1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
|
;;; subsumption.lisp Definition of a particular RULE-BASED matching
;;; algorithm between terms. We use functional instantion of the
;;; pattern given in matching.lisp Using this algorithm, we define the
;;; subsumption relńation between terms and lists of terms in a
;;; constructive way, and we prove that subsumption is a preorder.
;;; Created: 11-10-99 Last revison: 07-12-2000
;;; =============================================================================
#| To certify this book:
(in-package "ACL2")
(certify-book "subsumption")
|#
(in-package "ACL2")
(local (include-book "matching"))
(include-book "terms")
;;; *************************************************
;;; A PARTICULAR AND EXECUTABLE SUBSUMPTION ALGORITHM
;;; *************************************************
;;; Here we show how we can obtain a correct subsumption algorithm from
;;; the "pattern" verified in subsumption-definition.lisp:
;;; - We define a particular selection function.
;;; - We introduce multi-values to deal with the pair of systems
;;; S-match.
;;; - Some other minor improvements concerning efficency are done.
;;; - Guards are verified, allowing execution in raw Common Lisp.
;;; ============================================================================
;;; 1. The subsumption algorithm between terms
;;; ============================================================================
;;; ----------------------------------------------------------------------------
;;; 1.1 A particular version of transform-subs
;;; ----------------------------------------------------------------------------
;;; Selection function. If we detect an inmediate fail, we select it.
(defun sel-match (S)
(declare (xargs :guard (and (consp S) (system-p S))))
(if (endp (cdr S))
(car S)
(let* ((equ (car S))
(t1 (car equ))
(t2 (cdr equ)))
(cond ((variable-p t1)
(sel-match (cdr S)))
((variable-p t2) equ)
((eql (car t1) (car t2))
(sel-match (cdr S)))
(t equ)))))
;;; Main property, needed to instantiate from
;;; subsumption-definition.lisp:
(local
(defthm sel-match-select-a-pair
(implies (consp S)
(member (sel-match S) S))))
;;; The following lemmas help the guard verification of
;;; transform-subs (although they are not strictly needed)
(local
(defthm sel-match-consp
(implies (and (consp S)
(alistp S))
(consp (sel-match S)))
:rule-classes :type-prescription))
(encapsulate
()
(local
(defthm transform-subs-guard-verification-stuff-1
(implies (and (system-p S)
(member equ S))
(and
(implies (variable-p (car equ)) (eqlablep (car equ)))
(implies (variable-p (cdr equ)) (eqlablep (cdr equ)))))))
(local
(defthm transform-subs-guard-verification-stuff-2
(implies (and (system-p S)
(member equ S))
(and
(eqlablep (cadr equ))
(true-listp (cdar equ))
(true-listp (cddr equ))
(iff (variable-p (car equ)) (eqlablep (car equ)))
(iff (variable-p (cdr equ)) (eqlablep (cdr equ)))))))
;;; The rules of transformation:
(defun transform-subs (S match)
(declare (xargs :guard (and (consp S) (system-p S)
(alistp match))))
(let* ((ecu (sel-match S))
(t1 (car ecu)) (t2 (cdr ecu))
(R (eliminate ecu S)))
(cond
((variable-p t1)
(let ((bound (assoc t1 match)))
(if bound
(if (equal (cdr bound) t2)
(mv R match t)
(mv nil nil nil))
(mv R (cons (cons t1 t2) match) t))))
((variable-p t2) (mv nil nil nil))
((eql (car t1) (car t2))
(mv-let (empareja bool)
(pair-args (cdr t1) (cdr t2))
(if bool
(mv (append empareja R) match t)
(mv nil nil nil))))
(t (mv nil nil nil))))))
;;; REMARK: transform-subs will not be the counterpart of
;;; transform-subs in our functional instantiation. Instead we have to
;;; define a function acting on pair of systems:
(local
(defun transform-subs-bridge (S-match)
(mv-let (S1 match1 bool1)
(transform-subs (car S-match) (cdr S-match))
(if bool1 (cons S1 match1) nil))))
;;; ----------------------------------------------------------------------------
;;; 1.2 A particular version of a matching algorithm for systems of equations
;;; ----------------------------------------------------------------------------
;;; Termination properties of transform-subs.
