1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
; ACL2 Univariate Polynomials over a Field books -- Sum Congruences
;; Congruences for Sums of Univariate Polynomials over a Field
; Copyright (C) 2006 John R. Cowles and Ruben A. Gamboa, University of
; Wyoming
; This book is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation; either version 2 of the License, or
; (at your option) any later version.
; This book is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; GNU General Public License for more details.
; You should have received a copy of the GNU General Public License
; along with this book; if not, write to the Free Software
; Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
;; Modified by J. Cowles
;; Last modified July 2006 (for ACL2 Version 3.0).
;; Based on
;;; ------------------------------------------------------------------
;;; Congruencia de la igualdad con la suma de polinomios
;;;
;;; Autores:
;;;
;;; Inmaculada Medina Bulo
;;; Francisco Palomo Lozano
;;;
;;; Descripción:
;;;
;;; Aquí se demuestran las congruencias de la igualdad de polinomios
;;; con la suma. Las demostraciones son complejas debido a que
;;; necesitan reglas expansivas. Estas reglas son peligrosas, ya que
;;; pueden producir fácilmente ciclos en el demostrador. Para
;;; restringir su aplicación caben dos opciones:
;;;
;;; 1. Desactivarlas y usarlas explícitamente donde sea necesario. Una
;;; variante es no generar la regla en absoluto (es decir, introducir
;;; el teorema con la clases de reglas vacía).
;;;
;;; 2. Restringir su aplicación sintácticamente para prevenir
;;; expansiones en cadena. Esto se puede lograr graciasa syntaxp.
;;;
;;; Elegimos la segunda opción porque se consigue un mayor grado de
;;; automatización y hace a las demostraciones menos sensibles a los
;;; cambios.
;;; ------------------------------------------------------------------
#|
To certify this book, first, create a world with the following packages:
(in-package "ACL2")
(defconst *import-symbols*
(set-difference-eq
(union-eq *acl2-exports*
*common-lisp-symbols-from-main-lisp-package*)
'(null + * - < = / commutativity-of-* associativity-of-*
commutativity-of-+ associativity-of-+ distributivity)))
(defpkg "FLD"
*import-symbols*)
(defpkg "FUTER"
*import-symbols*)
(defpkg "FUMON"
(union-eq *import-symbols*
'(FLD::fdp FUTER::terminop)))
(defpkg "FUPOL"
(union-eq *import-symbols*
'(FUTER::naturalp FUTER::terminop FUMON::monomio FUMON::coeficiente
FUMON::termino FUMON::monomiop)))
(certify-book "fucongruencias-suma"
5
nil ;;compile-flg
)
|#
(in-package "FUPOL")
;;(include-book "suma")
(include-book "fusuma"
:load-compiled-file nil)
;;; ----------------------------------------------------
;;; Congruencia de la igualdad de polinomios con la suma
;;; ----------------------------------------------------
;;; Segundo parámetro
;;; NOTA:
;;;
;;; Esta propiedad es expansiva; restringimos su aplicación sintácticamente
(defthm
polinomiop-implies-true-listp
(implies (polinomiop p)
(true-listp p))
:rule-classes :compound-recognizer)
(defthm
Right-identity-append
(implies (true-listp p)
(equal (append p nil) p)))
(defthm |p + q = p + fn(q)|
(implies (syntaxp (not (and (consp q) (eq (primero q) 'fn))))
(= (+ p q) (+ p (fn q)))))
(defthm
=P-implies-=P-append-1
(implies (=P p1 p2)
(=P (append p1 q)
(append p2 q)))
:rule-classes :congruence)
(defthm
=P-implies-=P-append-2
(implies (=P q1 q2)
(=P (append p q1)
(append p q2)))
:rule-classes :congruence)
(defthm
=P-implies-=P-fn
(implies (=P p1 p2)
(=P (fn p1)
(fn p2)))
:rule-classes :congruence)
;;(defcong = = (+ p q) 2)
(defthm
=-implies-=-+-2
(implies (= q1 q2)
(= (+ p q1)
(+ p q2)))
:rule-classes :congruence)
;;; Primer parámetro
;; (defcong = = (+ p q) 1
;; :hints (("Goal"
;; :in-theory (disable |p + q = q + p| + =)
;; :use (|p + q = q + p|
;; (:instance |p + q = q + p| (p p-equiv))))))
(defthm
=-implies-=-+-1
(implies (= p1 p2)
(= (+ p1 q)
(+ p2 q)))
:rule-classes :congruence
:hints (("Goal"
:in-theory (disable |p + q = q + p| + =)
:use ((:instance
|p + q = q + p|
(p p1))
(:instance
|p + q = q + p|
(p p2))))))
;;; NOTA:
;;;
;;; Esta propiedad es expansiva; restringimos su aplicación sintácticamente
(defthm |p + q = fn(p) + q|
(implies (syntaxp (not (and (consp p) (eq (primero p) 'fn))))
(= (+ p q) (+ (fn p) q)))
:hints (("Goal"
:in-theory (disable |p + q = p + fn(q)|)
:use ((:instance |p + q = p + fn(q)| (p q) (q p))))))
(defthm |fn(p) + fn(q) = p + q|
(= (+ (fn p) (fn q)) (+ p q)))
(in-theory (disable |p + q = p + fn(q)|
|p + q = fn(p) + q|
|fn(p) + fn(q) = p + q|))
|