1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823
  
     | 
    
      (UNSET-WATERFALL-PARALLELISM)
(ASSIGN SCRIPT-MODE T)
 T
(SET-LD-PROMPT T STATE)
 T
ACL2 !>>(SET-INHIBITED-SUMMARY-TYPES '(TIME STEPS))
 (TIME STEPS)
ACL2 !>>(SET-INHIBIT-OUTPUT-LST '(PROOF-TREE))
 (PROOF-TREE)
ACL2 !>>7/2
7/2
ACL2 !>>6980579422424269/2251799813685248
6980579422424269/2251799813685248
ACL2 !>>(ASSERT-EVENT (EQUAL 7/2 7/2))
 :PASSED
ACL2 !>>(ASSERT-EVENT (NOT (EQUAL 6980579422424269/2251799813685248
                                  31/10)))
 :PASSED
ACL2 !>>34
34
ACL2 !>>12345000
12345000
ACL2 !>>12345000
12345000
ACL2 !>>100000000000000007629769841091887003294964970946560
100000000000000007629769841091887003294964970946560
ACL2 !>>(ASSERT-EVENT
             (EQUAL 100000000000000007629769841091887003294964970946560
                    100000000000000007629769841091887003294964970946560))
 :PASSED
ACL2 !>>(ASSERT-EVENT
             (NOT (EQUAL 100000000000000007629769841091887003294964970946560
                         (EXPT 10 50))))
 :PASSED
ACL2 !>>
ACL2 Error in ACL2-INTERFACE:  A floating-point input, which CLTL displays
as 3.1, has been encountered.  To permit floating-point input, which
ACL2 treats as a rational number, use the prefix #d or #D; see :DOC
df).
ACL2 !>>(DFP 1/4)
T
ACL2 !>>(DFP 1/4)
T
ACL2 !>>(DFP 1/3)
NIL
ACL2 !>>(DFP 'ABC)
NIL
ACL2 !>>(TO-DF 1/4)
#d0.25
ACL2 !>>(TO-DF 1/3)
#d0.3333333333333333
ACL2 !>>(FROM-DF (TO-DF 1/4))
1/4
ACL2 !>>(FROM-DF (TO-DF 1/4))
1/4
ACL2 !>>(FROM-DF (TO-DF 1/3))
6004799503160661/18014398509481984
ACL2 !>>(FROM-DF 1/4)
ACL2 Error [Translate] in TOP-LEVEL:  The form 1/4 represents an ordinary
object, but it is being used where a form representing a :DF was expected.
See :DOC df.  Note:  this error occurred in the context (FROM-DF 1/4).
ACL2 !>>(FROM-DF 1/4)
ACL2 Error [Translate] in TOP-LEVEL:  The form 1/4 represents an ordinary
object, but it is being used where a form representing a :DF was expected.
See :DOC df.  Note:  this error occurred in the context (FROM-DF 1/4).
ACL2 !>>(THM (EQUAL (FROM-DF 1/4) 1/4))
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:EXECUTABLE-COUNTERPART EQUAL)
        (:EXECUTABLE-COUNTERPART FROM-DF))
Proof succeeded.
ACL2 !>>(TO-DFP 1/4)
1/4
ACL2 !>>(TO-DFP 1/3)
6004799503160661/18014398509481984
ACL2 !>>(TO-DF 31/10)
#d3.1
ACL2 !>>(TO-DFP 31/10)
6980579422424269/2251799813685248
ACL2 !>>:ARGS TO-DF
Function         TO-DF
Formals:         (X)
Signature:       (TO-DF *)
                 => :DF
Guard:           (RATIONALP X)
Guards Verified: T
Defun-Mode:      :logic
Type:            (RATIONALP (TO-DF X))
Badge:           (APPLY$-BADGE 1 1 . T)
Warrant:         built-in
 TO-DF
ACL2 !>>:ARGS TO-DFP
Function         TO-DFP
Formals:         (X)
Signature:       (TO-DFP *)
                 => *
Guard:           (RATIONALP X)
Guards Verified: T
Defun-Mode:      :logic
Type:            (RATIONALP (TO-DFP X))
Badge:           (APPLY$-BADGE 1 1 . T)
Warrant:         built-in
 TO-DFP
ACL2 !>>(ASSERT-EVENT (EQUAL 6980579422424269/2251799813685248
                             6980579422424269/2251799813685248))
 :PASSED
ACL2 !>>(ASSERT-EVENT (EQUAL 6980579422424269/2251799813685248
                             (TO-DFP 6980579422424269/2251799813685248)))
 :PASSED
ACL2 !>>(ASSERT-EVENT (NOT (EQUAL (TO-DFP 31/10) 31/10)))
 :PASSED
ACL2 !>>(TO-DF 6980579422424269/2251799813685248)
#d3.1
ACL2 !>>(TO-DF 31/10)
#d3.1
ACL2 !>>(ASSERT-EVENT (DF= (TO-DF 6980579422424269/2251799813685248)
                           (TO-DF 31/10)))
 :PASSED
ACL2 !>>(TO-DF 3100000)
#d3100000.0
ACL2 !>>(TO-DF 31000000)
#d3.1E+7
ACL2 !>>(TO-DF 1152921504606847/1152921504606846976)
#d0.001
ACL2 !>>(TO-DF 7378697629483821/73786976294838206464)
#d1.0E-4
ACL2 !>>
ACL2 Error in ACL2-INTERFACE:  A floating-point input, which CLTL displays
as 0.001, has been encountered.  To permit floating-point input, which
ACL2 treats as a rational number, use the prefix #d or #D; see :DOC
df).
