File: functions.lisp

package info (click to toggle)
acl2 8.5dfsg-5
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 991,452 kB
  • sloc: lisp: 15,567,759; javascript: 22,820; cpp: 13,929; ansic: 12,092; perl: 7,150; java: 4,405; xml: 3,884; makefile: 3,507; sh: 3,187; ruby: 2,633; ml: 763; python: 746; yacc: 723; awk: 295; csh: 186; php: 171; lex: 154; tcl: 49; asm: 23; haskell: 17
file content (620 lines) | stat: -rw-r--r-- 19,926 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
(in-package "ACL2")
(include-book "ordinals/ordinals" :dir :system)

#||

functions.lisp
~~~~~~~~~~~~~~
Author: Disha Puri
Last Updated: 12th April 2014

This file provides the syntax of a CCDFG.  The syntax is
(now) based essentially on LLVM parse tree.  In particular, a
syntactically correct CCDFG is something that can be transformed
(after suitable translation) by an LLVM optimization.

||#

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Section 1: Auxillary Functions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; printing to comment window
(defun eval-print (str val)
  (prog2$ (cw (string-append str " ~x0~%") val) val))

;; macro to skip proofs of theorems if needed
(defmacro defthms (&rest args)
  `(skip-proofs (defthm ,@args)))

(defun evaluate-val (val bindings)
  (if (symbolp val)
      (cdr (assoc-equal val bindings))
    val))

(defun mem (e x)
  (if (consp x)
      (if (equal e (car x))
          t
        (mem e (cdr x)))
    nil))

(defun not-in (a b)
  (if (endp a) t
    (if (not (mem (car a) b)) (not-in (cdr a) b)
      nil)))

;; get first n members of a list
(defun take-n (n l)
  (if (or (endp l)
          (zp n)) '()
    (append (list (car l))
            (take-n (- n 1) (cdr l)))))

;; get last n members of a list
(defun remove-n (n l)
  (if (or (endp l)
          (zp n)) l
    (remove-n (- n 1) (cdr l))))

(defun replace-var (var val lst)
  (if (endp lst) (acons var val lst)
    (if (not var) lst
      (if (equal var (caar lst))
          (acons var val (cdr lst))
        (if (symbol< (caar lst) var)
            (cons (car lst)
                  (replace-var var val (cdr lst)))
          (acons var val lst))))))

(defun substring (sub str start)
  (declare (xargs :measure (nfix (- (1+ (- (length str) (length sub))) start))))
  (if (or (not (natp start))
          (< (length str) (length sub))
          (> start (- (length str) (length sub))))
      nil
    (if (equal (subseq str start (+ start (length sub)))
               sub)
        start
      (substring sub str (1+ start)))))

;; to find if sub is a substring of str
(defun is-substring (sub str)
  (if (not (equal (substring sub str 0) nil))
      t
    nil))

(defun prefix-before-substring (sub str)
  (let ((pos (substring sub str 0)))
    (if (not pos)
        nil
      (subseq str 0 pos))))

(defun prefix (mstep)
  (prefix-before-substring "_" (symbol-name (car mstep))))

(defun variable-or-numberp (x)
  (or (symbolp x)
      (integerp x)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Section 2: Syntax of statements
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; We start with the definition of the grammar of a statement.  A
;; statement is a (1) branch statement, (2) return statement, (3)
;; store statement, or (4) assignment statement (5) phi-statements.  We assume
;; implicitly that the statements are in Single-Static-Assignment
;; (SSA) form.  But our grammar does not fully enforce SSA, only
;; exploits that understanding.

