1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
|
(in-package "ACL2")
(include-book "ordinals/ordinals" :dir :system)
#||
functions.lisp
~~~~~~~~~~~~~~
Author: Disha Puri
Last Updated: 12th April 2014
This file provides the syntax of a CCDFG. The syntax is
(now) based essentially on LLVM parse tree. In particular, a
syntactically correct CCDFG is something that can be transformed
(after suitable translation) by an LLVM optimization.
||#
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Section 1: Auxillary Functions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; printing to comment window
(defun eval-print (str val)
(prog2$ (cw (string-append str " ~x0~%") val) val))
;; macro to skip proofs of theorems if needed
(defmacro defthms (&rest args)
`(skip-proofs (defthm ,@args)))
(defun evaluate-val (val bindings)
(if (symbolp val)
(cdr (assoc-equal val bindings))
val))
(defun mem (e x)
(if (consp x)
(if (equal e (car x))
t
(mem e (cdr x)))
nil))
(defun not-in (a b)
(if (endp a) t
(if (not (mem (car a) b)) (not-in (cdr a) b)
nil)))
;; get first n members of a list
(defun take-n (n l)
(if (or (endp l)
(zp n)) '()
(append (list (car l))
(take-n (- n 1) (cdr l)))))
;; get last n members of a list
(defun remove-n (n l)
(if (or (endp l)
(zp n)) l
(remove-n (- n 1) (cdr l))))
(defun replace-var (var val lst)
(if (endp lst) (acons var val lst)
(if (not var) lst
(if (equal var (caar lst))
(acons var val (cdr lst))
(if (symbol< (caar lst) var)
(cons (car lst)
(replace-var var val (cdr lst)))
(acons var val lst))))))
(defun substring (sub str start)
(declare (xargs :measure (nfix (- (1+ (- (length str) (length sub))) start))))
(if (or (not (natp start))
(< (length str) (length sub))
(> start (- (length str) (length sub))))
nil
(if (equal (subseq str start (+ start (length sub)))
sub)
start
(substring sub str (1+ start)))))
;; to find if sub is a substring of str
(defun is-substring (sub str)
(if (not (equal (substring sub str 0) nil))
t
nil))
(defun prefix-before-substring (sub str)
(let ((pos (substring sub str 0)))
(if (not pos)
nil
(subseq str 0 pos))))
(defun prefix (mstep)
(prefix-before-substring "_" (symbol-name (car mstep))))
(defun variable-or-numberp (x)
(or (symbolp x)
(integerp x)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Section 2: Syntax of statements
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; We start with the definition of the grammar of a statement. A
;; statement is a (1) branch statement, (2) return statement, (3)
;; store statement, or (4) assignment statement (5) phi-statements. We assume
;; implicitly that the statements are in Single-Static-Assignment
;; (SSA) form. But our grammar does not fully enforce SSA, only
;; exploits that understanding.
;; unconditional branch statement
;; (br bb1 [from entry]))
(defun unconditional-branch-statement-p (x)
(or (and (equal (len x) 4)
(equal (first x) 'br)
(variable-or-numberp (second x))
(equal (third x) '[from)
(symbolp (fourth x)))
(and (equal (len x) 3)
(equal (first x) 'br)
(equal (second x) 'label)
(variable-or-numberp (third x)))))
;; conditional branch statement
;; (br |%exitcond1| bb2 bb [from bb1])
(defun conditional-branch-statement-p (x)
(and (equal (len x) 6)
(equal (first x) 'br)
(variable-or-numberp (second x))
(symbolp (third x))
(symbolp (fourth x))
(equal (fifth x) '[from)
(symbolp (sixth x))))
(defun branch-statement-p (x)
(and (equal (len x) 1)
(or (unconditional-branch-statement-p (car x))
(conditional-branch-statement-p (car x)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; return statement
;; (ret void) or (ret a)
(defun return-statement-p (x)
(and (equal (len x) 1)
(and (equal (len (car x)) 2)
(equal (first (car x)) 'ret)
(or (equal (second (car x)) 'void)
(and (second (car x))
(symbolp (second (car x))))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; store statement
;; store (store |%v0_1| |%v_addr| v)
(defun store-statement-p (x)
(and (equal (len x) 1)
(let ((a (car x)))
(and (equal (len a) 4)
(equal (first a) 'store)
(variable-or-numberp (second a))
(variable-or-numberp (third a))
(symbolp (fourth a))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; An assignment statement is a bit more complex. It has two parts.