ACL2 !>>(ASSERT-EVENT (DFP 3100000))
 :PASSED
ACL2 !>>(VALUE (TO-DF 1/4))
 #d0.25
ACL2 !>>(VALUE-TRIPLE (TO-DF 1/4))
ACL2 Error in VALUE-TRIPLE:  Expected an ordinary (non-stobj, non-
df) value, but got a single :DF value.
ACL2 !>>(VALUE-TRIPLE (TO-DF 1/4)
                      :STOBJS-OUT '(:DF))
 1/4
ACL2 !>>(VALUE-TRIPLE (TO-DF 1/4)
                      :STOBJS-OUT :AUTO)
 1/4
ACL2 !>>(DF+ 1/2 1/2)
#d1.0
ACL2 !>>(DF+ 1/2 1/2)
#d1.0
ACL2 !>>(DF+ (TO-DF 1/2) (TO-DF 1/2))
#d1.0
ACL2 !>>(DF+ (TO-DF 1/2) (TO-DF 1/2))
#d1.0
ACL2 !>>(DF+ 3602879701896397/36028797018963968
             3602879701896397/18014398509481984
             5404319552844595/18014398509481984)
#d0.6
ACL2 !>>(DF+ 3602879701896397/36028797018963968
             (DF+ 3602879701896397/18014398509481984
                  5404319552844595/18014398509481984))
#d0.6
ACL2 !>>(DF+ (DF+ 3602879701896397/36028797018963968
                  3602879701896397/18014398509481984)
             5404319552844595/18014398509481984)
#d0.6000000000000001
ACL2 !>>(ASSERT-EVENT
             (NOT (DF= (DF+ 3602879701896397/36028797018963968
                            (DF+ 3602879701896397/18014398509481984
                                 5404319552844595/18014398509481984))
                       (DF+ (DF+ 3602879701896397/36028797018963968
                                 3602879701896397/18014398509481984)
                            5404319552844595/18014398509481984))))
 :PASSED
ACL2 !>>(DF+ 1/4 1/3)
ACL2 Error [Translate] in TOP-LEVEL:  The form 1/3 represents an ordinary
object, but it is being used where a form representing a :DF was expected.
See :DOC df.  Note:  this error occurred in the context 
(BINARY-DF+ (TO-DF 1/4) 1/3).
ACL2 !>>(TRANS '(DF+ 1/4 1/2))
(BINARY-DF+ (TO-DF '1/4) (TO-DF '1/2))
=> :DF
ACL2 !>>(TRANS '(DF+ 1/4 X))
ACL2 Error [Translate] in TOP-LEVEL:  The form X represents an ordinary
object, but it is being used where a form representing a :DF was expected.
See :DOC df.  Note:  this error occurred in the context 
(BINARY-DF+ (TO-DF 1/4) X).
ACL2 Error in TRANS:  :Trans has failed.  Consider trying :trans! instead;
see :DOC trans!.
ACL2 !>>(TRANS '(DF+ 1/4 (TO-DF X)))
(BINARY-DF+ (TO-DF '1/4) (TO-DF X))
=> :DF
ACL2 !>>(DEFMACRO IDENTITY-MACRO (X) X)
Summary
Form:  ( DEFMACRO IDENTITY-MACRO ...)
