1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
|
(in-package "BAG")
(include-book "meta")
(in-theory
(disable
(:REWRITE SUBBAGP-IMPLIES-REMOVE-BAG)
(:REWRITE REMOVE-BAG-CONS-REMOVE-1-NOT-EQUAL)
(:REWRITE REMOVE-BAG-REMOVE-1)
(:REWRITE REMOVE-BAG-CONS)
(:REWRITE SUBBAGP-CDR)
(:REWRITE SUBBAGP-IMPLIES-COMMON-MEMBERS-ARE-IRRELEVANT)
; (:REWRITE NOT-REMOVE-BAG-IMPLIES-NOT-REMOVE-BAG-REMOVE-1)
(:REWRITE SUBBAGP-APPEND-APPEND)
(:REWRITE SUBBAGP-APPEND-APPEND-LEFT)
(:REWRITE SUBBAGP-IMPLIES-SUBBAGP-CONS)
(:REWRITE MEMBERSHIP-EXTRACTION-INSTANCE)
))
(in-theory
(disable
(:REWRITE *TRIGGER*-UNIQUE-SUBBAGPS-IMPLIES-DISJOINTNESS)
(:REWRITE *TRIGGER*-SUBBAGP-PAIR-DISJOINT) ;can we get rid of this then?
))
;we look through HYPS for a term of the form (subbagp x y)
;if such an item is found, we return (mv t y). else, we return (mv nil nil)
;what if multiple such things might be found?
(defun find-exact-subbagp-instance (x hyps)
(declare (type t hyps)
)
(if (consp hyps)
(let ((entry (car hyps)))
(if (and (consp entry)
; (not (subbagp term zed))
(equal (car entry) 'not)
(consp (cdr entry))
(consp (cadr entry))
(equal (car (cadr entry)) 'subbagp)
(consp (cdr (cadr entry)))
(equal (cadr (cadr entry)) x)
(consp (cddr (cadr entry))))
(mv t (caddr (cadr entry)))
(find-exact-subbagp-instance x (cdr hyps))))
(mv nil nil)))
;look through HYPS for a term of the form (subbagp term zed) where x is a
;syntactic subbagp of TERM. if such a term is found, return (mv t term zed
;rh) where rh contains the remainder of HYPS (the stuff not yet processed by
;this function) else, return (mv nil nil nil nil)
(defun find-syntax-subbagp-instance (x hyps)
(declare (type t hyps)
(xargs :guard (and (PSEUDO-TERM-LISTP hyps)
(PSEUDO-TERMP X)))
)
(if (consp hyps)
(let ((entry (car hyps)))
(let ((hit ;(not (subbagp term zed))
(and
(consp entry)
(equal (car entry) 'not)
(consp (cdr entry))
(consp (cadr entry))
(equal (car (cadr entry)) 'subbagp) ;;(subbagp term zed)
(consp (cdr (cadr entry)))
(consp (cddr (cadr entry)))
(let ((term (cadr (cadr entry)))
(zed (caddr (cadr entry))))
(and (syntax-subbagp-fn nil x term)
(cons term zed))))))
(if hit
(mv t (car hit) (cdr hit) (cdr hyps))
(find-syntax-subbagp-instance x (cdr hyps)))))
(mv nil nil nil nil)))
;n seems to be a counter which restricts the amount of looking we do (hence the "bounded" in the function name).
(defun find-bounded-subbagp-path (top x rh y hyps n res)
(declare (type (integer 0 *) n)
(xargs :guard (and (PSEUDO-TERM-LISTP hyps) ;i'm not sure all the guards are necessary, but they worked!
(PSEUDO-TERM-LISTP rh)
(PSEUDO-TERMP X)
(PSEUDO-TERMP y))
:measure (nfix n)))
(if (zp n)
nil
(if (and top (equal x y))
(cons (cons y t) res)
(if (and top (syntax-subbagp-fn nil x y))
(cons (cons y nil) res)
(met ((hit x0) (if top (find-exact-subbagp-instance x rh) (mv nil nil)))
(or (and hit (find-bounded-subbagp-path t x0 hyps y hyps (1- n) (cons (cons x0 t) res)))
(met ((hit x0 x1 nrh) (find-syntax-subbagp-instance x rh))
(and hit
(or (find-bounded-subbagp-path t x1 hyps y hyps (1- n) (cons (cons x1 t) (cons (cons x0 nil) res)))
(find-bounded-subbagp-path nil x nrh y hyps (1- n) res))))))))))
(defun reverse-path (path res)
(declare (type t path res))
(if (consp path)
(let ((entry (car path)))
(and (consp entry)
(let ((res `(cons (cons ,(car entry) (quote ,(cdr entry))) ,res)))
(reverse-path (cdr path) res))))
res))
;what does this do?
;we look through HYPS for a term of the form (subbagp x BLAH)
;if such an item is found, we test whether BLAH equals y. else, we return nil
;what if multiple such things might be found?