;; The first part is a variable to be assigned. The second part is an
;; expression. Now what is an expression? It can be an arithmetic
;; expression such as sub, icmp, igt, etc. It can also be a load
;; expression. We characterize each expression below.
;; load expression
;; (load |%v_addr|)
(defun load-expression-p (x)
(and (consp x)
(equal (len x) 2)
(equal (first x) 'load)
(variable-or-numberp (second x))))
;; (load_2 |%v_addr|)
(defun load2-expression-p (x)
(and (consp x)
(equal (len x) 2)
(equal (first x) 'load_2)
(variable-or-numberp (second x))))
;; (xor |%tmp6| |%tmp_9|)
(defun xor-expression-p (x)
(and (equal (len x) 3)
(equal (first x) 'xor)
(variable-or-numberp (second x))
(variable-or-numberp (third x))))
;; (lshr |%v0_2| 5)
(defun lshr-expression-p (x)
(and (equal (len x) 3)
(equal (first x) 'lshr)
(variable-or-numberp (second x))
(variable-or-numberp (third x))))
;; (add |%tmp| |%k0_read|)
(defun add-expression-p (x)
(and (equal (len x) 3)
(equal (first x) 'add)
(variable-or-numberp (second x))
(variable-or-numberp (third x))))
;; (shl |%tmp| 2)
(defun shl-expression-p (x)
(and (equal (len x) 3)
(equal (first x) 'shl)
(variable-or-numberp (second x))
(variable-or-numberp (third x))))
;; (eq |%tmp| |%k0_read|)
(defun eq-expression-p (x)
(and (equal (len x) 3)
(equal (first x) 'eq)
(variable-or-numberp (second x))
(variable-or-numberp (third x))))
;; added for simple assignment of symbols
;; (|%k0_read|)
(defun symbol-expression-p (x)
(and (equal (len x) 1)
(variable-or-numberp (first x))))
;; (getelementptr |%k0_read|)
(defun getelementptr-expression-p (x)
(and (consp x)
(equal (len x) 2)
(equal (first x) 'getelementptr)
(symbolp (second x))))
(defun expression-p (x)
(and (consp x)
(or (load-expression-p x)
(load2-expression-p x)
(add-expression-p x)
(xor-expression-p x)
(lshr-expression-p x)
(shl-expression-p x)
(eq-expression-p x)
(symbol-expression-p x)
(getelementptr-expression-p x))))
;; And an assignment statement has a variable on the left
;; and an expression on the right.
;; It is actually of the form ((a expr))
(defun assignment-statement-p (x)
(and (equal (len x) 1)
(and (equal (len (car x)) 2)
(first (car x))
(symbolp (first (car x)))
(expression-p (second (car x))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; defining phi-expression
;; (|v0_1| bb)
(defun phi-a (x)
(and (consp x)
(equal (len x) 2)
(variable-or-numberp (first x))
(symbolp (second x))))
;; ((|v0_1| 'bb)(|v0_2| 'entry))
(defun phi-l (x)
(if (endp x) t
(and (phi-a (first x))
(phi-l (rest x)))))
;; (phi ((|v0_1| 'bb)(|v0_2| 'entry)))
(defun phi-expression-p (x)
(and (consp x)
(= (len x) 1)
(consp (car x))
(> (len (car x)) 2)
(equal (caar x) 'phi)
(phi-l (cdr (car x)))))
;; phi-statement
(defun phi-statement-p (x)
(and (consp x)
(equal (len x) 2)
(symbolp (first x))
(first x)
(phi-expression-p (cdr x))))
(defun phi-statements-aux-p (x)
(if (endp x) t
(and (consp x)
(phi-statement-p (first x))
(phi-statements-aux-p (rest x)))))
;; phi-construct
;((|%i| (phi (|%i_1| bb) (0 entry)))
; (|%y| (phi (|%x| bb) (0 entry)))))
(defun phi-statements-p (x)
(and (consp x)
(phi-statements-aux-p x)))
;; Now we can formalize what a statement is.