;; unconditional branch statement
;; (br  bb1  [from entry]))
(defun unconditional-branch-statement-p (x)
  (or (and (equal (len x) 4)
           (equal (first x) 'br)
           (variable-or-numberp (second x))
           (equal (third x) '[from)
           (symbolp (fourth x)))
      (and (equal (len x) 3)
           (equal (first x) 'br)
           (equal (second x) 'label)
           (variable-or-numberp (third x)))))

;; conditional branch statement
;; (br |%exitcond1| bb2 bb [from bb1])
(defun conditional-branch-statement-p (x)
  (and (equal (len x) 6)
       (equal (first x) 'br)
       (variable-or-numberp (second x))
       (symbolp (third x))
       (symbolp (fourth x))
       (equal (fifth x) '[from)
       (symbolp (sixth x))))

(defun branch-statement-p (x)
  (and (equal (len x) 1)
       (or (unconditional-branch-statement-p (car x))
           (conditional-branch-statement-p (car x)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; return statement
;; (ret void) or (ret a)
(defun return-statement-p (x)
  (and (equal (len x) 1)
       (and (equal (len (car x)) 2)
            (equal (first (car x)) 'ret)
            (or (equal (second (car x)) 'void)
                (and (second (car x))
                     (symbolp (second (car x))))))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; store statement
;; store (store |%v0_1| |%v_addr| v)
(defun store-statement-p (x)
  (and (equal (len x) 1)
       (let ((a (car x)))
         (and (equal (len a) 4)
              (equal (first a) 'store)
              (variable-or-numberp (second a))
              (variable-or-numberp (third a))
              (symbolp (fourth a))))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; An assignment statement is a bit more complex.  It has two parts.
;; The first part is a variable to be assigned.  The second part is an
;; expression.  Now what is an expression?  It can be an arithmetic
;; expression such as sub, icmp, igt, etc.  It can also be a load
;; expression.  We characterize each expression below.

;; load expression
;; (load |%v_addr|)
(defun load-expression-p (x)
  (and (consp x)
       (equal (len x) 2)
       (equal (first x) 'load)
       (variable-or-numberp (second x))))

;; (load_2 |%v_addr|)
(defun load2-expression-p (x)
  (and (consp x)
       (equal (len x) 2)
       (equal (first x) 'load_2)
       (variable-or-numberp (second x))))

;; (xor |%tmp6| |%tmp_9|)
(defun xor-expression-p (x)
  (and (equal (len x) 3)
       (equal (first x) 'xor)
       (variable-or-numberp (second x))
       (variable-or-numberp (third x))))

;; (lshr |%v0_2| 5)
(defun lshr-expression-p (x)
  (and (equal (len x) 3)
       (equal (first x) 'lshr)
       (variable-or-numberp (second x))
       (variable-or-numberp (third x))))


;; (add |%tmp| |%k0_read|)
(defun add-expression-p (x)
  (and (equal (len x) 3)
       (equal (first x) 'add)
       (variable-or-numberp (second x))
       (variable-or-numberp (third x))))


;; (shl |%tmp| 2)
(defun shl-expression-p (x)
  (and (equal (len x) 3)
       (equal (first x) 'shl)
       (variable-or-numberp (second x))
       (variable-or-numberp (third x))))

;; (eq |%tmp| |%k0_read|)
(defun eq-expression-p (x)
  (and (equal (len x) 3)
       (equal (first x) 'eq)
       (variable-or-numberp (second x))
       (variable-or-numberp (third x))))

;; added for simple assignment of symbols
;; (|%k0_read|)
(defun symbol-expression-p (x)
  (and (equal (len x) 1)
       (variable-or-numberp (first x))))

;; (getelementptr |%k0_read|)
(defun getelementptr-expression-p (x)
  (and (consp x)
       (equal (len x) 2)
       (equal (first x) 'getelementptr)
       (symbolp (second x))))

(defun expression-p (x)
  (and (consp x)
       (or (load-expression-p x)
           (load2-expression-p x)
           (add-expression-p x)
           (xor-expression-p x)
           (lshr-expression-p x)
           (shl-expression-p x)
           (eq-expression-p x)
           (symbol-expression-p x)
           (getelementptr-expression-p x))))

;; And an assignment statement has a variable on the left
;; and an expression on the right.