(defun subbagp-instance (x y hyps)
(declare (type t x y hyps))
(met ((hit res) (find-exact-subbagp-instance x hyps))
(and hit
(equal y res))))
(defun bind-subbagp-argument (key xlist x y mfc state)
(declare (xargs :guard (and
(PSEUDO-TERMP X)
(PSEUDO-TERMP y))
:stobjs (state)
:verify-guards t)
(ignore state))
(if (syntax-subbagp-fn nil x y)
`((,key . (quote t))
(,xlist . (quote nil)))
(let ((hyps (mfc-clause mfc)))
(and (not (subbagp-instance x y hyps))
(let ((res (find-bounded-subbagp-path t x hyps y hyps (len hyps) nil)))
(if (and (consp res)
(consp (car res)))
;(prog2$
;(cw "~%dag: bind-subbagp-argument!~%")
(let ((type (cdar res)))
(let ((path (reverse-path (cdr res) `(quote ,type))))
`((,key . (quote t))
(,xlist . ,path))))
nil))))))
;add guard?
(defun subbagp-chain (x xlist x0)
(if (consp xlist)
(and (if (cdar xlist) (hide-subbagp x (caar xlist)) (meta-subbagp x (caar xlist)))
(subbagp-chain (caar xlist) (cdr xlist) x0))
(if xlist
(hide-subbagp x x0)
(meta-subbagp x x0))))
;add guard?
(defun subbagp-hyp (key x xlist y)
(and key (subbagp-chain x xlist y)))
(defthm subbagp-computation
(implies (and (bind-free (bind-subbagp-argument 'key 'xlist x y mfc state) (key xlist))
(subbagp-hyp key x xlist y)
)
(subbagp x y))
:hints (("goal" :in-theory (enable hide-subbagp meta-subbagp))))
(local
(encapsulate
()
(defthmd tester
(implies (and (subbagp x y)
(subbagp y z)
(subbagp z q))
(subbagp x q)))
(defthmd tester1
(implies (and (subbagp x y)
(subbagp (append y b) z))
(subbagp x z)))
(defthmd tester2
(implies (subbagp a x)
(subbagp a (append x y))))
))
;-------------------------- UNIQUENESS --------------------------;
;finds a single potential subbagp-path and returns the path
(defun find-subbagp-path (x hyps n res)
(declare (type (integer 0 *) n)
(xargs :guard (and (pseudo-termp x)
(pseudo-term-listp hyps))
:measure (nfix n)))
(if (zp n) res
(met ((hit x0) (find-exact-subbagp-instance x hyps))
(if hit
(find-subbagp-path x0 hyps (1- n) (cons (cons x0 t) res))
(met ((hit x0 x1 rh) (find-syntax-subbagp-instance x hyps))
(declare (ignore rh))
(if hit
(find-subbagp-path x1 hyps (1- n) (cons (cons x1 t) (cons (cons x0 nil) res)))
res))))))
;searches through hyps for a call to UNIQUE which gives us (unique x)
(defun find-unique-instance (x hyps)
(declare (type t x hyps)
(xargs :guard (and (pseudo-termp x)
(pseudo-term-listp hyps))))
(if (consp hyps)
(let ((entry (car hyps)))
(let ((args (and (consp entry)
(equal (car entry) 'not)
(consp (cdr entry))
(let ((fn (cadr entry)))
(and (consp fn)
(equal (car fn) 'unique)
(consp (cdr fn))
(cadr fn))))))
(if (equal x args)
(mv args t)
(if (and args (syntax-subbagp-fn nil x args))
(mv args nil) ;why nil?
(find-unique-instance x (cdr hyps))))))
(mv nil nil)))
;added by eric for guard reasons
(defun list-whose-caars-are-pseudo-termsp (x)
(declare (type t x))
(if (consp x)
(and (consp (car x))
(pseudo-termp (caar x))
(list-whose-caars-are-pseudo-termsp (cdr x)))
t))
(defun find-unique-instance-list (xlist hyps)
(declare (type t xlist hyps)
(xargs :guard (and (list-whose-caars-are-pseudo-termsp xlist) ;(pseudo-termp xlist)
(pseudo-term-listp hyps))))
(if (consp xlist)
(let ((z0 (if (consp (car xlist)) (caar xlist) nil)))
(met ((uni syntax) (find-unique-instance z0 hyps))
(if uni
(if syntax
xlist
(append `((,uni . nil) (,z0 . t)) (cdr xlist))) ;reversed since list still needs to be reversed
(find-unique-instance-list (cdr xlist) hyps))))
nil))
(defthm pseudo-termp-of-v2-of-find-syntax-subbagp-instance
(implies (pseudo-term-listp hyps)
(pseudo-termp (val 2 (find-syntax-subbagp-instance x hyps)))))
(defthm pseudo-termp-of-v1-of-find-syntax-subbagp-instance
(implies (pseudo-term-listp hyps)
(pseudo-termp (val 1 (find-syntax-subbagp-instance x hyps)))))
(defthm pseudo-termp-of-v2-of-find-exact-subbagp-instance
(implies (pseudo-term-listp hyps)
(pseudo-termp (val 2 (find-exact-subbagp-instance x hyps)))))
(defthm pseudo-termp-of-v1-of-find-exact-subbagp-instance
(implies (pseudo-term-listp hyps)
(pseudo-termp (val 1 (find-exact-subbagp-instance x hyps)))))
(defthm list-whose-caars-are-pseudo-termsp-of-find-subbagp-path
(implies (and (pseudo-term-listp hyps)
(list-whose-caars-are-pseudo-termsp res)
)
(list-whose-caars-are-pseudo-termsp (find-subbagp-path x hyps n res)))
:hints (("Goal" :do-not '(generalize eliminate-destructors))))
(defun unique-uniqueness (x hyps)
(declare (type t x hyps)
(xargs :guard (and (pseudo-termp x)
(pseudo-term-listp hyps))))
(let ((n (len hyps)))
(let ((xlist (find-subbagp-path x hyps n `((,x . t)))))
(let ((newlist (find-unique-instance-list xlist hyps)))
(let ((uni (if (and (consp newlist) (consp (car newlist))) (caar newlist) nil)))
(mv uni (reverse-path newlist '(quote t))))))))
(defun in-hyps-unique (x hyps)
(declare (type t x hyps))
(if (consp hyps)
(let ((entry (car hyps)))
(if (and (consp entry)
(consp (cdr entry)))
(if (and (equal (car entry) 'unique)
(equal (cadr entry) x))
t
(in-hyps-unique x (cdr hyps)))
(in-hyps-unique x (cdr hyps))))
nil))
(defun bind-unique-argument (key xlist uni x mfc state)
(declare (xargs :stobjs (state)
:guard (pseudo-termp x)
)
(ignore state))
(let ((hyps (mfc-clause mfc)))
(and (or (mfc-ancestors mfc)
(in-hyps-unique x hyps))
(met ((hit list) (unique-uniqueness x hyps))
(if hit
`((,key . (quote t))
(,xlist . ,list)
(,uni . ,hit))
nil)))))
;; hide-unique is defined in meta as unique
;add guard?