(defun statement-p (x)
(or (branch-statement-p x)
(return-statement-p x)
(store-statement-p x)
(phi-statements-p x)
(assignment-statement-p x)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Section 3: Syntax of CCDFG
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun mstep-p (x)
(and (symbolp (first x))
(statement-p (cdr x))))
(defun msteps-list-p (x)
(if (endp x)
t
(and (mstep-p (first x))
(msteps-list-p (rest x)))))
(defun msteps-lists-list-p (x)
(if (endp x)
t
(and (msteps-list-p (first x))
(msteps-lists-list-p (rest x)))))
;; a basic block consists of a name and lists of (list of msteps)
(defun basic-block-p (x)
(and (equal (len x) 2)
(natp (first x))
(msteps-lists-list-p (second x))))
(defun basic-block-list-p (x)
(if (endp x)
t
(and (basic-block-p (first x))
(basic-block-list-p (rest x)))))
;; a ccdfg is a list of three elements: a prologue, loop and epilogue
(defun ccdfg-p (x)
(and (basic-block-list-p (first x))
(basic-block-list-p (second x))
(basic-block-list-p (third x))))
;; when we only have the sequential CCDFG, prologue and epilogue are nil
;; after unrolling the loop once and replacing the phi statement, we have prologue
;; and loop, while epilogue is still nil
;; it is only after superstep construction step, we get the pipelined CCDFG with
;; three elements: prologue, loop and epilogue
(defun seq-ccdfg-p (x)
(and (ccdfg-p x)
(not (third x))
(equal (cdr (first x))
(cdr (second x)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Sections 4: Functions related to CCDFG
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun phi-restriction-list (x)
(if (endp x) t
(and (not (phi-statements-p (cdr (car x))))
(phi-restriction-list (cdr x)))))
(defun phi-restriction-block (x)
(if (endp x) t
(and (phi-restriction-list (car x))
(phi-restriction-block (cdr x)))))
;; block here is (()())
(defun phi-restriction-ccdfg (x)
(if (endp x) t
(and (phi-restriction-block (cadr (car x)))
(phi-restriction-ccdfg (cdr x)))))
;; a CCDFG with no phi-construct
(defun phi-restriction (x)
(and (phi-restriction-ccdfg (first x))
(phi-restriction-ccdfg (second x))
(phi-restriction-ccdfg (third x))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun branch-restriction-list (x)
(if (endp x) t
(and (not (branch-statement-p (cdr (car x))))
(branch-restriction-list (cdr x)))))
(defun branch-restriction-block (x)
(if (endp x) t
(and (branch-restriction-list (car x))
(branch-restriction-block (cdr x)))))
(defun branch-restriction-ccdfg (x)
(if (endp x) t
(and (branch-restriction-block (cadr (car x)))
(branch-restriction-ccdfg (cdr x)))))
;; a CCDFG with no branch-statements
(defun branch-restriction (x)
(and (branch-restriction-ccdfg (first x))
(branch-restriction-ccdfg (second x))
(branch-restriction-ccdfg (third x))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Section 5: variable read and written in msteps
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; functions to find write-list of mstep
(defun remove-nils (lst)
(if (endp lst) lst
