1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
(in-package "ACL2")
(include-book "textbook/chap11/perm-append" :dir :system)
;; --------------------------------------------------------------
;; bv-add definition and some theorems about it
(include-book "arithmetic-3/floor-mod/floor-mod" :dir :system)
(defund bv-add (x y)
(mod (+ (nfix x) (nfix y)) 32))
(defun bv-add-lex-< (x y)
(lexorder x y))
(defthm bv-commute
(implies (syntaxp (not (bv-add-lex-< x y)))
(equal (bv-add x y)
(bv-add y x)))
:hints (("Goal" :in-theory (enable bv-add))))
(defthm bv-commute-2
(equal (bv-add x (bv-add y z))
(bv-add y (bv-add x z)))
:hints (("Goal" :in-theory (enable bv-add)))
:rule-classes nil)
(defun make-bv-add (sym-list)
(cond
((atom sym-list)
nil)
((atom (cdr sym-list))
(car sym-list))
(t
`(bv-add ,(car sym-list)
,(make-bv-add (cdr sym-list))))))
(defevaluator evl evl-list
((if a b c) (bv-add x y)))
(defthm not-consp-cddr-perm
(implies
(and (perm x y)
(not (consp (cddr x))))
(not (consp (cddr y))))
:rule-classes nil)
(defthm perm-cdr
(implies
(and (perm x y)
(not (consp (cdr x))))
(not (consp (cdr y))))
:rule-classes nil)
(defthm del-implies-bv-add-equality-2-0
(IMPLIES (AND (CONSP X)
(CONSP (CDR X))
(IN A (CDR X))
(NOT (EQUAL A (CAR X)))
(NOT (CONSP (DEL A (CDR X)))))
(EQUAL (BV-ADD (EVL (CAR X) ENV)
(EVL (MAKE-BV-ADD (CDR X)) ENV))
(BV-ADD (EVL A ENV)
(EVL (CAR X) ENV))))
:hints (("Goal" :expand (in a (cdr x)))))
(defthm del-implies-bv-add-equality-2
(implies (and (in a x)
(consp x)
(consp (cdr x)))
(equal (evl (make-bv-add x) env)
(bv-add (evl a env) (evl (make-bv-add (del a x)) env))))
:hints (("Subgoal *1/4.2'" :use ((:instance bv-commute-2 (x (evl a env))
(y (evl (car x) env))
(z (evl (make-bv-add (del a
(cdr
x)))
env)))))
("Subgoal *1/4.1" :in-theory (disable make-bv-add evl-constraint-1)))
:rule-classes nil)
(defthm perm-implies-bv-add-equality
(implies
(perm sym-list perm-list)
(equal (evl (make-bv-add sym-list) env)
(evl (make-bv-add perm-list) env)))
:hints (("Goal" :induct (perm sym-list perm-list))
("Subgoal *1/2"
:use ((:instance del-implies-bv-add-equality-2
(a (car sym-list))
(x perm-list)
(env env))
(:instance perm-cdr
(x sym-list)
(y perm-list))))))
;; --------------------------------------------------------------
;; Definition and proof of Clause Processor
;; For now, lexorder will do.
(defun bv-add-lex-< (x y)
(lexorder x y))
(defun split-list (x)
(cond ((atom x) (mv nil nil))
((atom (cdr x)) (mv x nil))
(t (mv-let (a b)
(split-list (cddr x))
(mv (cons (car x) a) (cons (cadr x) b))))))
(defun merge2 (x y)
(declare (xargs :measure (+ (acl2-count x) (acl2-count y))))
(cond ((atom x) y)
((atom y) x)
((bv-add-lex-< (car x) (car y))
(cons (car x) (merge2 (cdr x) y)))
(t (cons (car y) (merge2 x (cdr y))))))
(defthm split-list-smaller
(implies (and (consp x) (consp (cdr x)))
(and (< (acl2-count (car (split-list x)))
(acl2-count x))
;; Originally we used (cadr ..) instead of (mv-nth 1 ..) below,
;; but the mv-nth didn't open up to cadr in the termination
;; proof of mergesort, so we are going with mv-nth below.
