))))
:rule-classes :type-prescription)
(defthm ltl-semantics->2-boolean
(implies (and (not (equal i 0))
(not (equal i 1))
(not (equal i 2)))
(not (ltl-semantics-single-recursion f init prefix cycle label
dist i)))
:rule-classes :type-prescription)
(defthm ltl-semantics-2-boolean
(booleanp (first (ltl-semantics-single-recursion f init prefix cycle label
dist 2)))
:hints (("Goal"
:use ((:instance ltl-semantics-is-boolean
(i 2)))))
:rule-classes :type-prescription)
(defthm ltl-semantics-2-integer
(integerp (second (ltl-semantics-single-recursion f init prefix cycle label
dist 2)))
:hints (("Goal"
:use ((:instance ltl-semantics-is-boolean
(i 2)))))
:rule-classes :type-prescription)
(defthm ltl-periodic-path-semantics-decomposed-for-conjunction
(implies (and ;; (ltl-formulap f)
(equal (len f) 3)
(equal (second f) '&))
(equal (ltl-periodic-path-semantics f init prefix cycle label)
(and (ltl-periodic-path-semantics (first f) init prefix cycle
label)
(ltl-periodic-path-semantics (third f) init prefix cycle
label))))
:rule-classes nil)
|