(defun unique-chain (x xlist uni)
(if (consp xlist)
(and (if (cdar xlist) (hide-subbagp x (caar xlist)) (meta-subbagp x (caar xlist)));(subbagp x (car xlist))
(unique-chain (caar xlist) (cdr xlist) uni))
(if xlist
(and (hide-subbagp x uni)
(hide-unique uni))
(and (meta-subbagp x uni)
(hide-unique uni)))))
;add guard?
(defun unique-hyp (key x xlist uni)
(and key (unique-chain x xlist uni)))
(defthm unique-computation
(implies (and (bind-free (bind-unique-argument 'key 'xlist 'uni x mfc state) (key xlist uni))
(unique-hyp key x xlist uni))
(unique x))
:hints (("Goal" :in-theory (enable hide-unique hide-subbagp meta-subbagp))))
(encapsulate
()
(local
(defthmd unique-test
(implies (and (subbagp x y)
(subbagp y z)
(subbagp z w)
(unique w))
(unique x))))
(local
(defthmd unique-test1
(implies (and (subbagp x y)
(subbagp (append y p) z)
(subbagp z w)
(unique w))
(unique x))))
(local
(defthmd unique-test2
(implies (unique (append x y))
(unique x))))
(local
(defthmd unique-test3
(implies (and (subbagp x a)
(unique (append a y)))
(unique x))))
(local
(defthmd unique-test4
(implies (and (subbagp x a)
(subbagp a y)
(subbagp y z)
(unique y))
(unique x))))
)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;--------------------------DISJOINTNESS---------------------------
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun find-disjointness (x y hyps)
(declare (type t x y hyps)
(xargs :guard (and (pseudo-termp x)
(pseudo-termp y)
(pseudo-term-listp hyps)
)
))
(if (consp hyps)
(let ((entry (car hyps)))
(let ((args (and (consp entry)
(equal (car entry) 'not)
(consp (cdr entry))
(let ((fn (cadr entry)))
(and (consp fn)
(equal (car fn) 'disjoint)
(consp (cdr fn))
(consp (cddr fn))
(cons (cadr fn) (caddr fn)))))))
(if (equal args nil)
(find-disjointness x y (cdr hyps))
(if (syntax-subbagp-pair-fn nil x y (car args) (cdr args))
(mv t t (car args) (cdr args))
(if (syntax-subbagp-pair-fn nil x y (car args) (cdr args))
(mv t nil (car args) (cdr args))
(find-disjointness x y (cdr hyps)))))))
(mv nil nil nil nil))) ;return list is hit syntax p q
(defun find-disjointness* (x ylist hyps)
(declare (type t x ylist hyps)
(xargs :guard (and (pseudo-termp x)
(list-whose-caars-are-pseudo-termsp ylist)
(pseudo-term-listp hyps))
))
(if (and (consp ylist)
(consp (car ylist)))
(met ((hit syn p q) (find-disjointness x (caar ylist) hyps))
(if hit
(mv hit syn p q ylist)
(find-disjointness* x (cdr ylist) hyps)))
(mv nil nil nil nil nil)))
(defun find-disjointness** (xlist ylist hyps)
(declare (type t xlist ylist hyps)
(xargs :guard (and (list-whose-caars-are-pseudo-termsp xlist)
(list-whose-caars-are-pseudo-termsp ylist)
(pseudo-term-listp hyps))
))
(if (and (consp xlist)
(consp (car xlist)))
(met ((hit syn p q ylist2) (find-disjointness* (caar xlist) ylist hyps))
(if hit
(mv hit syn xlist ylist2 p q)
(find-disjointness** (cdr xlist) ylist hyps)))
(mv nil nil nil nil nil nil)))
;checks for subbagp paths up to disjoint
;argument for disjointness comes from a disjoint in hyps
(defun disjoint-disjointness (x y hyps)
(declare (type t x hyps)
(xargs :guard (and (pseudo-termp x)
(pseudo-termp y)
(pseudo-term-listp hyps))
))
(let ((n (len hyps)))
(let ((xlist (find-subbagp-path x hyps n `((,x . t))))
(ylist (find-subbagp-path y hyps n `((,y . t)))))
(met ((hit syn newx newy p q) (find-disjointness** xlist ylist hyps))
(if hit
(let ((x0 (if (and (consp newx) (consp (car newx))) (caar newx) nil))
(y0 (if (and (consp newy) (consp (car newy))) (caar newy) nil)))
(mv t ;key
(reverse-path newx '(quote t)) ;xlist
x0
(reverse-path newy '(quote t)) ;ylist
y0
`(quote ,syn)
p
q)) ;z's are irrelevent in this argument
;but use z positions for subbagp-pair type argument
(mv nil nil nil nil nil nil nil nil) ;no disjoint hyp found
)))))
;move?
