1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
|
; Induction Clause Processor
; Copyright (C) 2013 Centaur Technology
;
; Contact:
; Centaur Technology Formal Verification Group
; 7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
; http://www.centtech.com/
;
; License: (An MIT/X11-style license)
;
; Permission is hereby granted, free of charge, to any person obtaining a
; copy of this software and associated documentation files (the "Software"),
; to deal in the Software without restriction, including without limitation
; the rights to use, copy, modify, merge, publish, distribute, sublicense,
; and/or sell copies of the Software, and to permit persons to whom the
; Software is furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
; FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
; DEALINGS IN THE SOFTWARE.
;
; Original author: Sol Swords <sswords@centtech.com>
(in-package "ACL2")
(include-book "tools/defevaluator-fast" :dir :system)
(include-book "ev-theoremp")
(include-book "unify-subst")
(include-book "tools/def-functional-instance" :dir :system)
(include-book "arithmetic/top-with-meta" :dir :system)
(include-book "std/basic/arith-equivs" :dir :System)
(defevaluator-fast
indev indev-lst
((if a b c)
(o-p x)
(o< a b)
(not a)
(binary-+ a b)
(cons a b))
:namedp t)
(def-ev-theoremp indev)
(defun pseudo-term-alist-listp (x)
(declare (Xargs :guard t))
(if (atom x)
(eq x nil)
(and (pseudo-term-val-alistp (car x))
(pseudo-term-alist-listp (cdr X)))))
(defun induction-step-listp (x)
(declare (xargs :guard t))
(if (atom x)
(eq x nil)
(and (consp (car x))
(pseudo-termp (caar x)) ;; predicate
(pseudo-term-alist-listp (cdar x)) ;; substitutions
(induction-step-listp (cdr x)))))
;; (defun pseudo-term-alist-list-listp (x)
;; (declare (Xargs :guard t))
;; (if (atom x)
;; (eq x nil)
;; (and (pseudo-term-alist-listp (car x))
;; (pseudo-term-alist-list-listp (cdr X)))))
(local
(defthm pseudo-term-val-alistp-implies-alistp
(implies (pseudo-term-val-alistp x)
(alistp x))
:hints(("Goal" :in-theory (enable pseudo-term-val-alistp)))
:rule-classes :forward-chaining))
;; Applies each substitution to the clause; returns the list of resulting clauses
(defun substitute-list-into-clause (subs clause)
(declare (xargs :guard (and (pseudo-term-alist-listp subs)
(pseudo-term-listp clause))))
(if (atom subs)
nil
(cons (substitute-into-list clause (car subs))
(substitute-list-into-clause (cdr subs) clause))))
(defthm substitute-list-into-clause-of-cons
(equal (substitute-list-into-clause
(cons a b) clause)
(cons (substitute-into-list clause a)
(substitute-list-into-clause b clause))))
(defthm substitute-list-into-clause-of-atom
(implies (not (consp x))
(equal (substitute-list-into-clause x clause)
nil))
:rule-classes ((:rewrite :backchain-limit-lst 1)))
;; for each induction, produces a clause meaning basically
;; (implies (implies ind-condition
;; ...ind-hyps...)
