1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
; start up ACL2 and do:
(set-gag-mode nil)
(set-guard-checking :all)
; --- cut here ---
(defun ap (x y)
(if (endp x)
y
(cons (car x)
(ap (cdr x) y))))
(ap '(1 2 3) '(4 5 6))
(defthm ap-is-associative
(equal (ap (ap a b) c)
(ap a (ap b c))))
(defun lte (x y)
(if (endp x)
t
(if (endp y)
nil
(lte (cdr x) (cdr y)))))
(lte '(a b c) '(d e f g))
(lte '(a b c) '(d e))
(thm (implies (and (lte a b)
(lte b c))
(lte a c)))
(defun insert (e x)
(if (endp x)
(cons e x)
(if (lexorder e (car x))
(cons e x)
(cons (car x) (insert e (cdr x))))))
(insert 'BOB '(ALICE CATHY))
(defun isort (x)
(if (endp x)
x
(insert (car x)
(isort (cdr x)))))
(isort '(BOB CATHY ALICE))
(defun ordered (x)
(or (endp x)
(endp (cdr x))
(and (lexorder (car x) (car (cdr x)))
(ordered (cdr x)))))
(defthm ordered-isort
(ordered (isort x)))
(defun remarkably-fast-sort (x)
(declare (ignore x))
'(ALICE BOB CATHY))
(remarkably-fast-sort '(CATHY ALICE BOB))
(defthm ordered-remarkably-fast-sort
(ordered (remarkably-fast-sort x)))
(remarkably-fast-sort '(JIM SUSAN))
(include-book "sorting/perm" :dir :system)
(perm '(CATHY ALICE BOB) '(ALICE BOB CATHY))
(perm '(CATHY ALICE BOB) '(CATHY CATHY ALICE))
(pe 'perm)
(defthm perm-isort
(perm (isort x) x))
(defthm perm-remarkably-fast-sort
(perm (remarkably-fast-sort x) x))
(quote (end of demo 1))
; This shortens proof output
(set-gag-mode :goals)
; Beginning of Demo 2. The idea is to show that lemmas are
; necessary and then to show that they're not always suggested
; by the failed proof attempt's checkpoints.
(defthm perm-ap
(perm (ap a b) (ap b a)))
(defthm memb-ap
(equal (memb e (ap a b))
(or (memb e a)
(memb e b))))
(defthm perm-ap
(perm (ap a b) (ap b a)))
(defthm isort-idempotent
(equal (isort (isort x)) (isort x)))
(defthm isort-identity
(implies (ordered x)
(equal (isort x) x)))
(defthm isort-idempotent
(equal (isort (isort x)) (isort x)))
(defthm memb-congruence
(implies (perm a b)
(equal (memb e a) (memb e b)))
:rule-classes :congruence)
(pe 'perm-isort)
(defthm this-is-not-a-theorem
(memb e (isort a)))
(quote (end of demo 2))
(defun fib1 (n)
(declare (xargs :guard (natp n) :verify-guards nil))
(if (zp n)
0
(if (equal n 1)
1
(+ (fib1 (- n 1))
(fib1 (- n 2))))))
(fib1 1)
(fib1 2)
(fib1 3)
(fib1 4)
(fib1 5)
(time$ (fib1 10))
(time$ (fib1 20))
(time$ (fib1 30))
(time$ (fib1 40)) ; 30 seconds
(verify-guards fib1)
(time$ (fib1 40)) ; 1 second
(defun fib2 (n j k)
(declare (xargs :guard (and (natp n) (natp j) (natp k))))
(if (zp n)
j
(if (equal n 1)
k
(fib2 (- n 1) k (+ j k)))))
(time$ (fib2 40 0 1)) ; 0 seconds
(defthm fib2-v-fib1
(implies (and (natp i)
(natp j)
(natp k)
(<= 1 i))
(equal (fib2 i j k)
(+ (* (fib1 (- i 1)) j)
(* (fib1 i) k)))))
(defun fib (n)
(declare (xargs :guard (natp n)))
(mbe :logic (fib1 n)
:exec (fib2 n 0 1)))
(time$ (fib 5000))
(thm
(implies (and (natp n) (equal (fib n) 0))
(equal n 0)))
(time$ (fib1 40))
(memoize 'fib1)
(time$ (fib1 5000))
(quote (end of demo 3))
(include-book "centaur/gl/gl" :dir :system)
(defun 32* (x y)
(logand (* x y) (- (expt 2 32) 1)))
(defun fast-logcount-32 (v)
(let* ((v (- v (logand (ash v -1) #x55555555)))
(v (+ (logand v #x33333333)
(logand (ash v -2) #x33333333))))
(ash (32* (logand (+ v (ash v -4)) #xF0F0F0F)
#x1010101)
-24)))
(pf 'logcount) ; :pe gives slightly different output in ACL2 and ACL2(p)
(logcount #B0101001)
(fast-logcount-32 #B0101001)
(def-gl-thm fast-logcount-32-correct
:hyp (unsigned-byte-p 32 x)
:concl (equal (fast-logcount-32 x)
(logcount x))
:g-bindings `((x ,(gl::g-int 0 1 33))))
(quote (end of demo 4))
(ubt! 'isort-identity)
(defun lequal (x y)
; We're trying to prove (equal (isort (isort x)) (isort x)).
; We might try rewriting (isort x) to x using
; (perm (isort x) x) as a rewrite rule and exploiting that
; (isort x) = (isort y) if (perm x y). The latter is
; a congruence rule. Unfortunately, that rule is not
; valid! If x is '(1 2 . T) and y is '(1 2 . NIL) then
; they are perms but their isorts are not equal.
; We could prove a weaker version of idempotency,
; namely one that establishes that they have the same
; elements in the same order but not (necessarily) the
; same terminal marker. We can formalize that as
; an equivalence relation on lists.
(cond ((atom x) (atom y))
((atom y) nil)
(t (and (equal (car x) (car y))
(lequal (cdr x) (cdr y))))))
(defequiv lequal)
(defcong lequal lequal (insert e x) 2)
(defcong perm lequal (isort x) 1)
(defthm isort-idempotent-lequal
(lequal (isort (isort x)) (isort x)))
(defun terminal-marker (x)
(if (consp x)
(terminal-marker (cdr x))
x))
(defthm terminal-marker-isort
(equal (terminal-marker (isort x))
(terminal-marker x)))
(defthm lequal-with-same-terminal-markers-are-equal
(implies (and (equal (terminal-marker a)
(terminal-marker b))
(lequal a b))
(equal a b))
:rule-classes nil)
(defthm isort-idempotent
(equal (isort (isort x)) (isort x))
:hints
(("Goal"
:use
(:instance lequal-with-same-terminal-markers-are-equal
(a (isort (isort x)))
(b (isort x))))))
|