Rules: NIL
 IDENTITY-MACRO
ACL2 !>>(DF+ (IDENTITY-MACRO 1/4) 1/2)
ACL2 Error [Translate] in TOP-LEVEL:  The form 1/4 represents an ordinary
object, but it is being used where a form representing a :DF was expected.
See :DOC df.  Note:  this error occurred in the context (IDENTITY-MACRO 1/4).
ACL2 !>>(DF+ (IDENTITY-MACRO (TO-DF 1/4)) 1/2)
#d0.75
ACL2 !>>(LET ((X 3602879701896397/36028797018963968)
              (Y 3602879701896397/18014398509481984)
              (Z 5404319552844595/18014398509481984))
          (NOT (EQUAL (DF+ (DF+ X Y) Z)
                      (DF+ X (DF+ Y Z)))))
ACL2 Error [Translate] in TOP-LEVEL:  It is illegal to invoke BINARY-DF+
here because of a signature mismatch.  This function call returns a
result of shape :DF where a result of shape * is required.  Note: 
this error occurred in the context (BINARY-DF+ (DF+ X Y) Z).
ACL2 !>>(LET ((X 3602879701896397/36028797018963968)
              (Y 3602879701896397/18014398509481984)
              (Z 5404319552844595/18014398509481984))
          (DECLARE (TYPE DOUBLE-FLOAT X Y Z))
          (NOT (EQUAL (DF+ (DF+ X Y) Z)
                      (DF+ X (DF+ Y Z)))))
ACL2 Error [Translate] in TOP-LEVEL:  The form 
3602879701896397/36028797018963968 represents an ordinary object, but
it is being used where a form representing a :DF was expected.  See
:DOC df.  Note:  this error occurred in the context 
(LET ((X 3602879701896397/36028797018963968)
      (Y 3602879701896397/18014398509481984)
      (Z 5404319552844595/18014398509481984))
  (DECLARE (TYPE DOUBLE-FLOAT X Y Z))
  (NOT (EQUAL (DF+ (DF+ X Y) Z)
              (DF+ X (DF+ Y Z))))).
ACL2 !>>(LET ((X (TO-DF 3602879701896397/36028797018963968))
              (Y (TO-DF 3602879701896397/18014398509481984))
              (Z (TO-DF 5404319552844595/18014398509481984)))
          (NOT (EQUAL (DF+ (DF+ X Y) Z)
                      (DF+ X (DF+ Y Z)))))
ACL2 Error [Translate] in TOP-LEVEL:  It is illegal to invoke BINARY-DF+
here because of a signature mismatch.  This function call returns a
result of shape :DF where a result of shape * is required.  Note: 
this error occurred in the context (BINARY-DF+ (DF+ X Y) Z).
ACL2 !>>(ASSERT-EVENT (LET ((X (TO-DF 3602879701896397/36028797018963968))
                            (Y (TO-DF 3602879701896397/18014398509481984))
                            (Z (TO-DF 5404319552844595/18014398509481984)))
                        (NOT (EQUAL (FROM-DF (DF+ (DF+ X Y) Z))
                                    (FROM-DF (DF+ X (DF+ Y Z)))))))
 :PASSED
ACL2 !>>(ASSERT-EVENT (LET ((X (TO-DF 3602879701896397/36028797018963968))
                            (Y (TO-DF 3602879701896397/18014398509481984))
                            (Z (TO-DF 5404319552844595/18014398509481984)))
                        (NOT (DF= (DF+ (DF+ X Y) Z)
                                  (DF+ X (DF+ Y Z))))))
 :PASSED
ACL2 !>>(ASSERT-EVENT
             (LET ((X 3602879701896397/36028797018963968)
                   (Y 3602879701896397/18014398509481984)
                   (Z 5404319552844595/18014398509481984))
               (NOT (EQUAL (FROM-DF (DF+ (DF+ (TO-DF X) (TO-DF Y))
                                         (TO-DF Z)))
                           (FROM-DF (DF+ (TO-DF X)
                                         (DF+ (TO-DF Y) (TO-DF Z))))))))
 :PASSED
ACL2 !>>(THM (LET ((X 3602879701896397/36028797018963968)
                   (Y 3602879701896397/18014398509481984)
                   (Z 5404319552844595/18014398509481984))
               (NOT (EQUAL (DF+ (DF+ X Y) Z)
                           (DF+ X (DF+ Y Z))))))
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:EXECUTABLE-COUNTERPART BINARY-DF+)
        (:EXECUTABLE-COUNTERPART EQUAL)
        (:EXECUTABLE-COUNTERPART NOT))
Proof succeeded.