(local
(defthm transform-subs-decreases-length-of-first-system
(implies (consp S)
(< (length-system (first (transform-subs S match)))
(length-system S)))
:hints (("Goal" :use ((:functional-instance
(:instance
transform-subs-sel-decreases-length-of-first-system
(S-match (cons S match)))
(transform-subs-sel transform-subs-bridge)
(a-pair sel-match)))))))
;;; A particular version of subs-system
(defun subs-system (S match bool)
(declare (xargs
:guard (and (system-p S) (alistp match))
:measure (length-system S)
:hints (("Goal" :in-theory (disable transform-subs)))))
(if (or (not bool) (not (consp S)))
(mv S match bool)
(mv-let (S1 match1 bool1)
(transform-subs S match)
(subs-system S1 match1 bool1))))
;;; Matching algorithm for systems of equations:
(defun match-mv (S)
(declare (xargs :guard (system-p S)))
(mv-let (S1 sol1 bool1)
(subs-system S nil t)
(declare (ignore S1))
(mv sol1 bool1)))
;;; REMARK: Again, subs-system and match-mv will not be the counterpart
;;; of subs-system-sel, match-sel in our functional instantiation,
;;; because of signature mismatch. Instead we have to
;;; define functions acting on pair of systems:
(local
(defun subs-system-bridge (S-match)
(if (normal-form-syst S-match)
S-match
(mv-let (S1 match1 bool1)
(subs-system (car S-match) (cdr S-match) t)
(if bool1 (cons S1 match1) nil)))))
(local
(defun match-mv-bridge (S)
(let ((subs-system-bridge (subs-system-bridge (cons S nil))))
(if subs-system-bridge (list (cdr subs-system-bridge)) nil))))
;;; ----------------------------------------------------------------------------
;;; 1.3 Main properties of the matching algorithm for systems of equations
;;; ----------------------------------------------------------------------------
;;; Some technical lemmas
(local
(defthm booleanp-third-subs-system
(implies (booleanp bool)
(booleanp (third (subs-system S match bool))))
:rule-classes :type-prescription))
(local
(defthm nil-third-implies-nil-second-subs-system
(implies (not (third (subs-system s match t)))
(not (second (subs-system s match t))))))
;;; And the main properties of match-mv
(defthm match-mv-soundness
(implies (second (match-mv S))
(matcher (first (match-mv S)) S))
:hints (("Goal" :use ((:functional-instance
match-sel-soundness
(match-sel match-mv-bridge)
(subs-system-sel subs-system-bridge)
(transform-subs-sel transform-subs-bridge)
(a-pair sel-match))))))
(defthm match-mv-completeness
(implies (matcher sigma S)
(second (match-mv S)))
:hints (("Goal" :use ((:functional-instance
match-sel-completeness
(match-sel match-mv-bridge)
(subs-system-sel subs-system-bridge)
(transform-subs-sel transform-subs-bridge)
(a-pair sel-match))))))
(defthm match-mv-substitution-s-p
(implies (system-s-p S)
(substitution-s-p (first (match-mv S))))
:hints (("Goal" :use ((:functional-instance
match-sel-substitution-s-p
(match-sel match-mv-bridge)
(subs-system-sel subs-system-bridge)
(transform-subs-sel transform-subs-bridge)
(a-pair sel-match))))))
;;; ----------------------------------------------------------------------------
;;; 1.4 A particular and executable version of subsumption of two terms.
;;; ----------------------------------------------------------------------------
;;; The subsumption algorithm
(defun subs-mv (t1 t2)
(declare (xargs :guard (and (term-p t1) (term-p t2))))
(match-mv (list (cons t1 t2))))
;;; The subsumption relation
(defun subs (t1 t2)
(declare (xargs :guard (and (term-p t1) (term-p t2))))
(mv-let (matching subs)
(subs-mv t1 t2)
(declare (ignore matching))
subs))
;;; The witness substitution for matching (when (subs t1 t2))
(defun matching (t1 t2)
(declare (xargs :guard (and (term-p t1) (term-p t2))))
(mv-let (matching subs)
(subs-mv t1 t2)
(declare (ignore subs))
matching))
;;; REMARK:
;;; subs-mv will be used to compute the subsumption relation and
;;; matching substitutions at the same time. The functions subs and
;;; matching are defined to be used in the statements of theorems.
