1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
|
(in-package "ACL2")
#|
reductions.lisp
~~~~~~~~~~~~~~~
In this book, we use the conjunctive reduction and cone of influence reduction
compositionally to provide reduction algorithms for circuits.
|#
(local
(include-book "conjunction")
)
(include-book "cone-of-influence")
(defun ltl-semantics-for-circuit (C f)
(ltl-semantics f (create-kripke C)))
(defun ltl-semantics-for-circuits* (list)
(if (endp list) T
(and (ltl-semantics-for-circuit (second (first list))
(first (first list)))
(ltl-semantics-for-circuits* (rest list)))))
(defun reduce-problem-conjunction (f C)
(if (and (equal (len f) 3)
(equal (second f) '&))
(append (reduce-problem-conjunction (first f) C)
(reduce-problem-conjunction (third f) C))
(list (list f C))))
(defun reduce-problem-cone (f C)
(let ((vars (create-restricted-var-set f)))
(cone-of-influence-reduction C vars)))
(defun reduce-problem-cone* (list)
(if (endp list) nil
(cons (list (first (first list))
(reduce-problem-cone (first (first list)) (second (first list))))
(reduce-problem-cone* (rest list)))))
(defun compositional-reduction (C f)
(let ((list (reduce-problem-conjunction f C)))
(reduce-problem-cone* list)))
;; OK, so let us dispatch the obligations for conjunction first.
(local
(in-theory (disable ltl-semantics create-kripke ltl-formulap))
)
(local
(defthm ltl-semantics*-append-reduction
(equal (ltl-semantics-for-circuits* (append x y))
(and (ltl-semantics-for-circuits* x)
(ltl-semantics-for-circuits* y))))
)
(local
(defthm conjunction-produces-correct-list
(implies (ltl-formulap f)
(equal (ltl-semantics-for-circuits*
(reduce-problem-conjunction f C))
(ltl-semantics-for-circuit C f)))
:otf-flg t
:hints (("Goal"
:induct (reduce-problem-conjunction f C)
:do-not-induct t
:in-theory (enable ltl-formulap)
:do-not '(eliminate-destructors generalize))))
)
;; To work with reduce-problems-cone, we need to assume that the variables in f
;; are subsets of the variables in cone of influence reduction. We show that
;; assuming that the variables are subsets of variables of the circuit. We need
;; to show though that the variables of cone will be a superset of vars if we
;; start with a collection of vars that are subset of the variables of the
;; circuit.
(local
(encapsulate
()
(defthm not-memberp-union-reduction
(implies (and (not (memberp e x))
(not (memberp e y)))
(not (memberp e (set-union x y))))
:hints (("Goal"
:in-theory (enable set-union))))
(local
(defthm uniquep-set-union-reduction
(implies (and (uniquep x)
(uniquep y))
(uniquep (set-union x y)))
:hints (("Goal"
:in-theory (enable set-union))))
)
(local
(in-theory (disable consistent-equation-record-p))
)
(local
(defthm consistent-equation-record-p-expanded
(implies (and (consistent-equation-record-p vars equations)
(uniquep vars)
(memberp v vars)
(memberp equation (<- equations v)))
(subset (find-variables equation)
vars))
:hints (("Goal"
:use consistent-equation-record-p-necc)))
)
(local
(in-theory (disable consistent-equation-record-p-necc))
)
(local
(defthm set-union-subset-reduction
(implies (and (subset x z)
(subset y z))
(subset (set-union x y) z))
:hints (("Goal"
:in-theory (enable set-union))))
)
(local
(defthm find-variables*-subset-of-variables
(implies (and (consistent-equation-record-p variables equations)
(uniquep variables)
(memberp v variables)
(subset equation-list (<- equations v)))
(subset (find-variables* equation-list)
variables))
:hints (("Goal"
:in-theory (disable find-variables)
:induct (find-variables* equation-list)
:do-not '(eliminate-destructors generalize)
:do-not-induct t)))
)
(local
(defthm find-variables*-is-subset-concretized
(implies (and (consistent-equation-record-p variables equations)
(memberp v variables)
(uniquep variables))
(subset (find-variables* (<- equations v)) variables)))
)
(local
(in-theory (disable find-variables*-subset-of-variables))
)
(local
(defthm find-variables-1-pass-is-subset
(implies (and (consistent-equation-record-p variables equations)
(subset vars variables)
(uniquep variables))
(subset (find-all-variables-1-pass vars equations)
variables)))
)
(local
(defthm memberp-union-reduction-1
(implies (memberp e x)
(memberp e (set-union y x)))
:hints (("Goal"
:in-theory (enable set-union))))
)
(local
(defthm memberp-find-all-variables-reduction
(implies (and (consistent-equation-record-p variables equations)
(subset vars variables)
(memberp v vars))
(memberp v (find-all-variables vars variables equations)))
:otf-flg t
:hints (("Goal"
:induct (find-all-variables vars variables equations)
:do-not '(eliminate-destructors generalize)
:do-not-induct t)))
)
(local
(defthm find-all-variables-produces-subset
(implies (and (consistent-equation-record-p variables equations)
(subset vars variables)
(subset vars-prime vars))
(subset vars-prime (find-all-variables vars variables equations))))