(defun revlist (list res)
(declare (type t list res))
(if (consp list)
(revlist (cdr list) (cons (car list) res))
res))
(defun find-subbagp-pair-zlist (x y zlist)
(declare (type t x y zlist)
(xargs :guard (and (pseudo-termp x)
(pseudo-termp y)
(list-whose-caars-are-pseudo-termsp zlist))
))
(if (consp zlist)
(let ((args (and (consp (car zlist))
(caar zlist))))
(if (syntax-unique-subbagps-fn nil x y args) ;once you have this, want to return list from args to unique
(let ((newzlist (revlist zlist nil)))
(let ((z0 (if (and (consp newzlist) (consp (car newzlist))) (caar newzlist) nil)))
(mv t args newzlist z0)))
(find-subbagp-pair-zlist x y (cdr zlist))))
(mv nil nil nil nil)))
(defthm LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP-of-revlist
(IMPLIES (AND (LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP list)
(LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP res))
(LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP (REVLIST list res))))
(defun find-unique-subbagp (x y zlist hyps)
(declare (type t x y hyps zlist)
(xargs :guard (and (pseudo-termp x)
(pseudo-termp y)
(pseudo-term-listp hyps)
(list-whose-caars-are-pseudo-termsp zlist))
))
(if (consp hyps)
(let ((entry (car hyps)))
(let ((args (and (consp entry)
(equal (car entry) 'not)
(consp (cdr entry))
(let ((fn (cadr entry)))
(and (consp fn)
(equal (car fn) 'unique)
(consp (cdr fn))
(cadr fn))))))
(if (and args (syntax-unique-subbagps-fn nil x y args)) ;if subbagp-pair of something unique
(mv t args nil nil) ;(hit unique-element not-chain)
(find-unique-subbagp x y zlist (cdr hyps)))))
(met ((hit first chain z0) (find-subbagp-pair-zlist x y (revlist zlist nil)))
(mv hit first (reverse-path chain '(quote t)) z0))))
(defun find-unique-subbagp* (x ylist zlist hyps)
(declare (type t x ylist zlist hyps)
(xargs :guard (and (pseudo-termp x)
(pseudo-term-listp hyps)
(list-whose-caars-are-pseudo-termsp ylist)
(list-whose-caars-are-pseudo-termsp zlist))
))
(if (and (consp ylist)
(consp (car ylist)))
(met ((hit z chain z0) (find-unique-subbagp x (caar ylist) zlist hyps))
(if hit
(mv t (caar ylist) ylist z chain z0)
(find-unique-subbagp* x (cdr ylist) zlist hyps)))
(mv nil nil nil nil nil nil)))
(defun find-unique-subbagp** (xlist ylist zlist hyps)
(declare (type t xlist ylist zlist hyps)
(xargs :guard (and (pseudo-term-listp hyps)
(list-whose-caars-are-pseudo-termsp ylist)
(list-whose-caars-are-pseudo-termsp xlist)
(list-whose-caars-are-pseudo-termsp zlist))
))
(if (and (consp xlist)
(consp (car xlist)))
(met ((hit y0 ylist z chain z0) (find-unique-subbagp* (caar xlist) ylist zlist hyps))
(if hit
(if (not chain)
(mv t xlist (caar xlist) ylist y0 z '(quote nil) z)
(mv t xlist (caar xlist) ylist y0 z chain z0))
(find-unique-subbagp** (cdr xlist) ylist zlist hyps)))
(mv nil nil nil nil nil nil nil nil)))
(defun find-shared-ancestor-list (x ylist yres)
(declare (type t x ylist yres))
(if (consp ylist)
(if (and (consp (car ylist))
(equal x (caar ylist)))
(mv t yres)
(find-shared-ancestor-list x (cdr ylist) (cons (car ylist) yres)))
(mv nil nil)))
(defun find-shared-ancestor (xlist ylist xres)
(declare (type t xlist ylist xres))
(if (and (consp xlist)
(consp (car xlist)))
(met ((hit yres) (find-shared-ancestor-list (caar xlist) ylist nil))
(if hit (mv xres yres xlist)
(find-shared-ancestor (cdr xlist) ylist (cons (car xlist) xres))))
(mv xres (revlist ylist nil) nil)))
(defthm LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP-of-v0-of-FIND-SHARED-ANCESTOR
(implies (and (LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP xlist)
; (LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP ylist)
(LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP xres)
)
(LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP
(VAL
0
(FIND-SHARED-ANCESTOR XLIST YLIST XRES)))))