ACL2 !>>(DF+ 3602879701896397/36028797018963968
             3602879701896397/18014398509481984
             5404319552844595/18014398509481984)
#d0.6
ACL2 !>>(DF+ (DF+ 3602879701896397/36028797018963968
                  3602879701896397/18014398509481984)
             5404319552844595/18014398509481984)
#d0.6000000000000001
ACL2 !>>(TRANS '(DF+ 3602879701896397/36028797018963968
                     3602879701896397/18014398509481984
                     5404319552844595/18014398509481984))
(BINARY-DF+ (TO-DF '3602879701896397/36028797018963968)
            (BINARY-DF+ (TO-DF '3602879701896397/18014398509481984)
                        (TO-DF '5404319552844595/18014398509481984)))
=> :DF
ACL2 !>>(ASSERT-EVENT (AND (DFP 3602879701896397/36028797018963968)
                           (DFP 3602879701896397/18014398509481984)
                           (DFP 5404319552844595/18014398509481984)
                           (DFP 6980579422424269/2251799813685248)))
 :PASSED
ACL2 !>>(DEFMACRO DFP* (&REST RST)
          (CONS 'AND
                (PAIRLIS-X1 'DFP (PAIRLIS$ RST NIL))))
Summary
Form:  ( DEFMACRO DFP* ...)
Rules: NIL
 DFP*
ACL2 !>>(ASSERT-EVENT (DFP* 3602879701896397/36028797018963968
                            3602879701896397/18014398509481984
                            5404319552844595/18014398509481984
                            6980579422424269/2251799813685248))
 :PASSED
ACL2 !>>(THM (IMPLIES (DFP* X Y Z)
                      (EQUAL (DF+ (DF+ X Y) Z)
                             (DF+ X (DF+ Y Z)))))
Goal'
Goal''
([ A key checkpoint:
Goal''
(IMPLIES (AND (DFP X) (DFP Y) (DFP Z))
         (EQUAL (DF-ROUND (+ Z (DF-ROUND (+ X Y))))
                (DF-ROUND (+ X (DF-ROUND (+ Y Z))))))
*1 (Goal'') is pushed for proof by induction.
])
No induction schemes are suggested by *1.  Consequently, the proof
attempt has failed.
Summary
Form:  ( THM ...)
Rules: ((:DEFINITION BINARY-DF+)
        (:REWRITE COMMUTATIVITY-OF-+))
---
The key checkpoint goal, below, may help you to debug this failure.
See :DOC failure and see :DOC set-checkpoint-summary-limit.
---
*** Key checkpoint at the top level: ***
Goal''
(IMPLIES (AND (DFP X) (DFP Y) (DFP Z))
         (EQUAL (DF-ROUND (+ Z (DF-ROUND (+ X Y))))
                (DF-ROUND (+ X (DF-ROUND (+ Y Z))))))
ACL2 Error [Failure] in ( THM ...):  See :DOC failure.
******** FAILED ********
ACL2 !>>(ASSERT-EVENT (LET ((R (TO-DFP 1/3)))
                        (AND (DFP R)
                             (EQUAL R 6004799503160661/18014398509481984))))
 :PASSED
ACL2 !>>(THM (LET ((R1 (TO-DF 1/3)) (R2 (TO-DFP 1/3)))
               (AND (DFP* R1 R2)
                    (EQUAL R1 R2)
                    (EQUAL R1
                           6004799503160661/18014398509481984))))
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:EXECUTABLE-COUNTERPART DFP)
        (:EXECUTABLE-COUNTERPART EQUAL)
        (:EXECUTABLE-COUNTERPART IF)
        (:EXECUTABLE-COUNTERPART TO-DF)
        (:EXECUTABLE-COUNTERPART TO-DFP))
Proof succeeded.
ACL2 !>>(ASSERT-EVENT (EQUAL (TO-DF 1/2) 1/2))
ACL2 Error [Translate] in ASSERT-EVENT:  It is illegal to invoke TO-DF
here because of a signature mismatch.  This function call returns a
result of shape :DF where a result of shape * is required.  Note: 
this error occurred in the context (TO-DF 1/2).
