File: brr-free-variables-input.lsp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (398 lines) | stat: -rw-r--r-- 11,846 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
; Copyright (C) 2021, Regents of the University of Texas
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.

; The following examples are taken from the documentation topic,
; FREE-VARIABLES-EXAMPLES-REWRITE.  They illustrate ACL2's handling of free
; variables in rewrite rules, as well as user control over how such free
; variables are handled.  See :DOC free-variables for a background discussion.

; Arrange for *standard-co* to be (standard-co state), so that we can see the
; output from brr (via brr-wormhole).
(defttag :brr-free-variables)
(set-raw-mode t)
(defvar *saved-standard-co* *standard-co*)
(progn (setq *standard-co* (standard-co state)) ; avoid output
       t)
(set-raw-mode nil)
(u) ; undo the defttag form

; Set up a starting point for each example.  (It is tempting just to submit the
; command (ubt! 1) at the start of each example, but that would undo some of
; the support for certifying brr-free-variables-book.lisp.)
(deflabel start)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Example 1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defstub p2 (x y) t) ; introduce unconstrained function

; Get warning because of free variable.  This would be an error if you had
; first executed (set-match-free-error t) in order to force yourself to
; specify :match-free (illustrated later, below).
(defaxiom p2-trans
  (implies (and (p2 x y)
                (p2 y z))
           (p2 x z)))

; Succeeds.
(thm (implies (and (p2 a c)
                   (p2 a b)
                   (p2 c d))
              (p2 a d)))

; The following causes an error because p2-trans is not a rune.
(add-match-free-override :once p2-trans)

; After the following, the rewrite rule p2-trans will only allow one
; attempt per hypothesis to bind free variables.
(add-match-free-override :once (:rewrite p2-trans))

; Now this same theorem fails to be proved.  Here's why.  The
; context for proving (p2 a d) happens to include the hypotheses in
; reverse order.  So when the first hypothesis of p2-trans, namely
; (p2 x y), is relieved, where x is bound to a (as we are attempting
; to rewrite the current literal (p2 a d)), we find (p2 a b) in the
; context before (p2 a c) and hence y is bound to b.  The
; instantiated second hypothesis of p2-trans is thus (p2 b d), and
; the proof fails.  Before the add-match-free-override form above,
; the proof succeeded because the rewriter was allowed to backtrack
; and find the other binding for the first hypothesis of p2-trans,
; namely, y bound to c.  Then the instantiated second hypothesis of
; p2-trans is (p2 c d), which is known to be true in the current
; context.
(thm (implies (and (p2 a c)
                   (p2 a b)
                   (p2 c d))
              (p2 a d)))

; Return to original behavior for binding free variables.
(add-match-free-override :all t)

; Succeeds once again.
(thm (implies (and (p2 a c)
                   (p2 a b)
                   (p2 c d))
              (p2 a d)))

(u) ; undo (add-match-free-override :all t)

; This is an error, since no further arguments should appear after
; :clear.
(add-match-free-override :clear t)

; Return all rules to original behavior for binding free variables,
; regardless of which previous add-match-free-override forms have
; been executed.
(add-match-free-override :clear)

; This succeeds just as it did originally.
(thm (implies (and (p2 a c)
                   (p2 a b)
                   (p2 c d))
              (p2 a d)))

(ubt! 'p2-trans) ; back to the start, except retain the defstub

; Require that :match-free be specified for :linear and :rewrite rules with
; free variables.
(set-match-free-error t)

; Fails because :match-free is missing.
(defaxiom p2-trans
  (implies (and (p2 x y)
                (p2 y z))
           (p2 x z)))

; Fails because :match-free must be followed by :once or :all.
(defaxiom p2-trans
  (implies (and (p2 x y)
                (p2 y z))
           (p2 x z))
  :rule-classes ((:rewrite :match-free nil)))

; Succeeds, this time with no warning at all.
(defaxiom p2-trans
  (implies (and (p2 x y)
                (p2 y z))
           (p2 x z))
  :rule-classes ((:rewrite :match-free :once)))