(defthm LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP-of-v1-of-FIND-SHARED-ANCESTOR-list
(implies (and; (LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP xlist)
(LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP ylist)
(LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP yres)
)
(LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP
(VAL
1
(FIND-SHARED-ANCESTOR-list X YLIST yRES)))))
(defthm LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP-of-v1-of-FIND-SHARED-ANCESTOR
(implies (and (LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP xlist)
(LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP ylist)
(LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP xres)
)
(LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP
(VAL
1
(FIND-SHARED-ANCESTOR XLIST YLIST XRES)))))
(defthm LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP-of-v2-of-FIND-SHARED-ANCESTOR
(implies (and (LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP xlist)
(LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP ylist)
(LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP xres)
)
(LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP
(VAL
2
(FIND-SHARED-ANCESTOR XLIST YLIST XRES)))))
(defthm PSEUDO-TERMP-of-v0-of-FIND-UNIQUE-INSTANCE
(implies (PSEUDO-TERM-LISTP HYPS)
(PSEUDO-TERMP (VAL 0 (FIND-UNIQUE-INSTANCE x HYPS)))))
(defthm LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP-of-FIND-UNIQUE-INSTANCE-LIST
(IMPLIES (AND (PSEUDO-TERM-LISTP HYPS)
(LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP xlist)
)
(LIST-WHOSE-CAARS-ARE-PSEUDO-TERMSP (FIND-UNIQUE-INSTANCE-LIST xlist hyps))))
(defun unique-disjointness (x y hyps)
(declare (type t x y hyps)
(xargs :guard (and (pseudo-termp x)
(pseudo-termp y)
(pseudo-term-listp hyps))
))
(let ((n (len hyps)))
(let ((xlist (find-subbagp-path x hyps n `((,x . t))))
(ylist (find-subbagp-path y hyps n `((,y . t)))))
(let ((xlist (revlist xlist nil))
(ylist (revlist ylist nil))) ; smallest to largest
(met ((xlist ylist zlist) (find-shared-ancestor xlist ylist nil)) ; x/y largest to smallest
(let ((newzlist (find-unique-instance-list (revlist zlist nil) hyps)))
;; newzlist path from something unique down subbagps
(met ((hit newxlist x0 newylist y0 z zlist z0) (find-unique-subbagp** xlist ylist newzlist hyps))
(mv hit (reverse-path newxlist '(quote t))
x0 (reverse-path newylist '(quote t))
y0 z zlist z0))))))))
;search for (disjoint X Y) in CLAUSE
;since we look for it non-negated, we are essentially looking for it as a conclusion
(defun in-clause-disjoint (x y clause)
(declare (type t x y clause))
(if (consp clause)
(let ((entry (car clause)))
(if (and (consp entry)
(equal (car entry) 'disjoint)
(consp (cdr entry))
(equal (cadr entry) x)
(consp (cddr entry))
(equal (caddr entry) y))
t
(in-clause-disjoint x y (cdr clause))))
nil))
(defun bind-disjoint-argument (flg key xlist x0 ylist y0 z zlist z0 x y mfc state)
(declare (xargs :stobjs (state)
:guard (and (pseudo-termp x)
(pseudo-termp y)
)
)
(ignore state))
(let ((hyps (mfc-clause mfc)))
(and (or flg
t
(mfc-ancestors mfc) ;BOZO why are we doing these checks?
(in-clause-disjoint x y hyps)
)
(met ((hit xlist* x0* ylist* y0* z* zlist* z0*) (unique-disjointness x y hyps))
(if hit
`((,key . (quote :unique))
(,xlist . ,xlist*)
(,x0 . ,x0*)
(,ylist . ,ylist*)
(,y0 . ,y0*)
(,z . ,z*)
(,zlist . ,zlist*)
(,z0 . ,z0*))
(met ((hit xlist* x0* ylist* y0* z* zlist* z0*) (disjoint-disjointness x y hyps))
(if hit
`((,key . (quote :disjoint))
(,xlist . ,xlist*)
(,x0 . ,x0*)
(,ylist . ,ylist*)
(,y0 . ,y0*)
(,z . ,z*)
(,zlist . ,zlist*)
(,z0 . ,z0*))
nil)))))))
;rename!
(defthm subbagp-pair-x-x-y-y
(subbagp-pair x y x y)
:hints (("goal" :in-theory (enable subbagp-pair))))
;add guard?
(defun unique-subbagp-chain (x0 y0 z zlist z0)
(and (unique-subbagps x0 y0 z)
(unique-chain z zlist z0)))
;add guard?