)
(local
(defthm set-intersect-is-subset
(implies (and (subset vars variables)
(subset vars vars-prime))
(subset vars (set-intersect vars-prime variables))))
)
(local
(defthm memberp-remove-reduction
(equal (memberp e (remove-duplicate-occurrences variables))
(memberp e variables)))
)
(local
(defthm remove-duplicates-is-subset
(implies (subset vars variables)
(subset vars (remove-duplicate-occurrences variables))))
)
(local
(defthm cone-variables-are-subset
(implies (and (consistent-equation-record-p variables equations)
(subset vars variables))
(subset vars (find-all-variables
(set-intersect
(remove-duplicate-occurrences vars)
variables)
variables equations)))
:hints (("Goal"
:do-not-induct t
:in-theory (disable find-all-variables-produces-subset)
:use ((:instance find-all-variables-produces-subset
(vars-prime vars)
(vars (set-intersect
(remove-duplicate-occurrences vars)
variables)))))))
)
(local
(defthm circuitp-to-cone-variables
(implies (and (circuitp C)
(subset vars (variables C)))
(subset vars (cone-variables vars C))))
)
(local
(in-theory (disable circuitp cone-variables cone-of-influence-reduction))
)
(defthm cone-of-influence-reduction-for-specific
(implies (and (circuitp C)
(ltl-formulap f)
(subset (create-restricted-var-set f)
(variables C)))
(equal (ltl-semantics-for-circuit (cone-of-influence-reduction
C (create-restricted-var-set
f))
f)
(ltl-semantics-for-circuit C f)))
:hints (("Goal"
:do-not-induct t
:in-theory (disable cone-of-influence-reduction-is-sound-generalized)
:use ((:instance cone-of-influence-reduction-is-sound-generalized
(interesting-vars (create-restricted-var-set f))
(vars (create-restricted-var-set f)))))))
)
)
(local
(in-theory (disable ltl-semantics-for-circuit create-restricted-var-set
cone-of-influence-reduction
circuitp ltl-formulap))
)
(local
(defthm reduce-problem-cone-reduction
(implies (and (circuitp C)
(ltl-formulap f)
(subset (create-restricted-var-set f) (variables C)))
(equal (ltl-semantics-for-circuit (reduce-problem-cone f C)
f)
(ltl-semantics-for-circuit C f))))
)
(local
(in-theory (disable reduce-problem-cone))
)
(local
(defun well-formed-problems-p (list)
(if (endp list) T
(and (ltl-formulap (first (first list)))
(circuitp (second (first list)))
(subset (create-restricted-var-set (first (first list)))
(variables (second (first list))))
(well-formed-problems-p (rest list)))))
)
(local
(defthm reduce-problem-cone*-reduction
(implies (well-formed-problems-p list)
(equal (ltl-semantics-for-circuits* (reduce-problem-cone* list))
(ltl-semantics-for-circuits* list)))
:otf-flg t
:hints (("Goal"
:in-theory (enable reduce-problem-cone*)
:do-not '(eliminate-destructors generalize))))
)
(local
(defthm subset-member-reduction
(implies (and (subset (set-union x y) z)
(memberp e x))
(memberp e z))
:hints (("Goal"
:in-theory (enable set-union))))
)
(local
(defthm subset-member-reduction-2
(implies (and (subset (set-union x y) z)
(memberp e y))
(memberp e z))
:hints (("Goal"
:in-theory (enable set-union))))
)
(local
(defthm set-union-subset-reduction
(implies (subset (set-union x y) z)
(subset x z))
:hints (("Goal"
:in-theory (enable set-union))))
)
(local
(defthm set-union-subset-reduction-2
(implies (subset (set-union x y) z)
(subset y z))
:hints (("Goal"
:in-theory (enable set-union))))
)
(local
(defthm conjunction-has-variables-subset-1
(implies (and (ltl-formulap f)
(equal (len f) 3)
(subset (create-restricted-var-set f) vars))
(subset (create-restricted-var-set (first f)) vars))
:hints (("Goal"
:do-not '(eliminate-destructors generalize)
:do-not-induct t
:in-theory (enable create-restricted-var-set ltl-formulap)
:expand (create-restricted-var-set f))))
)
(local
(defthm conjunction-has-variables-subset-2
(implies (and (ltl-formulap f)
(equal (len f) 3)
(subset (create-restricted-var-set f) vars))
(subset (create-restricted-var-set (third f)) vars))
:hints (("Goal"
:do-not '(eliminate-destructors generalize)
:do-not-induct t
:in-theory (enable create-restricted-var-set ltl-formulap)
:expand (create-restricted-var-set f))))
)
(local
(defthm well-formed-append-reduction
(implies (and (force (well-formed-problems-p first))
(force (well-formed-problems-p second)))
(well-formed-problems-p (append first second))))
)
(local
(defthm conjunction-produces-well-formed-problems
(implies (and (circuitp C)
(ltl-formulap f)
(subset (create-restricted-var-set f) (variables C)))
(well-formed-problems-p (reduce-problem-conjunction f C)))
:hints (("Goal"
:do-not-induct t
:do-not '(eliminate-destructors generalize)
:induct (reduce-problem-conjunction f C))))
)
(DEFTHM compositional-reduction-is-sound
(implies (and (circuitp C)
(ltl-formulap f)
(subset (create-restricted-var-set f) (variables C)))
(equal (ltl-semantics-for-circuits* (compositional-reduction C f))
(ltl-semantics-for-circuit C f))))
|