(if (equal (car lst) nil) (remove-nils (cdr lst))
(append (list (car lst))
(remove-nils (cdr lst))))))
(defun get-write-phi (stmts)
(if (endp stmts) '()
(append (list (caar stmts))
(get-write-phi (cdr stmts)))))
;; state consists of
;; bindings (list of tuples of variables with their values
;; mem (mem with values at particular addresses)
;; ptrs (lists of tuples of ptr name with its value
(defun write-list-stmt (stmt)
(if (endp stmt) '()
(cond ((branch-statement-p stmt) '())
((return-statement-p stmt) '())
((store-statement-p stmt) '())
((assignment-statement-p stmt) (list (caar stmt)))
((phi-statements-p stmt) (get-write-phi stmt))
(t nil))))
(defun write-from-bindings (mstep)
(remove-nils (write-list-stmt (cdr mstep))))
(defun write-list-msteps (msteps)
(if (endp msteps) '()
(append (write-from-bindings (car msteps))
(write-list-msteps (cdr msteps)))))
(defun write-from-ptrs (mstep)
(if (store-statement-p (cdr mstep))
(list (fourth (cadr mstep)))
nil))
(defun writel (mstep)
(append (write-from-bindings mstep)
(write-from-ptrs mstep)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; functions to find read-list of mstep
(defun eval-symbol (val)
(if (symbolp val) val
nil))
(defun find-read-phi (expr)
(if (endp expr) nil
(append (list (eval-symbol (car (car expr))))
(find-read-phi (cdr expr)))))
(defun find-read-phi-s (stmt)
(if (endp stmt) '()
(append (find-read-phi (cdr (second (car stmt))))
(find-read-phi-s (cdr stmt)))))
(defun find-read (expr)
(if (endp expr) nil
(cond ((load-expression-p expr) (list (cadr expr)))
((load2-expression-p expr) (list (cadr expr)))
((add-expression-p expr) (list (eval-symbol (cadr expr))
(eval-symbol (caddr expr))))
((xor-expression-p expr) (list (eval-symbol (cadr expr))
(eval-symbol (caddr expr))))
((lshr-expression-p expr) (list (eval-symbol (cadr expr))
(eval-symbol (caddr expr))))
((shl-expression-p expr) (list (eval-symbol (cadr expr))
(eval-symbol (caddr expr))))
((eq-expression-p expr) (list (eval-symbol (cadr expr))
(eval-symbol (caddr expr))))
((symbol-expression-p expr) (list (eval-symbol (car expr))))
((getelementptr-expression-p expr) '())
(t nil))))
(defun read-list-stmt (stmt)
(cond ((return-statement-p stmt)
(list (nth 1 (car stmt))))
((assignment-statement-p stmt)
(find-read (nth 1 (car stmt))))
((store-statement-p stmt)
(list (nth 1 (car stmt)) (nth 2 (car stmt))))
((conditional-branch-statement-p (car stmt))
(list (nth 1 (car stmt))))
((phi-statements-p stmt)
(find-read-phi-s stmt))
(t nil)))
(defun read-from-bindings (mstep)
(remove-nils (read-list-stmt (cdr mstep))))
(defun read-from-ptrs (mstep)
(cond ((and (assignment-statement-p (cdr mstep))
(getelementptr-expression-p (cadadr mstep)))
(list (eval-symbol (cadr (cadadr mstep)))))
((store-statement-p (cdr mstep))
(list (fourth (cadr mstep))))
(t nil)))
(defun readl (mstep)
(append (read-from-bindings mstep)
(read-from-ptrs mstep)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Section 6: combining iterations in parallel