(defun disjoint-hyp (key x xlist x0 y ylist y0 z-syn zlist-p z0-q)
(cond
((equal key ':disjoint)
(and (subbagp-pair x0 y0 zlist-p z0-q)
(hide-disjoint zlist-p z0-q)
(subbagp-chain x xlist x0)
(subbagp-chain y ylist y0)))
((equal key ':unique)
(and
(unique-subbagp-chain x0 y0 z-syn zlist-p z0-q)
(subbagp-chain x xlist x0)
(subbagp-chain y ylist y0)
))
(t nil)))
(encapsulate
()
(local ;theorems to prove disjoint-computation
(encapsulate
()
(defthm subbagp-chain-subbagp
(implies (subbagp-chain x xlist x0)
(subbagp x x0))
:hints (("goal" :in-theory (enable hide-subbagp meta-subbagp))))
(defthm subbagp-subbagp-pair-disjoint
(implies (and (subbagp-pair x0 y0 z z0)
(disjoint z z0))
(disjoint x0 y0))
:hints (("goal" :in-theory (enable subbagp-pair))))
(defthm subbagp-subbagp-disjoint-disjoint
(implies (and (subbagp x x0)
(subbagp y y0)
(disjoint x0 y0))
(disjoint x y)))
(defthm pair-chain-disjoint
(implies (and (subbagp-pair x0 y0 zlist z0)
(disjoint z0 zlist)
(subbagp x x0)
(subbagp-chain y ylist y0))
(disjoint x y))
:hints (("Goal" :in-theory (enable hide-disjoint meta-subbagp hide-subbagp hide-unique))))
(defthm unique-chain-unique
(implies (unique-chain x xlist x0)
(unique x))
:hints (("Goal" :in-theory (enable meta-subbagp hide-unique hide-subbagp))))
(defthm unique-subbagp-chain-unique
(implies (and (subbagp x y)
(unique-chain y z w))
(unique x))
:hints (("Goal" :in-theory (enable meta-subbagp hide-unique hide-subbagp))))
(defthm subbagp-unique-subbagps-chains
(implies (and (unique z0)
(subbagp z z0)
(unique-subbagps x0 y0 z)
(subbagp-chain x xlist x0)
(subbagp-chain y ylist y0))
(disjoint x y))
:hints (("Goal" :use ((:instance
*trigger*-unique-subbagps-implies-disjointness
(list z) (x x0) (y y0))))))
)) ;close the local
(defthmd disjoint-computation-lemma ;trying disabled. make local?
(implies (disjoint-hyp key x xlist x0 y ylist y0 z zlist z0)
(disjoint x y))
:hints (("Goal" :in-theory (enable hide-disjoint meta-subbagp hide-subbagp hide-unique))
("Subgoal *1/1''" :use ((:instance
*trigger*-unique-subbagps-implies-disjointness
(list z) (x x0) (y y0)))))
:rule-classes :forward-chaining)
(defthm disjoint-computation
(implies (and (bind-free (bind-disjoint-argument nil 'key 'xlist 'x0 'ylist 'y0 'z 'zlist 'z0 x y mfc state)
(key xlist x0 ylist y0 z zlist z0))
(disjoint-hyp key x xlist x0 y ylist y0 z zlist z0))
(disjoint x y))
:hints (("Goal" :in-theory (enable disjoint-computation-lemma)))
)
) ;close the encapsulate
;tests for disjoint computation
(encapsulate
()
(local
(in-theory (disable subbagp-disjoint unique-of-append)))
(local
(defthmd disjoint-test
(implies (and (subbagp x (append x0 x1))
(subbagp (append x0 x1) x2)
(subbagp y y1)
(subbagp y1 y2)
(disjoint x2 y2))
;(disjoint x1 y1))
(disjoint x y))))
(local
(defthmd disjoint-test1
(implies (and (subbagp x x1)
(subbagp x1 (append x2 x3))
(subbagp y y1)
(subbagp y1 y2)
(disjoint x1 y2))
(disjoint x y))))
(local
(defthmd disjoint-test2
(implies (and (subbagp x x0)
(subbagp y y0)
(unique (append x0 y0)))
(disjoint x y))))
(local
(defthmd disjoint-test3
(implies (and (subbagp x (append x1 x2))
(subbagp (append x1 x2) x3)
(subbagp y y1)
(disjoint y1 x3))
(disjoint x y))))
(local
(defthmd disjoint-test4
(implies (and (subbagp x x0)
(subbagp y y0)
(subbagp (append x0 y0) z)
(subbagp z z0)
(subbagp z0 z1)
(unique z1)
;(unique z0)
)
(disjoint x y))))
(local
(defthmd disjoint-test5
(implies (and (subbagp y v)
(subbagp w u)
(memberp x w)
(disjoint u v)
(memberp x y)
)
(disjoint w y))))
) ;encapsulate
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;----------------------------- MEMBERP --------------------------------
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;Collect up a list of all BLAH such that (memberp X BLAH) exists as a hyp in CLAUSE
(defun find-memberp-instance-list (x clause res)
(declare (type t x clause res))
(if (consp clause)
(let ((entry (car clause)))
(if (and (consp entry)
; (not (memberp x x0))
(equal (car entry) 'not)
(consp (cdr entry))
(consp (cadr entry))
(equal (car (cadr entry)) 'memberp)
(consp (cdr (cadr entry)))
(consp (cddr (cadr entry)))
(equal (cadr (cadr entry)) x))
(find-memberp-instance-list x (cdr clause)
(cons (caddr (car (cdr entry))) res))