ACL2 !>>(ASSERT-EVENT (EQUAL (FROM-DF (TO-DF 1/2)) 1/2))
 :PASSED
ACL2 !>>(ASSERT-EVENT (EQUAL (TO-DFP 1/2) 1/2))
 :PASSED
ACL2 !>>(THM (EQUAL (TO-DF 1/2) 1/2))
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:EXECUTABLE-COUNTERPART EQUAL)
        (:EXECUTABLE-COUNTERPART TO-DF))
Proof succeeded.
ACL2 !>>(ASSERT-EVENT (DFP (TO-DF 1/3)))
 :PASSED
ACL2 !>>(ASSERT-EVENT (DFP (TO-DFP 1/3)))
 :PASSED
ACL2 !>>ACL2 !>>0
0
ACL2 !>>(TO-DF 0)
#d0.0
ACL2 !>>(DEFMACRO A-E (X &KEY HINTS)
         (CONS
          'WITH-OUTPUT
          (CONS
           ':OFF
           (CONS
            ':ALL
            (CONS
             ':GAG-MODE
             (CONS
              'NIL
              (CONS
               (CONS
                'PROGN
                (CONS
                   (CONS 'ASSERT-EVENT (CONS X 'NIL))
                   (CONS (CONS 'THM
                               (CONS X
                                     (AND HINTS
                                          (CONS ':HINTS (CONS HINTS 'NIL)))))
                         '((VALUE-TRIPLE :SUCCESS)))))
               'NIL)))))))
Summary
Form:  ( DEFMACRO A-E ...)
Rules: NIL
 A-E
ACL2 !>>(DEFCONST *DF{1/3}* (TO-DFP 1/3))
Summary
Form:  ( DEFCONST *DF{1/3}* ...)
Rules: NIL
 *DF{1/3}*
ACL2 !>>*DF{1/3}*
6004799503160661/18014398509481984
ACL2 !>>(DFP *DF{1/3}*)
T
ACL2 !>>(ASSIGN SCRIPT-MODE 'SKIP-LDD-N)
 SKIP-LDD-N
ACL2 !>>:PE FROM-DF
 V     (DEFUN FROM-DF (X)
         (DECLARE (XARGS :GUARD (DFP X) :MODE :LOGIC))
         X)
ACL2 !>>:PE TO-DFP
 V     (DEFUN TO-DFP (X)
         (DECLARE (XARGS :GUARD (RATIONALP X)
                         :MODE :LOGIC))
         (FROM-DF (TO-DF X)))
ACL2 !>>(TO-DF 1/3)
#d0.3333333333333333
ACL2 !>>(THM (EQUAL *DF{1/3}* (TO-DF 1/3)))
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:EXECUTABLE-COUNTERPART EQUAL)
        (:EXECUTABLE-COUNTERPART TO-DF))
Proof succeeded.
ACL2 !>>(EQUAL *DF{1/3}*
               6004799503160661/18014398509481984)
T
ACL2 !>>(TO-DF 1/3)
#d0.3333333333333333
ACL2 !>>(FROM-DF (TO-DF 1/3))
6004799503160661/18014398509481984
ACL2 !>>(TO-DFP 1/3)
6004799503160661/18014398509481984
ACL2 !>>(THM (EQUAL (TO-DF 1/3)
                    6004799503160661/18014398509481984))
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:EXECUTABLE-COUNTERPART EQUAL)
        (:EXECUTABLE-COUNTERPART TO-DF))
Proof succeeded.
ACL2 !>>(DF-RATIONALIZE (TO-DF 1/3))
1/3
ACL2 !>>:PE RIZE
 V     (DEFUN RIZE (X)
         (DECLARE (TYPE RATIONAL X))
         (DF-RATIONALIZE (TO-DF X)))
Additional events for the logical name RIZE:
 PV    (DEFUN RIZE (X)
         (DECLARE (TYPE RATIONAL X))
         (DF-RATIONALIZE (TO-DF X)))
ACL2 !>>(RIZE 1/3)
1/3
ACL2 !>>*DF{1/3}*
6004799503160661/18014398509481984
ACL2 !>>(RIZE *DF{1/3}*)
1/3
ACL2 !>>(A-E (EQUAL (TO-DFP (RIZE *DF{1/3}*))
                    *DF{1/3}*))
 :SUCCESS
ACL2 !>>:PE TO-DFP-OF-RIZE
       (DEFTHM TO-DFP-OF-RIZE
         (IMPLIES (DFP X)
                  (EQUAL (TO-DFP (RIZE X)) X)))
ACL2 !>>(A-E (AND (NOT (DFP 1/3))
                  (DFP *DF{1/3}*)
                  (NOT (EQUAL 1/3 *DF{1/3}*))))
 :SUCCESS
ACL2 !>>:PE DFP
 V d   (DEFUN DFP (X)
         (DECLARE (XARGS :GUARD T :MODE :LOGIC))
         (AND (RATIONALP X) (= (TO-DF X) X)))
ACL2 !>>:PE DFP-TO-DF
       (DEFTHM DFP-TO-DF (DFP (TO-DF X)))
ACL2 !>>(A-E (EQUAL (DFP 1/4) T))
 :SUCCESS
ACL2 !>>(A-E (EQUAL (DFP 1/3) NIL))
 :SUCCESS
ACL2 !>>(A-E (EQUAL (DFP (TO-DF 1/3)) T))
 :SUCCESS
ACL2 !>>(THM (EQUAL (TO-DF 'ABC) 0))
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:EXECUTABLE-COUNTERPART TAU-SYSTEM))
Proof succeeded.