;; It is actually of the form ((a expr))
(defun assignment-statement-p (x)
  (and (equal (len x) 1)
       (and (equal (len (car x)) 2)
            (first (car x))
            (symbolp (first (car x)))
            (expression-p (second (car x))))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; defining phi-expression

;; (|v0_1| bb)
(defun phi-a (x)
  (and (consp x)
       (equal (len x) 2)
       (variable-or-numberp (first x))
       (symbolp (second x))))

;; ((|v0_1| 'bb)(|v0_2| 'entry))
(defun phi-l (x)
  (if (endp x) t
    (and (phi-a (first x))
         (phi-l (rest x)))))

;; (phi ((|v0_1| 'bb)(|v0_2| 'entry)))
(defun phi-expression-p (x)
  (and (consp x)
       (= (len x) 1)
       (consp (car x))
       (> (len (car x)) 2)
       (equal (caar x) 'phi)
       (phi-l (cdr (car x)))))

;; phi-statement
(defun phi-statement-p (x)
  (and (consp x)
       (equal (len x) 2)
       (symbolp (first x))
       (first x)
       (phi-expression-p (cdr x))))

(defun phi-statements-aux-p (x)
  (if (endp x) t
    (and (consp x)
         (phi-statement-p (first x))
         (phi-statements-aux-p (rest x)))))

;; phi-construct
;((|%i| (phi  (|%i_1| bb) (0 entry)))
; (|%y| (phi  (|%x| bb) (0 entry)))))
(defun phi-statements-p (x)
  (and (consp x)
       (phi-statements-aux-p x)))

;; Now we can formalize what a statement is.
(defun statement-p (x)
  (or (branch-statement-p x)
      (return-statement-p x)
      (store-statement-p x)
      (phi-statements-p x)
      (assignment-statement-p x)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Section 3: Syntax of CCDFG
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun mstep-p (x)
  (and (symbolp (first x))
       (statement-p (cdr x))))

(defun msteps-list-p (x)
  (if (endp x)
      t
    (and (mstep-p (first x))
         (msteps-list-p (rest x)))))

(defun msteps-lists-list-p (x)
  (if (endp x)
      t
    (and (msteps-list-p (first x))
         (msteps-lists-list-p (rest x)))))

;; a basic block consists of a name and lists of (list of msteps)
(defun basic-block-p (x)
  (and (equal (len x) 2)
       (natp (first x))
       (msteps-lists-list-p (second x))))

(defun basic-block-list-p (x)
  (if (endp x)
      t
    (and (basic-block-p (first x))
         (basic-block-list-p (rest x)))))

;; a ccdfg is a list of three elements:  a prologue, loop and epilogue
(defun ccdfg-p (x)
  (and (basic-block-list-p (first x))
       (basic-block-list-p (second x))
       (basic-block-list-p (third x))))

;; when we only have the sequential CCDFG, prologue and epilogue are nil

;; after unrolling the loop once and replacing the phi statement, we have prologue
;; and loop, while epilogue is still nil
;; it is only after superstep construction step, we get the pipelined CCDFG with
;; three elements: prologue, loop and epilogue
(defun seq-ccdfg-p (x)
  (and (ccdfg-p x)
       (not (third x))
       (equal (cdr (first x))
              (cdr (second x)))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Sections 4: Functions related to CCDFG
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun phi-restriction-list (x)
  (if (endp x) t
    (and (not (phi-statements-p (cdr (car x))))
         (phi-restriction-list (cdr x)))))

(defun phi-restriction-block (x)
  (if (endp x) t
    (and (phi-restriction-list (car x))
         (phi-restriction-block (cdr x)))))

;; block here is (()())
(defun phi-restriction-ccdfg (x)
  (if (endp x) t
    (and (phi-restriction-block (cadr (car x)))
         (phi-restriction-ccdfg (cdr x)))))

;; a CCDFG with no phi-construct
(defun phi-restriction (x)
  (and (phi-restriction-ccdfg (first x))
       (phi-restriction-ccdfg (second x))
       (phi-restriction-ccdfg (third x))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun branch-restriction-list (x)
  (if (endp x) t
    (and (not (branch-statement-p (cdr (car x))))
         (branch-restriction-list (cdr x)))))

(defun branch-restriction-block (x)
  (if (endp x) t
    (and (branch-restriction-list (car x))
         (branch-restriction-block (cdr x)))))