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun get-msteps-block (block)
(if (endp block) '()
(append (list (car block))
(get-msteps-block (cdr block)))))
(defun get-msteps-blocks (blocks)
(if (endp blocks) '()
(append (get-msteps-block (car blocks))
(get-msteps-blocks (cdr blocks)))))
(defun get-msteps (ccdfg)
(if (endp ccdfg) '()
(append (get-msteps-blocks (cadr (car ccdfg)))
(get-msteps (cdr ccdfg)))))
(defun all-read (msteps)
(if (endp msteps) '()
(append (readl (car msteps))
(all-read (cdr msteps)))))
(defun all-write (msteps)
(if (endp msteps) '()
(append (writel (car msteps))
(all-write (cdr msteps)))))
(defun no-conflict (c1 c2)
(if (and (not-in (all-read (get-msteps c1))
(all-write (get-msteps c2)))
(not-in (all-write (get-msteps c1))
(all-read (get-msteps c2)))
(not-in (all-write (get-msteps c1))
(all-write (get-msteps c2))))
t
nil))
;; here block is a ccdfg in itself, just it has one block
;; (combine-blocks (x ((a) (b) (c))) (y ((a) (b) (C))) 1)
(defun combine-blocks (new-ccdfg block pos)
(if (equal new-ccdfg nil) block
(if (no-conflict block (remove-n (+ pos 1) new-ccdfg))
(append (take-n pos new-ccdfg)
(list (list (car (nth pos new-ccdfg))
(append (cadr (nth pos new-ccdfg))
(cadr (car block)))))
(remove-n (+ 1 pos) new-ccdfg))
"error")))
(defun combine-iters (new-ccdfg new-iter pos)
(declare (xargs :measure (acl2-count new-iter)))
(if (or (endp new-iter)
(equal new-ccdfg "error")) new-ccdfg
(combine-iters (combine-blocks new-ccdfg
(list (car new-iter))
pos)
(cdr new-iter)
(+ pos 1))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Example for testing
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defconst *seq-ccdfg*
'(
((1(((bb1_@@_4 (|%exitcond1| (eq |%i| 10000)))
(bb1_@@_5 (|%i_1| (add |%i| 00001)))
(bb_@@_0 (|%exitcond1| (true))))))
(2(((bb_@@_1 (|%tmp| (shl |%v1_1| 4)))
(bb_@@_2 (|%tmp_1| (add |%tmp| |%k0_read|)))
(bb_@@_3 (|%tmp_2| (lshr |%v1_1| 5)))
(bb_@@_4 (|%tmp_3| (add |%tmp_2| |%k1_read|)))
(bb_@@_5 (|%tmp4| (add |%v1_1| |%next_mul|))))))
(3(((bb_@@_6 (|%tmp5| (xor |%tmp_3| |%tmp4|)))
(bb_@@_7 (|%tmp_5| (xor |%tmp5| |%tmp_1|)))
(bb_@@_8 (|%v0_2| (add |%tmp_5| |%v0_1|)))
(bb_@@_9 (|%tmp_6| (shl |%v0_2| 4)))
(bb_@@_10 (|%tmp_7| (add |%tmp_6| |%k2_read|)))
(bb_@@_11 (|%tmp_8| (lshr |%v0_2| 5)))))))
((1(((bb1_@@_4 (|%exitcond1| (eq |%i| 10000)))
(bb1_@@_5 (|%i_1| (add |%i| 00001)))
(bb_@@_0 (|%exitcond1| (true))))))
(2(((bb_@@_1 (|%tmp| (shl |%v1_1| 4)))
(bb_@@_2 (|%tmp_1| (add |%tmp| |%k0_read|)))
(bb_@@_3 (|%tmp_2| (lshr |%v1_1| 5)))
(bb_@@_4 (|%tmp_3| (add |%tmp_2| |%k1_read|)))
(bb_@@_5 (|%tmp4| (add |%v1_1| |%next_mul|))))))
(3(((bb_@@_6 (|%tmp5| (xor |%tmp_3| |%tmp4|)))
(bb_@@_7 (|%tmp_5| (xor |%tmp5| |%tmp_1|)))
(bb_@@_8 (|%v0_2| (add |%tmp_5| |%v0_1|)))
(bb_@@_9 (|%tmp_6| (shl |%v0_2| 4)))
(bb_@@_10 (|%tmp_7| (add |%tmp_6| |%k2_read|)))
(bb_@@_11 (|%tmp_8| (lshr |%v0_2| 5)))))))
))
;;;;;;;;;;;;;;;;;; End of File "functions.lisp" ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|