(< (acl2-count (mv-nth 1 (split-list x)))
(acl2-count x)))))
(defun mergesort (x)
(cond ((atom x) nil)
((atom (cdr x)) x)
(t (mv-let (a b)
(split-list x)
(merge2 (mergesort a) (mergesort b))))))
(defthm perm-append
(perm (append x y) (append y x)))
(defthm perm-append-del
(implies (and (consp y)
(in (car y) x))
(perm (append (del (car y) x) y)
(append x (cdr y)))))
(defthm merge2-is-append
(perm (merge2 x y)
(append x y))
:hints (("Goal" :induct (merge2 x y))))
(defthm perm-append-cons-2
(perm (append x (cons a y))
(cons a (append x y))))
(defthm perm-append-split-list
(perm (append (car (split-list lst)) (mv-nth 1 (split-list lst)))
lst))
(defthm perm-mergesort
(perm (mergesort lst) lst))
(defun simplify-bv-adds-in-flg-num (flg)
(cond
((equal 'expr-list flg)
0)
((equal 'expr flg)
1)
(t ;;(equal 'bv-add flg)
0)))
(defun simplify-bv-adds-in (flg x)
(declare (xargs :measure
(list* (cons 1 (1+ (acl2-count x)))
(simplify-bv-adds-in-flg-num flg))))
(cond
((equal 'expr-list flg)
(cond
((atom x)
nil)
(t
(cons (simplify-bv-adds-in 'expr (car x))
(simplify-bv-adds-in 'expr-list (cdr x))))))
((equal 'expr flg)
(cond
((atom x)
x)
((quotep x)
x)
((equal (car x) 'bv-add)
(let* ((add-lst (simplify-bv-adds-in 'bv-add x))
(add-lst (mergesort add-lst)))
(make-bv-add add-lst)))
(t
(cons (car x)
(simplify-bv-adds-in 'expr-list (cdr x))))))
(t ;;(equal 'bv-add flg)
;; x=(bv-add a0 a1)
(cond
((or (atom x) (not (equal (car x) 'bv-add)))
;; This case makes no sense but I added
;; it to make the termination proof easy.
nil)
(t
(let ((a0 (cadr x))
(a1 (caddr x)))
(cond
((and (consp a1)
(equal 'bv-add (car a1)))
(cons (simplify-bv-adds-in 'expr a0)
(simplify-bv-adds-in 'bv-add a1)))
(t
(list (simplify-bv-adds-in 'expr a0)
(simplify-bv-adds-in 'expr a1))))))))))
(defun bv-add-sort-cp (clause)
(list (simplify-bv-adds-in 'expr-list clause)))
(in-theory (disable mergesort perm))
(defthm bv-add-merge-sort-ok
(implies
(and (consp sym-lst)
(consp (cdr sym-lst)))
(equal (evl (make-bv-add (mergesort sym-lst)) env)
(evl (make-bv-add sym-lst) env)))
:hints (("Goal" :use ((:instance perm-implies-bv-add-equality
(sym-list sym-lst)
(perm-list (mergesort sym-lst))
(env env))))))
(defthm lemma0
(implies (and (consp x1)
(equal fn (car x1))
(not (equal fn 'quote))
(equal (evl-list args0 env) (evl-list (cdr x1) env)))
(equal (equal (evl (cons fn args0) env) (evl x1 env))
t))
:hints (("Goal" :in-theory (enable evl-constraint-0))))
(defthm correctness-of-bv-adds-in
(and (implies
(equal flg 'expr)
(equal (evl (simplify-bv-adds-in flg x) env)
(evl x env)))
(implies
(equal flg 'expr-list)
(equal (evl-list (simplify-bv-adds-in flg x) env)
(evl-list x env)))
(implies
(and (not (equal flg 'expr))
(not (equal flg 'expr-list))
(consp x)
(equal (car x) 'bv-add))
(equal (evl (make-bv-add (simplify-bv-adds-in flg x)) env)
(evl x env))))
:hints (;;("Goal" :in-theory (enable evl-constraint-0)))
("Subgoal *1/6" :use ((:instance evl-constraint-0
(x x) (a env)))))
:rule-classes nil)
(defthm correctness-of-bv-adds-in-expr
(equal (evl (simplify-bv-adds-in 'expr x) env)
(evl x env))
:hints (("Goal" :use ((:instance correctness-of-bv-adds-in
(x x) (env env) (flg 'expr)))))
:rule-classes nil)
(defthm correctness-of-bv-add-sort-cp
(implies (and (pseudo-term-listp clause)
(alistp env)
(evl (conjoin-clauses (bv-add-sort-cp clause)) env))
(evl (disjoin clause) env))
:hints (("Goal" :induct (disjoin clause))
("Subgoal *1/3" :use ((:instance correctness-of-bv-adds-in-expr
(x (car clause))
(env env))))
("Subgoal *1/2" :use ((:instance correctness-of-bv-adds-in-expr
(x (car clause))
(env env)))))
:rule-classes :clause-processor)
(in-theory (disable bv-commute))
|