(find-memberp-instance-list x (cdr clause) res)))
res))
(defun find-memberp-subbagp-list (x0list y hyps)
(declare (type t x0list y hyps)
(xargs :guard (and (pseudo-termp y)
(pseudo-term-listp hyps)
(pseudo-term-listp x0list))
)
)
(if (consp x0list)
(let ((x0 (car x0list)))
(let ((res (find-bounded-subbagp-path t x0 hyps y hyps (len hyps) nil)))
(if (and (consp res)
(consp (car res)))
(let ((type (cdar res)))
(let ((path (reverse-path (cdr res) `(quote ,type))))
(mv t x0 path)))
(find-memberp-subbagp-list (cdr x0list) y hyps))))
(mv nil nil nil)))
(defthm PSEUDO-TERM-LISTP-of-FIND-MEMBERP-INSTANCE-LIST
(IMPLIES (AND (PSEUDO-TERM-LISTP clause)
(PSEUDO-TERM-LISTP res)
)
(PSEUDO-TERM-LISTP (FIND-MEMBERP-INSTANCE-LIST x clause res))))
(defun memberp-membership (x y hyps)
(declare (type t x y hyps)
(xargs :guard (and (pseudo-termp x)
(pseudo-termp y)
(pseudo-term-listp hyps))
))
(let ((x0list (find-memberp-instance-list x hyps nil)))
(met ((hit x0 path) (find-memberp-subbagp-list x0list y hyps))
(mv hit x0 path))))
(defun in-hyps-memberp (x y hyps)
(declare (type t x y hyps))
(if (consp hyps)
(let ((entry (car hyps)))
(if (and (consp entry)
(consp (cdr entry))
(consp (cddr entry)))
(if (and (equal (car entry) 'memberp)
(equal (cadr entry) x)
(equal (caddr entry) y))
t
(in-hyps-memberp x y (cdr hyps)))
(in-hyps-memberp x y (cdr hyps))))
nil))
(defun bind-memberp-argument (key xlist x0 x y mfc state)
(declare (xargs :guard (and (pseudo-termp x)
(pseudo-termp y)
)
:stobjs (state)
)
(ignore state))
(let ((hyps (mfc-clause mfc)))
(and (or (mfc-ancestors mfc)
(in-hyps-memberp x y hyps))
(met ((hit val list) (memberp-membership x y hyps))
(if hit
`((,key . (quote t))
(,x0 . ,val)
(,xlist . ,list))
nil)))))
;add guard?
(defun memberp-hyp (key x x0 xlist y)
(and key
(hide-memberp x x0)
(subbagp-chain x0 xlist y)))
(defthm memberp-computation
(implies
(and
(bind-free (bind-memberp-argument 'key 'xlist 'x0 x y mfc state)
(key x0 xlist))
(memberp-hyp key x x0 xlist y)
)
(memberp x y))
:hints (("goal" :in-theory (enable hide-subbagp meta-subbagp hide-memberp))))
(local (in-theory (disable memberp-of-append)))
(encapsulate
()
(local
(defthmd memberp-test
(implies (and (memberp x z)
(subbagp z w)
(subbagp w y)
(subbagp y u))
(memberp x (append u v)))))
(local
(defthmd memberp-test1
(implies (and (memberp x z)
(subbagp z w)
(subbagp w y))
(memberp x y))))
(local
(defthmd memberp-test2
(implies (and (memberp x (append u v))
(subbagp (append u v) w)
(subbagp w y))
(memberp x y))))
)
;------------------------ NON-MEMBERP -------------------------;
(defun remove-y (list y res)
(declare (type t list y res))
(if (consp list)
(if (equal (car list) y)
(cdr list)
(remove-y (cdr list) y (cons (car list) res)))
res))
(defun in-hyps-not-memberp (x y hyps)
(declare (type t x y hyps))
(if (consp hyps)
(let ((entry (car hyps)))
(if (and (consp entry)
(equal (car entry) 'not)
(consp (cdr entry))
(let ((fn (cadr entry)))
(and (consp fn)
(consp (cdr fn))
(consp (cddr fn))
(equal (car fn) 'memberp)
(equal (cadr fn) x)
(equal (caddr fn) y))))
t
(in-hyps-not-memberp x y (cdr hyps))))
nil))
(defun disjoint-not-membership (memlist y mfc state)
(declare (xargs :stobjs (state)
:guard (and (pseudo-termp y)
(pseudo-term-listp memlist)
)
))
(if (consp memlist)
(let ((x* (car memlist)))
(let ((disjoint-arg
(bind-disjoint-argument t 'key 'xlist 'x0 'ylist 'y0 'z 'zlist 'z0 x* y mfc state)))
(if disjoint-arg
(mv t x* disjoint-arg)
(disjoint-not-membership (cdr memlist) y mfc state))))
(mv nil nil nil)))
(defthm PSEUDO-TERM-LISTP-of-REMOVE-Y
(IMPLIES (and (PSEUDO-TERM-LISTP list)
(PSEUDO-TERM-LISTP res))
(PSEUDO-TERM-LISTP (REMOVE-Y list y res))))
(defun bind-non-memberp-argument (hit x* x y mfc state)
(declare (xargs :stobjs (state)
:guard (and (pseudo-termp x)
(pseudo-termp y)
; (pseudo-term-listp memlist)
)
)
;(ignore state)
)
(let ((hyps (mfc-clause mfc)))
(and (or (mfc-ancestors mfc)
(in-hyps-not-memberp x y hyps))
(let ((memlist (remove-y (find-memberp-instance-list x hyps nil) y nil)))
(met ((hit1 x*1 disjoint-arg) (disjoint-not-membership memlist y mfc state))
(if (and hit1 (alistp disjoint-arg))
(append `((,hit . (quote t))
(,x* . ,x*1))
disjoint-arg)
nil))))))
;add guard?