; Fails because we only bind once (see earlier long comment).
(thm (implies (and (p2 a c)
                   (p2 a b)
                   (p2 c d))
              (p2 a d)))

; Treat p2-trans as though `:match-free :all' had been specified.
(add-match-free-override :all (:rewrite p2-trans))

; Succeeds since more than one binding is allowed for p2-trans.
(thm (implies (and (p2 a c)
                   (p2 a b)
                   (p2 c d))
              (p2 a d)))

(u)
(u)

; Specify that future :linear and :rewrite rules with free variables
; that do not have :match-free specified are treated as though
; `:match-free :once' were specified.
(set-match-free-default :once)

; Succeeds without error since `:match-free' is specified, as described
; above.  But there is a warning, since :match-free is not specified for this
; :rewrite rule.
(defaxiom p2-trans
  (implies (and (p2 x y)
                (p2 y z))
           (p2 x z)))

; Fails since only single bindings are allowed for p2-trans.
(thm (implies (and (p2 a c)
                   (p2 a b)
                   (p2 c d))
              (p2 a d)))

; Treat p2-trans as though `:match-free :all' had been specified.
(add-match-free-override :all t)

; Succeeds.
(thm (implies (and (p2 a c)
                   (p2 a b)
                   (p2 c d))
              (p2 a d)))

; Test searching of ground units, i.e. rewrite rules without variables on the
; left side of the conclusion, for use in relieving hypotheses with free
; variables.  This is a very contrived example.

(ubu! 'start) ; back to the start

(encapsulate
 (((p1 *) => *)
  ((p2 * *) => *)
  ((p3 *) => *)
  ((a) => *)
  ((b) => *))
 (local (defun p1 (x) x))
 (local (defun p2 (x y) (list x y)))
 (local (defun p3 (x) x))
 (local (defun a () 0))
 (local (defun b () 0)))

; Allow default of :match-free :all (form may be omitted).
(set-match-free-error nil)

(defaxiom ax1
  (implies (and (p2 x y)
                (p1 y))
           (p3 x)))

(defaxiom p2-a-b
  (p2 (a) (b)))

(defaxiom p2-a-a
  (p2 (a) (a)))

(defaxiom p1-b
  (p1 (b)))

; Succeeds; see long comment below on next attempt to prove this
; theorem.
(thm (implies (p2 (a) y)
              (p3 (a))))

; Now ax1 will only relieve hypothesis (p2 x y) for one binding of y:
(add-match-free-override :once t)

; Fails when ax1 attempts to rewrite the conclusion to true, because
; the most recent ground unit for hypothesis (p2 x y) with x bound
; to (a) is rule p2-a-a, which binds y to (a).  If more than one ground
; unit could be used then we would backtrack and apply rule p2-a-b,
; which binds y to (b) and hence hypothesis (p1 y) of ax1 is
; relieved by rule p1-b.
(thm (implies (p2 (a) y)
              (p3 (a))))

; Return rules to original :match-free behavior.
(add-match-free-override :clear)

; Succeeds once again.
(thm (implies (p2 (a) y)
              (p3 (a))))

; Just for kicks, change the behavior of a built-in rule irrelevant
; to the proof at hand.
(add-match-free-override :once (:rewrite string<-l-trichotomy))

; Still succeeds.
(thm (implies (p2 (a) y)
              (p3 (a))))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Example 2
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(ubu! 'start)

(encapsulate
  ((p1 (u x) t)
   (bad (x) t)
   (p2 (x y z) t)
   (bar (x y) t)
   (foo (x y) t)
   (poo (x y) t)
   (prop (u) t))

  (local (defun p1 (u x) (declare (ignore u x)) nil))
  (local (defun bad (x) (declare (ignore x)) nil))
  (local (defun p2 (x y z) (declare (ignore x y z)) nil))
  (local (defun bar (x y) (declare (ignore x y)) nil))
  (local (defun foo (x y) (declare (ignore x y)) nil))
  (local (defun poo (x y) (declare (ignore x y)) nil))
  (local (defun prop (u) (declare (ignore u)) t))

  (defthm foo-poo
    (implies (syntaxp (equal y 'y3))
             (equal (foo x y)
                    (poo x y))))