;; clause)
(defun induction-steps (clause inductions)
(declare (xargs :guard (and (pseudo-term-listp clause)
(induction-step-listp inductions))))
(if (atom inductions)
nil
(cons (cons `(not (if ,(caar inductions) ;; condition
,(conjoin-clauses
(substitute-list-into-clause
(cdar inductions) ;; substitutions
clause))
'nil))
clause)
(induction-steps clause (cdr inductions)))))
(defun measure-decrs-subs (meas pred subs orig-clause)
(declare (xargs :guard (and (pseudo-termp meas)
(pseudo-termp pred)
(pseudo-term-alist-listp subs)
(pseudo-term-listp orig-clause))))
(if (atom subs)
nil
(cons `(,@orig-clause
(not ,pred)
(o< ,(substitute-into-term meas (car subs))
,meas))
(measure-decrs-subs meas pred (cdr subs) orig-clause))))
(defun measure-decrs (meas inductions orig-clause)
(declare (xargs :guard (and (pseudo-termp meas)
(induction-step-listp inductions)
(pseudo-term-listp orig-clause))))
(if (atom inductions)
nil
(append (measure-decrs-subs meas (caar inductions) (cdar inductions) orig-clause)
(measure-decrs meas (cdr inductions) orig-clause))))
(local
(progn
(defthm o-first-expt-of-make-ord
(equal (o-first-expt (make-ord a b c))
a))
(defthm o-first-coeff-of-make-ord
(equal (o-first-coeff (make-ord a b c))
b))
(defthm o-rst-of-make-ord
(equal (o-rst (make-ord a b c))
c))
(defthm o-finp-of-make-ord
(not (o-finp (make-ord a b c))))
(defthm o-p-of-make-ord
(implies (and (o-p a)
(o-p n)
(posp c)
(o< (o-first-expt n) a))
(o-p (make-ord a c n))))
(defthm o<-self
(not (o< a a)))
(local (in-theory (disable o-first-expt
o-first-coeff
o-rst
make-ord)))
(defthm o<-of-make-ord
(equal (o< (make-ord a b c) d)
(and (not (o-finp d))
(or (o< a (o-first-expt d))
(and (equal a (o-first-expt d))
(or (< b (o-first-coeff d))
(and (equal b (o-first-coeff d))
(o< c (o-rst d))))))))
:hints (("goal" :do-not-induct t)))
(defthm acl2-count-of-o-rst
(implies (not (o-finp x))
(< (acl2-count (o-rst x)) (acl2-count x)))
:hints(("Goal" :in-theory (enable o-finp o-rst))))
(defun o-fin-part (x)
(declare (xargs :guard (o-p x)))
(if (o-finp x)
(nfix x)
(o-fin-part (o-rst x))))
(defun replace-o-fin-part (x n)
(declare (xargs :guard (and (o-p x) (natp n))
:verify-guards nil))
(if (o-finp x)
(nfix n)
(make-ord (o-first-expt x)
(o-first-coeff x)
(replace-o-fin-part (o-rst x) n))))
(defthm o-first-expt-of-replace-o-fin-part
(equal (o-first-expt (replace-o-fin-part x n))
(o-first-expt x))
:hints (("goal" :induct t)
(and stable-under-simplificationp
'(:in-theory (enable o-first-expt)))))
(defthm o-finp-of-replace-o-fin-part
(equal (o-finp (replace-o-fin-part x n))
(o-finp x))
:hints(("Goal" :in-theory (enable o-finp))))
(local (in-theory (disable o-finp)))
(defthm o-first-coeff-of-replace-o-fin-part
(equal (o-first-coeff (replace-o-fin-part x n))
(if (o-finp x)
(nfix n)
(o-first-coeff x)))
:hints (("goal" :expand ((replace-o-fin-part x n))
:do-not-induct t)
(and stable-under-simplificationp
'(:in-theory (enable o-first-coeff o-finp)))))
(defthm o-p-of-first-expt-when-o-p
(implies (o-p x)
(o-p (o-first-expt x)))
:hints(("Goal" :in-theory (enable o-p))
(and stable-under-simplificationp
'(:in-theory (enable o-first-expt)))))
(defthm posp-of-first-coeff-when-o-p
(implies (and (o-p x)
(not (o-finp x)))
(posp (o-first-coeff x)))
:hints(("Goal" :in-theory (enable o-p))
(and stable-under-simplificationp
'(:in-theory (enable o-first-coeff))))
:rule-classes :type-prescription)
(defthm o-p-nfix
(o-p (nfix n))
:hints(("Goal" :in-theory (enable o-p))))
(defthm first-<-rst-when-o-p
(implies (and (o-p x)
(not (o-finp x)))
(o< (o-first-expt (o-rst x))
(o-first-expt x))))
(defthm o-p-of-o-rst
(implies (and (o-p x)
(not (o-finp x)))
(o-p (o-rst x)))
:hints(("Goal" :in-theory (enable o-p))))
(defthm o-p-replace-o-fin-part
(implies (o-p x)
(o-p (replace-o-fin-part x n)))