(defun non-memberp-hyp (hit x* key x xlist x0 y ylist y0 z zlist z0)
(and hit
(hide-memberp x x*)
(disjoint-hyp key x* xlist x0 y ylist y0 z zlist z0)))
(defthm non-memberp-computation
(implies
(and
(bind-free (bind-non-memberp-argument 'hit 'x* x y mfc state)
(hit x* key xlist x0 ylist y0 z zlist z0))
(non-memberp-hyp hit x* key x xlist x0 y ylist y0 z zlist z0))
(not (memberp x y)))
:hints (("goal" :in-theory (e/d (hide-memberp disjoint-computation-lemma) (disjoint-hyp)))))
(encapsulate
()
(local
(defthmd non-memberp-test
(implies (and (subbagp y v)
(subbagp w u)
(memberp x w)
(disjoint u v))
(not (memberp x y)))))
(local
(defthmd non-memberp-test1
(implies (and (not (disjoint q w))
(not (subbagp g h))
(subbagp p q)
(subbagp q (append r s))
(subbagp (append r s) v)
(memberp a j)
(subbagp j (append k l))
(subbagp (append k l) m)
(disjoint m v)
(disjoint i o)
)
(not (memberp a p)))))
)
(in-theory (disable
memberp ;just in case
disjoint
; MEMBERP-SUBBAGP-NOT-CONSP-VERSION
REMOVE-BAG
REMOVE-1))
;;; from proof-common.lisp:
(defun find-remove-bag-instance-unique (y z term)
(declare (type t term))
(and (consp term)
(if (and (equal (car term) 'binary-append) ; (binary-append a b)
(consp (cdr term))
(consp (cddr term)))
(or (let ((a (cadr term)))
(and (consp a)
(equal (car a) 'remove-bag) ; (remove-bag x y)
(consp (cdr a))
(consp (cddr a))
(let ((zed nil)) ; (cw "x = ~p0 ~%" (caddr a))))
(declare (ignore zed))
(or (and (equal y (caddr a))
(cons t (cadr a)))
(and (equal z (caddr a))
(cons nil (cadr a)))))))
(find-remove-bag-instance-unique y z (caddr term)))
(and (equal (car term) 'remove-bag)
(and (consp (cdr term))
(consp (cddr term))
(or (and (equal y (caddr term))
(cons t (cadr term)))
(and (equal z (caddr term))
(cons nil (cadr term)))))))))
;walk through hyps until we find (unique BLAH), then try to show ... what exactly??
(defun find-remove-bag-instance-hyps (y z hyps)
(declare (type t hyps))
(and (consp hyps)
(or (let ((hyp (car hyps)))
(and (consp hyp) ; (not (unique ..))
(equal (car hyp) 'not)
(consp (cdr hyp))
(let ((term (cadr hyp))) ; (unqiue list)
(and (consp term)
(equal (car term) 'unique)
(consp (cdr term))
(find-remove-bag-instance-unique y z (cadr term))))))
(find-remove-bag-instance-hyps y z (cdr hyps)))))
(defun bind-remove-bag-instance-fn (y z which val mfc state)
(declare (xargs :stobjs (state)
:verify-guards t)
(ignore state))
(let ((hyps (mfc-clause mfc)))
(let ((zed nil)); (cw "y = ~p0 ~%" y)))
(declare (ignore zed))
(let ((zed nil)); (cw "z = ~p0 ~%" z)))
(declare (ignore zed))
(let ((x (find-remove-bag-instance-hyps y z hyps)))
(and x
`((,which . (quote ,(car x)))
(,val . ,(cdr x)))))))))
(defmacro bind-remove-bag-instance (y z which val)
`(bind-free (bind-remove-bag-instance-fn ,y ,z (quote ,which) (quote ,val) mfc state)
(,which ,val)))
;add guard?
(defun disjoint-other-hyp (which x y z)
(if which
(disjoint (append x (remove-bag x y))
z)
(disjoint (append x (remove-bag x z)) y)))
(defthm disjoint-other-memberp
(implies (and (bind-remove-bag-instance y z which x)
(disjoint-other-hyp which x y z))
(disjoint y z)))
;add guard?
(defun collect-list (term)
(if (and (consp term)
(equal (car term) 'remove-1))
`(cons ,(cadr term)
,(collect-list (caddr term)))
`(quote nil)))
;add guard?
(defun collect-rest (term)
(if (and (consp term)
(equal (car term) 'remove-1))
(collect-rest (caddr term))
term))
;add guard?
(defun bind-list (list rest term)
`((,list . ,(collect-list term))
(,rest . ,(collect-rest term))))
;this could be expensive? could we just change syntax-subbagp to consider
;(remove-1 a y) to be a subset of x whenever y is a subset of x?
(defthm bind-subbagp-remove-bag
(implies (and (subbagp x term)
(bind-free (bind-list 'list 'rest term) (list rest))
(equal y rest)
(equal term (remove-bag list rest)))
(subbagp x y))
:hints (("goal" :in-theory (enable subbagp-remove-bag))))
(defthm bind-memberp-remove-bag
(implies (and (memberp sblk term)
(bind-free (bind-list 'list 'rest term) (list rest))
(equal y rest)
(equal term (remove-bag list rest)))
(memberp sblk y)))
|