  (defthm lemma-1
    (implies (and (p1 u x)
                  (bad x)
                  (p2 x y z)
                  (bar x y)
                  (equal x x) ; admittedly silly!
                  (foo x y))
             (prop u))
    :rule-classes ((:rewrite :match-free :all))))

:brr t

; So that brr-free-variables-book.lisp can be certified, we monitor a bit
; differently here from how we monitor in :DOC free-variables-examples-rewrite.
:monitor (:rewrite lemma-1) '(:target :unify-subst :go)

(thm (implies (and (p1 u0 x1)
                   (bad x1)
                   (bad x3)
                   (bar x3 y1)
                   (bar x3 y3)
                   (p1 u0 x2)
                   (p1 u0 x3)
                   (p2 x3 y1 z1)
                   (p2 x3 y3 z1))
              (prop u0)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Example 3
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(ubu! 'start)

; Define some unary functions.
(defun f (x) (declare (ignore x)) t)
(defun g (x) x)
(defun h (x) x)
(defun k (x) x)

; Prove some simple lemmas.  Note the binding hypothesis in g-rewrite.
(defthm f-k-h
  (f (k (h x))))
(defthm g-rewrite
       (implies (and (equal y (k x)) ; binding hypothesis
                     (f y))
                (equal (g x) y)))

; Restrict to a theory that includes the above lemmas but avoids the above
; definitions.
(in-theory (union-theories (theory 'minimal-theory)
                           '(f-k-h g-rewrite)))

; Prove a theorem.
(thm (equal (g (h a)) (k (h a))))

(ubu! 'start) ; start second sub-example

; Define an equivalence relation.
(defun my-equiv (x y) (equal x y))
(defequiv my-equiv) ; introduces rule MY-EQUIV-IS-AN-EQUIVALENCE

; Define some unary functions
(defun f (x) (declare (ignore x)) t)
(defun g (x) x)
(defun h1 (x) x)
(defun h2 (x) x)

; Prove some simple lemmas.  Note the binding hypothesis in lemma-3.
(defthm lemma-1
  (my-equiv (h1 x) (h2 x)))
(defthm lemma-2
  (f (h2 x)))
(defthm lemma-3
       (implies (and (my-equiv y (double-rewrite x)) ; binding hypothesis
                     (f y))
                (equal (g x) y)))

; Restrict to a theory that includes the above lemmas but avoids the above
; definitions.
(in-theory (union-theories (theory 'minimal-theory)
                           '(lemma-1 lemma-2 lemma-3
                                     my-equiv-is-an-equivalence)))

; Prove a theorem.
(thm (equal (g (h1 a)) (h2 a)))


(in-theory (union-theories (theory 'minimal-theory)
                           '(lemma-1 lemma-2 lemma-3)))

; Proof fails in this case!
(thm (equal (g (h1 a)) (h2 a)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; An example from Dave Greve
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(ubu! 'start)

; This example, based very closely on one supplied by Dave Greve (but which is
; not in :doc free-variables-examples-rewrite), illustrates that (starting with
; Version 8.4 of ACL2), the brr report for a bind-free hypothesis that returns
; a list of substitutions is similar to the brr report for a hypothesis with
; free variables.

(defstub f (x) nil)
(defstub g (x) nil)

(defaxiom g-rewrite
  (implies (and (f y)
                (syntaxp (not (cw "rewrite trying ~x0~%" y)))
                (equal x y))
           (equal (g x) y)))

(defaxiom g-bind-free
  (implies (and (bind-free `(((y . a)) ((y . b))) (y))
                (syntaxp (not (cw "bind trying ~x0~%" y)))
                (f y)
                (equal x y))
           (equal (g x) y)))

:monitor (:rewrite g-bind-free) '(:target :go)
:monitor (:rewrite g-rewrite) '(:target :go)
:brr t

(thm
 (implies (and (f a)
               (f b))
          (equal (g x) x)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defttag :brr-free-variables)
(set-raw-mode t)
(setq *standard-co* *saved-standard-co*)
(set-raw-mode nil)
(u) ; undo the defttag form