:hints(("Goal" :in-theory (disable o< o-p))))
(verify-guards replace-o-fin-part
:hints(("Goal" :in-theory (e/d ()
(replace-o-fin-part
o-rst))
:expand ((o-p x)))))
(defthm o-finp-of-plus
(o-finp (+ x y))
:hints(("Goal" :in-theory (enable o-finp))))
(defthm o-finp-of-nfix
(o-finp (nfix x))
:hints(("Goal" :in-theory (enable o-finp))))
(defthm o<-when-o-finp
(implies (o-finp x)
(equal (o< x y)
(or (not (o-finp y))
(< x y))))
:hints(("Goal" :in-theory (enable o<))))
(defthm replace-o-fin-part-rel
(implies (and (o-p x) (o-p y))
(equal (o< (replace-o-fin-part x (+ 1 (o-fin-part x)))
(replace-o-fin-part y (+ 1 (o-fin-part y))))
(o< x y))))
(defthm replace-o-fin-part-nonzero
(implies (posp fp)
(and (o< 0 (replace-o-fin-part x fp))
(implies (o-finp x)
(< 0 (replace-o-fin-part x fp))))))
(local (in-theory (disable make-ord o-finp o-rst o-first-coeff o-first-expt
o-p o<)))
(defthm o-first-expt-of-nfix
(equal (o-first-expt (nfix n)) 0)
:hints(("Goal" :in-theory (enable o-first-expt))))))
;; (defthm o-<-of-make-ord-case1
;; (implies (o< a b)
;; (o< (make-ord a 1 n)
;; (make-ord b 1 n))))
;; (defthm o-<-of-make-ord-case2
;; (implies (and (natp n)
;; (natp m)
;; (< n m))
;; (o< (make-ord a 1 n)
;; (make-ord a 1 m)))
;; :hints(("Goal" :in-theory (enable o-finp))))
(defun indev-alist (x al)
(if (atom x)
nil
(cons (cons (caar x) (indev (cdar x) al))
(indev-alist (cdr x) al))))
(def-functional-instance
indev-substitute-into-term
substitute-into-term-correct
((unify-ev indev)
(unify-ev-lst indev-lst)
(unify-ev-alist indev-alist))
:hints ((and stable-under-simplificationp
'(:use indev-of-fncall-args))))
(defthm len-equal-0
(equal (equal (len x) 0)
(not (consp x))))
(defthm nthcdr-nil
(equal (nthcdr n nil) nil))
(defthm nthcdr-open
(implies (< (nfix n) (len x))
(equal (nthcdr n x)
(cons (nth n x)
(nthcdr (+ 1 (nfix n)) x)))))
(defthm nthcdr-end
(implies (<= (len x) (nfix n))
(and (equal (consp (nthcdr n x))
nil)
(equal (car (nthcdr n x))
nil)
(equal (cdr (nthcdr n x))
nil))))
;; ;; This is basically a mutual-recursion based on flg, but we check
;; ;; o-p of the measure before we split into the separate "functions."
;; (defun induction-cp-ind (flg meas n preds subs a)
;; (declare (xargs :measure (if (o-p (indev meas a))
;; (let ((o (indev meas a)))
;; (if top-flg
;; (if (equal 0 o)
;; (+ 1 (len preds))
;; (make-ord o 1 (+ 1 (len preds))))
;; (if (equal 0 o)
;; (nfix (- (len preds) (nfix n)))
;; (make-ord o 1 (nfix (- (len preds) (nfix n)))))))
;; 0)
;; :ruler-extenders :all
;; :hints(("Goal" :in-theory (enable o-finp)
;; :do-not-induct t))))
;; (if (not (o-p (indev meas a)))
;; (list meas preds subs a)
;; (case flg
;; (top
;; ;; (top meas preds subs a)
;; ;; Iterate over
;; (if (indev (disjoin preds) a)
;; (induction-cp-ind nil meas 0 preds subs a)
;; (list meas preds subs a))
;; (if (zp (- (len preds) (nfix n)))
;; (list meas preds subs a)
;; (if (indev (nth n preds) a)
;; (let* ((aa (indev-alist (nth n subs) a))
;; (meas-eval (indev meas a))
;; (meas1-eval (indev meas aa)))
;; (and (o-p meas1-eval)
;; (o< meas1-eval meas-eval)
;; (induction-cp-ind t meas 0 preds subs aa)))
;; (induction-cp-ind nil meas (1+ (nfix n)) preds subs a))))))
;; (in-theory (disable nthcdr nth))
(local
(defun induction-cp-ind (flg meas nstep nsub inductions a)
(declare (ignorable flg meas nstep nsub inductions a)
(xargs :measure
(let* ((o (indev meas a))
(o (if (o-p o)
(replace-o-fin-part o (+ 1 (o-fin-part o)))
1)))
(case flg
(steps (make-ord o 2
(nfix (- (len inductions) (nfix nstep)))))
(t (make-ord o 1
(nfix (- (len (cdr (nth nstep inductions)))
(nfix nsub)))))))
:ruler-extenders (cons)))
(case flg
(steps
;; Iterating over the predicates. When we find the predicate that
;; applies, iterate over all its substitutions.