;;; ----------------------------------------------------------------------------
;;; 1.5 Fundamental properties of subs, matching and subs-mv
;;; ----------------------------------------------------------------------------
;;; Most of these properties are obtained by functional instantiation.
;;; Soundness
;;; ·········
(defthm subs-soundness
(implies (subs t1 t2)
(equal (instance t1 (matching t1 t2)) t2))
:rule-classes (:rewrite :elim)
:hints (("Goal" :use
(:instance match-mv-soundness (S (list (cons t1 t2)))))))
;;; Completeness
;;; ·············
(defthm subs-completeness
(implies (equal (instance t1 sigma) t2)
(subs t1 t2))
:rule-classes nil
:hints (("Goal" :use
(:instance match-mv-completeness (S (list (cons t1 t2)))))))
;;; Substitution-s-p (closure property)
;;; ···································
(defthm matching-substitution-s-p
(implies (and (term-s-p t1) (term-s-p t2))
(substitution-s-p (matching t1 t2)))
:hints (("Goal" :use
(:instance match-mv-substitution-s-p (S (list (cons t1 t2)))))))
;;; Substitution-p (needed for guard verification)
;;; ··············································
(defthm matching-substitution-p
(implies (and (term-p t1) (term-p t2))
(substitution-p (matching t1 t2)))
:hints (("Goal" :use (:functional-instance
matching-substitution-s-p
(signat (lambda (x n) (eqlablep x)))
(term-s-p-aux term-p-aux)
(substitution-s-p substitution-p)))))
;;; Later, We will disable match-mv, subs-mv, matching and subs and
;;; their executable counter-parts, to be sure that ONLY the above two
;;; properties are used in the sequel. But before doing this, we state
;;; the relations between subs-mv and subs and matching. Note that, from
;;; now on, we will not assume any relations between match-mv and
;;; subs-mv
(defthm subs-mv-subs
(equal (second (subs-mv t1 t2)) (subs t1 t2)))
(defthm subs-mv-matching
(equal (first (subs-mv t1 t2)) (matching t1 t2)))
;;; ============================================================================
;;; 2. The subsumption algorithm between lists of terms
;;; ============================================================================
;;; ----------------------------------------------------------------------------
;;; 2.1 Subsumption between lists of terms
;;; ----------------------------------------------------------------------------
;;; Sometimes it will be useful to talk abou subsumption between lists
;;; of terms (see, for example, kb/critical-pairs.lisp). We define here
;;; such concept and its main properties, in a similar way to subs.
;;; The subsumption algorithm (between lists of terms)
(defun subs-list-mv (l1 l2)
(declare (xargs :guard (and (term-p-aux nil l1)
(term-p-aux nil l2))))
(mv-let (pair-lists bool)
(pair-args l1 l2)
(if bool (match-mv pair-lists) (mv nil nil))))
;;; The subsumption relation between lists of terms
(defun subs-list (l1 l2)
(declare (xargs :guard (and (term-p-aux nil l1)
(term-p-aux nil l2))))
(mv-let (matching subs-list)
(subs-list-mv l1 l2)
(declare (ignore matching))
subs-list))
;;; The witness substitution for matching lists of terms (when
;;; (subs-list l1 l2))
(defun matching-list (l1 l2)
(declare (xargs :guard
(and (term-p-aux nil l1)
(term-p-aux nil l2))))
(mv-let (matching subs-list)
(subs-list-mv l1 l2)
(declare (ignore subs-list))
matching))
;;; ----------------------------------------------------------------------------
;;; 2.2 Main properties of subsumption between lists of terms
;;; ----------------------------------------------------------------------------
;;; Two previous lemmas relating matcher with instances:
(local
(defthm matcher-apply-subst-nil
(implies (second (pair-args l1 l2))
(iff (matcher sigma (first (pair-args l1 l2)))
(equal (apply-subst nil sigma l1) l2)))))
(local
(defthm apply-subst-nil-pair-args
(second (pair-args l1 (apply-subst nil sigma l1)))))
;;; Soundness
;;; ·········
(defthm subs-list-soundness