(defun branch-restriction-ccdfg (x)
  (if (endp x) t
    (and (branch-restriction-block (cadr (car x)))
         (branch-restriction-ccdfg (cdr x)))))

;; a CCDFG with no branch-statements
(defun branch-restriction (x)
  (and (branch-restriction-ccdfg (first x))
       (branch-restriction-ccdfg (second x))
       (branch-restriction-ccdfg (third x))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Section 5: variable read and written in msteps
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; functions to find write-list of mstep
(defun remove-nils (lst)
  (if (endp lst) lst
    (if (equal (car lst) nil) (remove-nils (cdr lst))
      (append (list (car lst))
              (remove-nils (cdr lst))))))

(defun get-write-phi (stmts)
  (if (endp stmts) '()
    (append (list (caar stmts))
            (get-write-phi (cdr stmts)))))

;; state consists of
;; bindings (list of tuples of variables with their values
;; mem (mem with values at particular addresses)
;; ptrs (lists of tuples of ptr name with its value

(defun write-list-stmt (stmt)
  (if (endp stmt) '()
    (cond ((branch-statement-p stmt) '())
          ((return-statement-p stmt) '())
          ((store-statement-p stmt) '())
          ((assignment-statement-p stmt) (list (caar stmt)))
          ((phi-statements-p stmt) (get-write-phi stmt))
          (t nil))))

(defun write-from-bindings (mstep)
  (remove-nils (write-list-stmt (cdr mstep))))

(defun write-list-msteps (msteps)
  (if (endp msteps) '()
    (append (write-from-bindings (car msteps))
            (write-list-msteps (cdr msteps)))))

(defun write-from-ptrs (mstep)
  (if (store-statement-p (cdr mstep))
      (list (fourth (cadr mstep)))
    nil))

(defun writel (mstep)
  (append (write-from-bindings mstep)
          (write-from-ptrs mstep)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; functions to find read-list of mstep
(defun eval-symbol (val)
  (if (symbolp val) val
    nil))

(defun find-read-phi (expr)
  (if (endp expr) nil
    (append (list (eval-symbol (car (car expr))))
            (find-read-phi (cdr expr)))))

(defun find-read-phi-s (stmt)
  (if (endp stmt) '()
    (append (find-read-phi (cdr (second (car stmt))))
            (find-read-phi-s (cdr stmt)))))

(defun find-read (expr)
  (if (endp expr) nil
    (cond ((load-expression-p expr) (list (cadr expr)))
          ((load2-expression-p expr)  (list (cadr expr)))
          ((add-expression-p expr) (list (eval-symbol (cadr expr))
                                         (eval-symbol (caddr expr))))
          ((xor-expression-p expr) (list (eval-symbol (cadr expr))
                                         (eval-symbol (caddr expr))))
          ((lshr-expression-p expr) (list (eval-symbol (cadr expr))
                                          (eval-symbol (caddr expr))))
          ((shl-expression-p expr) (list (eval-symbol (cadr expr))
                                         (eval-symbol (caddr expr))))
          ((eq-expression-p expr) (list (eval-symbol (cadr expr))
                                        (eval-symbol (caddr expr))))
          ((symbol-expression-p expr) (list (eval-symbol (car expr))))
          ((getelementptr-expression-p expr) '())
          (t nil))))

(defun read-list-stmt (stmt)
  (cond ((return-statement-p stmt)
         (list (nth 1 (car stmt))))
        ((assignment-statement-p stmt)
         (find-read (nth 1 (car stmt))))
        ((store-statement-p stmt)
         (list (nth 1 (car stmt)) (nth 2 (car stmt))))
        ((conditional-branch-statement-p (car stmt))
         (list (nth 1 (car stmt))))
        ((phi-statements-p stmt)
         (find-read-phi-s stmt))
        (t nil)))

(defun read-from-bindings (mstep)
  (remove-nils (read-list-stmt (cdr mstep))))

(defun read-from-ptrs (mstep)
  (cond ((and (assignment-statement-p (cdr mstep))
              (getelementptr-expression-p (cadadr mstep)))
         (list (eval-symbol (cadr (cadadr mstep)))))
        ((store-statement-p (cdr mstep))
         (list (fourth (cadr mstep))))