(cond ((zp (- (len inductions) (nfix nstep))) nil)
((indev (car (nth nstep inductions)) a)
(induction-cp-ind 'subs meas nstep 0 inductions a))
(t
(induction-cp-ind 'steps meas (+ 1 (nfix nstep)) 0 inductions a))))
(t ;; induction-hyps
;; Iterating over the substitutions of (nth nstep subs).
(let* ((psubs (cdr (nth nstep inductions))))
(if (zp (- (len psubs) (nfix nsub)))
nil
(let* ((aa (indev-alist (nth nsub psubs) a))
(meas-eval (indev meas a))
(meas1-eval (indev meas aa)))
(list (and (o-p meas-eval)
(o-p meas1-eval)
(o< meas1-eval meas-eval)
(induction-cp-ind 'steps meas 0 0 inductions aa))
(induction-cp-ind 'subs meas nstep (+ 1 (nfix nsub)) inductions a)))))))))
(defthm o-p-when-theoremp
(implies (o-p (indev meas (indev-falsify (list 'o-p meas))))
(o-p (indev meas a)))
:hints (("goal" :use ((:instance indev-falsify
(x (list 'o-p meas))
(a a))))))
(defthm measure-decr-when-measure-decrs-subs
(implies (and (indev-theoremp
(conjoin-clauses (measure-decrs-subs meas pred subs orig-clause)))
(< (nfix n) (len subs))
(indev pred a)
(pseudo-termp meas)
(not (indev (disjoin orig-clause) a)))
(o< (indev meas (indev-alist (nth n subs) a))
(indev meas a)))
:hints (("goal" :induct (nth n subs)
:in-theory (enable nth))
(and stable-under-simplificationp
'(:expand ((measure-decrs-subs meas pred subs orig-clause))
:use ((:instance indev-falsify
(x (disjoin `(,@orig-clause
(not ,pred)
(o< ,(substitute-into-term meas (car
subs))
,meas))))
(a a)))))))
(defthm measure-decr-when-measure-decrs
(implies (and (indev-theoremp
(conjoin-clauses (measure-decrs meas inductions orig-clause)))
(< (nfix nstep) (len inductions))
(indev (car (nth nstep inductions)) a)
(< (nfix nsub) (len (cdr (nth nstep inductions))))
(pseudo-termp meas)
(not (indev (disjoin orig-clause) a)))
(o< (indev meas (indev-alist (nth nsub (cdr (nth nstep inductions))) a))
(indev meas a)))
:hints (("Goal" :induct (nth nstep inductions)
:in-theory (enable nth))
(and stable-under-simplificationp
'(:expand ((measure-decrs meas inductions orig-clause))))))
(defthm o-p-with-clause-when-theoremp
(implies (and (not (indev (disjoin clause) a))
(not (o-p (indev meas a))))
(and (not (indev (disjoin clause)
(indev-falsify (disjoin (Append clause (list (list 'o-p meas)))))))
(not (o-p (indev meas
(indev-falsify (disjoin (Append clause (list (list 'o-p meas))))))))))
:hints (("goal" :use ((:instance indev-falsify
(x (disjoin (Append clause (list (list 'o-p meas)))))
(a a))))))
(defthm induction-step-right
(implies (and (indev
(conjoin-clauses (induction-steps clause inductions))
(indev-falsify (conjoin-clauses (induction-steps clause inductions))))
(indev (car (nth n inductions)) a)
(not (indev (disjoin clause) a))
(< (nfix n) (len inductions)))
(not (indev (conjoin-clauses
(substitute-list-into-clause
(cdr (nth n inductions)) clause))
a)))
:hints(("Goal" :in-theory (enable nth)
:induct (nth n inductions))
(and stable-under-simplificationp
'(:expand ((induction-steps clause inductions))
:use ((:instance indev-falsify
(x (disjoin `((not (if ,(caar inductions)
,(conjoin-clauses
(substitute-list-into-clause
(cdar inductions) clause))
'nil))
. ,clause)))
(a a)))))))
(defthm indev-disjoin-substitute
(implies (pseudo-term-listp clause)
(iff (indev (disjoin (substitute-into-list clause subst)) a)
(indev (substitute-into-term (disjoin clause) subst) a)))
:hints (("goal" :induct (len clause))))
(local (defthm indev-disjoin-atom-no-bc
(IMPLIES (NOT (CONSP X))
(EQUAL (INDEV (DISJOIN X) A) NIL))))