(implies (subs-list l1 l2)
(equal (apply-subst nil (matching-list l1 l2) l1) l2))
:rule-classes (:rewrite :elim)
:hints (("Goal" :use
(:instance match-mv-soundness (S (first (pair-args l1 l2)))))))
;;; Completeness
;;; ·············
(defthm subs-list-completeness
(implies (equal (apply-subst nil sigma l1) l2)
(subs-list l1 l2))
:rule-classes nil
:hints (("Goal" :use
(:instance match-mv-completeness (S (first (pair-args l1 l2)))))))
;;; Substitution-s-p (closure property)
;;; ···································
(defthm matching-list-substitution-s-p
(implies (and (term-s-p-aux nil l1) (term-s-p-aux nil l2))
(substitution-s-p (matching-list l1 l2)))
:hints (("Goal" :use
(:instance match-mv-substitution-s-p
(S (first (pair-args l1 l2)))))))
;;; Substitution-p (needed for guard verification)
;;; ··············································
(defthm matching-list-substitution-p
(implies (and (term-p-aux nil l1)
(term-p-aux nil l2))
(substitution-p (matching-list l1 l2)))
:hints (("Goal" :use (:functional-instance
matching-list-substitution-s-p
(signat (lambda (x n) (eqlablep x)))
(term-s-p-aux term-p-aux)
(substitution-s-p substitution-p)))))
;;; As with subs, we will disable the definitions related to subs-list to be
;;; sure that ONLY the above two properties are used in the sequel. But
;;; before doing this, we state the relations between subs-list-mv and subs-list
;;; and matching-list.
(defthm subs-list-mv-subs-list
(equal (second (subs-list-mv t1 t2)) (subs-list t1 t2)))
(defthm subs-list-mv-matching-list
(equal (first (subs-list-mv t1 t2)) (matching-list t1 t2)))
(in-theory
(disable
subs-list-mv (subs-list-mv) subs-list (subs-list) matching-list
(matching-list)))
;;; ============================================================================
;;; 3. Properties of the subsumption relation
;;; ============================================================================
(in-theory
(disable
match-mv (match-mv) subs-mv (subs-mv) subs (subs) matching (matching)))
;;; REMARK: Note that the properties described below only use the
;;; soundness and completeness properties of the subsumption
;;; algorithm (the definition and executable-counterpart of subs
;;; are disabled)
;;; ----------------------------------------------------------------------------
;;; 3.1 Subsumption is a quasi-order
;;; ----------------------------------------------------------------------------
;;;; Subsumption reflexive
;;;; ·····················
(defthm subsumption-reflexive
(subs t1 t1)
:hints (("Goal" :use (:instance
subs-completeness
(sigma nil) (t2 t1)))))
;;;; Subsumption transitive
;;;; ······················
(defthm subsumption-transitive
(implies (and (subs t1 t2) (subs t2 t3))
(subs t1 t3))
:hints (("Goal" :use ((:instance
subs-completeness
(sigma (composition
(matching t2 t3)
(matching t1 t2)))
(t2 t3))))))
(in-theory (disable subsumption-transitive ))
;;; ----------------------------------------------------------------------------
;;; 3.2 Several properties of subsumption
;;; ----------------------------------------------------------------------------
;;; An useful rule:
;;; ···············
(defthm subsumption-apply-subst
(subs term (instance term sigma))
:hints (("Goal" :use (:instance subs-completeness
(t1 term) (t2 (instance term sigma))))))
;;; Variables are minimum elements in this quasi-order
;;; ··················································
(defthm variable-minimum-subsumption
(implies (variable-p x)
(subs x term))
:hints (("Goal" :use ((:instance subs-completeness
(sigma (list (cons x term)))
(t1 x)
(t2 term))))))
(in-theory (disable variable-minimum-subsumption))
(defthm minimum-subsumption-implies-variable
(implies (and (variable-p x) (subs term x))
(variable-p term))
:hints (("Goal" :use (:instance
apply-returns-variable-implies-variable
(flg t) (sigma (matching term x)))))
:rule-classes nil)
|