        (t nil)))

(defun readl (mstep)
  (append (read-from-bindings mstep)
          (read-from-ptrs mstep)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Section 6: combining iterations in parallel
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun get-msteps-block (block)
  (if (endp block) '()
    (append (list (car block))
            (get-msteps-block (cdr block)))))

(defun get-msteps-blocks (blocks)
  (if (endp blocks) '()
    (append (get-msteps-block (car blocks))
            (get-msteps-blocks (cdr blocks)))))

(defun get-msteps (ccdfg)
  (if (endp ccdfg) '()
    (append (get-msteps-blocks (cadr (car ccdfg)))
            (get-msteps (cdr ccdfg)))))

(defun all-read (msteps)
  (if (endp msteps) '()
    (append (readl (car msteps))
            (all-read (cdr msteps)))))

(defun all-write (msteps)
  (if (endp msteps) '()
    (append (writel (car msteps))
            (all-write (cdr msteps)))))

(defun no-conflict (c1 c2)
  (if (and (not-in (all-read (get-msteps c1))
                   (all-write (get-msteps c2)))
           (not-in (all-write (get-msteps c1))
                   (all-read (get-msteps c2)))
           (not-in (all-write (get-msteps c1))
                   (all-write (get-msteps c2))))
      t
    nil))

;; here block is a ccdfg in itself, just it has one block
;; (combine-blocks (x ((a) (b) (c))) (y ((a) (b) (C))) 1)
(defun combine-blocks (new-ccdfg block pos)
  (if (equal new-ccdfg nil) block
    (if (no-conflict block (remove-n (+ pos 1) new-ccdfg))
        (append (take-n pos new-ccdfg)
                (list (list (car (nth pos new-ccdfg))
                            (append (cadr (nth pos new-ccdfg))
                                    (cadr (car block)))))
                (remove-n (+ 1 pos) new-ccdfg))
      "error")))

(defun combine-iters (new-ccdfg new-iter pos)
  (declare (xargs :measure (acl2-count new-iter)))
  (if (or (endp new-iter)
          (equal new-ccdfg "error")) new-ccdfg
    (combine-iters (combine-blocks new-ccdfg
                                   (list (car new-iter))
                                   pos)
                   (cdr new-iter)
                   (+ pos 1))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Example for testing
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defconst *seq-ccdfg*
  '(
    ((1(((bb1_@@_4       (|%exitcond1| (eq |%i| 10000)))
         (bb1_@@_5       (|%i_1| (add |%i| 00001)))
         (bb_@@_0        (|%exitcond1| (true))))))
     (2(((bb_@@_1        (|%tmp| (shl |%v1_1| 4)))
         (bb_@@_2        (|%tmp_1| (add |%tmp| |%k0_read|)))
         (bb_@@_3        (|%tmp_2| (lshr |%v1_1| 5)))
         (bb_@@_4        (|%tmp_3| (add |%tmp_2| |%k1_read|)))
         (bb_@@_5        (|%tmp4| (add |%v1_1| |%next_mul|))))))
     (3(((bb_@@_6        (|%tmp5| (xor |%tmp_3| |%tmp4|)))
         (bb_@@_7        (|%tmp_5| (xor |%tmp5| |%tmp_1|)))
         (bb_@@_8       (|%v0_2| (add |%tmp_5| |%v0_1|)))
         (bb_@@_9       (|%tmp_6| (shl |%v0_2| 4)))
         (bb_@@_10       (|%tmp_7| (add |%tmp_6| |%k2_read|)))
         (bb_@@_11       (|%tmp_8| (lshr |%v0_2| 5)))))))
    ((1(((bb1_@@_4       (|%exitcond1| (eq |%i| 10000)))
         (bb1_@@_5       (|%i_1| (add |%i| 00001)))
         (bb_@@_0        (|%exitcond1| (true))))))
     (2(((bb_@@_1        (|%tmp| (shl |%v1_1| 4)))
         (bb_@@_2        (|%tmp_1| (add |%tmp| |%k0_read|)))
         (bb_@@_3        (|%tmp_2| (lshr |%v1_1| 5)))
         (bb_@@_4        (|%tmp_3| (add |%tmp_2| |%k1_read|)))
         (bb_@@_5        (|%tmp4| (add |%v1_1| |%next_mul|))))))
     (3(((bb_@@_6        (|%tmp5| (xor |%tmp_3| |%tmp4|)))
         (bb_@@_7        (|%tmp_5| (xor |%tmp5| |%tmp_1|)))
         (bb_@@_8       (|%v0_2| (add |%tmp_5| |%v0_1|)))
         (bb_@@_9       (|%tmp_6| (shl |%v0_2| 4)))
         (bb_@@_10       (|%tmp_7| (add |%tmp_6| |%k2_read|)))
         (bb_@@_11       (|%tmp_8| (lshr |%v0_2| 5)))))))
    ))
;;;;;;;;;;;;;;;;;; End of File "functions.lisp" ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;