(defthm nthcdr-0
(equal (nthcdr 0 x) x)
:hints(("Goal" :in-theory (enable nthcdr))))
(defthm induction-cp-correct-rec-with-orig-clause
(implies
(and (indev-theoremp (disjoin (append clause `((o-p ,meas)))))
(pseudo-termp meas)
(pseudo-term-listp clause)
(indev-theoremp (conjoin-clauses
(measure-decrs meas inductions clause)))
;; this says that the base case holds, i.e. if no induction step
;; condition is true then the clause is true
(indev-theoremp (disjoin (cons (disjoin (strip-cars inductions)) clause)))
(indev-theoremp (conjoin-clauses
(induction-steps clause inductions))))
(if (eq flg 'steps)
(implies (indev (disjoin (strip-cars (nthcdr nstep inductions))) a)
(indev (disjoin clause) a))
(implies (and (indev (car (nth nstep inductions)) a)
(not (indev (disjoin clause) a))
(< (nfix nstep) (len inductions)))
(indev (conjoin-clauses (substitute-list-into-clause
(nthcdr nsub (cdr (nth nstep inductions)))
clause))
a))))
:hints (("goal" :induct (induction-cp-ind flg meas nstep nsub inductions a)
:in-theory (disable nth measure-decrs substitute-into-term
indev-alist induction-steps
substitute-list-into-clause
pseudo-termp nthcdr))
'(:use ((:instance indev-falsify
(x (disjoin (cons (disjoin (strip-cars inductions)) clause)))
(a a))))
(and stable-under-simplificationp
'(:use ((:instance indev-falsify
(x (disjoin (cons (disjoin (strip-cars inductions)) clause)))
(a (indev-alist (nth nsub (cdr (nth nstep inductions))) a)))))))
:rule-classes nil)
(defthm induction-cp-correct-rec-without-orig-clause
(implies
(and (indev-theoremp `(o-p ,meas))
(pseudo-termp meas)
(pseudo-term-listp clause)
(indev-theoremp (conjoin-clauses
(measure-decrs meas inductions nil)))
;; this says that the base case holds, i.e. if no induction step
;; condition is true then the clause is true
(indev-theoremp (disjoin (cons (disjoin (strip-cars inductions)) clause)))
(indev-theoremp (conjoin-clauses
(induction-steps clause inductions))))
(if (eq flg 'steps)
(implies (indev (disjoin (strip-cars (nthcdr nstep inductions))) a)
(indev (disjoin clause) a))
(implies (and (indev (car (nth nstep inductions)) a)
;; (not (indev (disjoin clause) a))
(< (nfix nstep) (len inductions)))
(indev (conjoin-clauses (substitute-list-into-clause
(nthcdr nsub (cdr (nth nstep inductions)))
clause))
a))))
:hints (("goal" :induct (induction-cp-ind flg meas nstep nsub inductions a)
:in-theory (disable nth measure-decrs substitute-into-term
indev-alist induction-steps
substitute-list-into-clause
pseudo-termp nthcdr))
'(:use ((:instance indev-falsify
(x (disjoin (cons (disjoin (strip-cars inductions)) clause)))
(a a))))
(and stable-under-simplificationp
'(:use ((:instance indev-falsify
(x (disjoin (cons (disjoin (strip-cars inductions)) clause)))
(a (indev-alist (nth nsub (cdr (nth nstep inductions))) a)))))))
:rule-classes nil)
(defun induction-cp (clause hint)
(declare (xargs :guard (pseudo-term-listp clause)))
(b* (((mv ok meas inductions extra-args)
(case-match hint
((meas inductions . extra-args) (mv t meas inductions extra-args))
(& (mv nil nil nil nil))))
(apply-orig-clause (equal extra-args '(t)))
(ok (and ok
(pseudo-termp meas)
(induction-step-listp inductions)))
((unless ok)
(cw "bad hints~%")
(list clause)))
(list* `(,@(and apply-orig-clause clause)
(o-p ,meas))
;; base-case
(cons (disjoin (strip-cars inductions)) clause)
;; induction steps
(append (induction-steps clause inductions)
(measure-decrs meas inductions (and apply-orig-clause clause))))))
(defthm disjoin-singleton
(equal (disjoin (list x)) x)
:hints(("Goal" :in-theory (enable disjoin))))
(defthm indev-theorem-disjoin-clause
(implies (indev-theoremp (disjoin clause))
(indev (disjoin clause) a))
:hints (("goal" :use ((:instance indev-falsify
(x (disjoin clause)) (a a))))))
(defthm indev-theorem-disjoin-cons
(implies (and (indev-theoremp (disjoin (cons x y)))
(not (indev x a)))
(indev (disjoin y) a))
:hints (("goal" :use ((:instance indev-falsify
(x (disjoin (cons x y)))))
:in-theory (disable indev-theorem-disjoin-clause))))
(defthm induction-cp-correct
(implies (and (pseudo-term-listp clause)
(alistp a)
(indev-theoremp (conjoin-clauses (induction-cp clause hint))))
(indev (disjoin clause) a))
:hints (("goal" :use ((:instance induction-cp-correct-rec-with-orig-clause
(meas (car hint))
(inductions (cadr hint))
(flg 'steps)
(nstep 0))
(:instance induction-cp-correct-rec-without-orig-clause
(meas (car hint))
(inductions (cadr hint))
(flg 'steps)
(nstep 0))
(:instance indev-falsify
(x (disjoin (cons (disjoin (strip-cars (cadr hint))) clause)))
(a a)))
:in-theory (disable measure-decrs induction-steps
pseudo-termp
pseudo-term-listp
pseudo-term-val-alistp
indev-disjoin-cons
indev-of-o-p-call
indev-of-variable
indev-of-quote
INDEV-DISJOIN-APPEND
INDEV-THEOREMP-DISJOIN-CONS-UNLESS-THEOREMP)
:do-not-induct t))
:rule-classes :clause-processor
:otf-flg t)
(local
(progn
(encapsulate
(((fib *) => *))
(local (defun fib (x)
(cond ((or (zp x) (eql x 1)) 1)
(t (+ (fib (- x 1))
(fib (- x 2)))))))
(defthm fib-of-x+2
(implies (natp x)
(equal (fib (+ 2 x))
(+ (fib (+ 1 x))
(fib x)))))
(defthm fib-of-0-and-1
(and (equal (fib 0) 1)
(equal (fib 1) 1))))
(defthm fib-positive
(implies (natp x)
(< 0 (fib x)))
:hints ('(:clause-processor
(induction-cp
clause
'((nfix x) ;; measure
;; induction step: when x > 1, assume true of x-1, x-2
(((< '1 (nfix x)) ((x . (binary-+ '-1 x)))
((x . (binary-+ '-2 x))))))))
(and stable-under-simplificationp
'(:cases ((equal x 0))
:use ((:instance fib-of-x+2
(x (- x 2))))))))))
(defxdoc induction-cp
:short "A clause processor to prove a goal by induction."
:long "<p>Mostly not very practical, just an exercise.</p>
<p>This replicates ACL2's built-in induction principle (sec. 6.5 of Computer
Aided Reasoning: An Approach). This clause processor should be able to do
anything that ACL2's induction can do. However, every time this clause
processor is used to perform an induction, we must prove the associated measure
conjecture, i.e. that the induction scheme is legal.</p>
<p>Induction-cp must be given a hint object specifying the induction scheme.
This object must be a two-element list containing:
<ul>
<li>a term specifying the measure that justifies the induction,</li>
<li>a list of pairs (condition . substitutions), where condition is a term
giving the ruler of an induction step, and substitutions are a list of
(variable . term) alists giving the substitutions for that induction step.</li>
</ul></p>
<p>For example, the following hint:
@({
:clause-processor
(induction-cp
clause
'((nfix x) ;; measure
;; induction step: when x > 1, assume true of x-1, x-2
(((< '1 (nfix x)) ((x . (binary-+ '-1 x)))
((x . (binary-+ '-2 x)))))
;; extra option: if t, weaken the measure proof obligations by
;; disjoining them with the original clause
t))
})
will cause the current goal to be attempted with a base case in for x<=1, and
an induction step for x > 1 where the property is assumed true of x-1 and
x-2.</p>")
|