ACL2 !>>:PE *DF-PI*
       (DEFCONST *DF-PI* (FROM-DF (DF-PI)))
ACL2 !>>(DEFCONST *2PI* (* 2 *DF-PI*))
Summary
Form:  ( DEFCONST *2PI* ...)
Rules: NIL
 *2PI*
ACL2 !>>(DEFUN-INLINE DF-2PI NIL
          (DF* 2 (DF-PI)))
ACL2 !>>>(DEFMACRO DF-2PI NIL
           (LIST 'DF-2PI$INLINE))
Summary
Form:  ( DEFMACRO DF-2PI ...)
Rules: NIL
DF-2PI
ACL2 !>>>(ADD-MACRO-FN DF-2PI DF-2PI$INLINE)
ACL2 !>>>(ADD-MACRO-ALIAS DF-2PI DF-2PI$INLINE)
Summary
Form:  ( TABLE MACRO-ALIASES-TABLE ...)
Rules: NIL
MACRO-ALIASES-TABLE
ACL2 !>>>(TABLE UNTRANS-TABLE
           'DF-2PI$INLINE
           '(DF-2PI))
Summary
Form:  ( TABLE UNTRANS-TABLE ...)
Rules: NIL
UNTRANS-TABLE
Summary
Form:  ( PROGN (ADD-MACRO-ALIAS ... DF-2PI$INLINE) ...)
Rules: NIL
UNTRANS-TABLE
ACL2 !>>>(DEFUN DF-2PI$INLINE NIL
           (DF* 2 (DF-PI)))
Since DF-2PI$INLINE is non-recursive, its admission is trivial.  We
observe that the type of DF-2PI$INLINE is described by the theorem
(RATIONALP (DF-2PI)).  We used the :type-prescription rule BINARY-DF*.
(DF-2PI$INLINE) => :DF.
Summary
Form:  ( DEFUN DF-2PI$INLINE ...)
Rules: ((:TYPE-PRESCRIPTION BINARY-DF*))
DF-2PI$INLINE
Summary
Form:  ( PROGN (DEFMACRO DF-2PI ...) ...)
Rules: NIL
 DF-2PI$INLINE
ACL2 !>>:PE DF-2PI
Note that macro DF-2PI is a macro alias for the function DF-2PI$INLINE;
so we print event information for each in turn.
Printing event information for DF-2PI:
     :x(DEFUN-INLINE DF-2PI NIL ...)
       \
>       (DEFMACRO DF-2PI NIL
          (LIST 'DF-2PI$INLINE))
Printing event information for DF-2PI$INLINE:
     :x(DEFUN-INLINE DF-2PI NIL ...)
       \
>L      (DEFUN DF-2PI$INLINE NIL
          (DF* 2 (DF-PI)))
ACL2 !>>:ARGS DF-2PI$INLINE
Function         DF-2PI$INLINE
Formals:         NIL
Signature:       (DF-2PI$INLINE)
                 => :DF
Guard:           T
Guards Verified: NIL
Defun-Mode:      :logic
Type:            (RATIONALP (DF-2PI))
Badge:           none
Warrant:         none
 DF-2PI$INLINE
ACL2 !>>(A-E (EQUAL *2PI* (FROM-DF (DF-2PI))))
 :SUCCESS
ACL2 !>>*2PI*
884279719003555/140737488355328
ACL2 !>>(DF-2PI)
#d6.283185307179586
ACL2 !>>(RIZE *2PI*)
411557987/65501488
ACL2 !>>(A-E (EQUAL (TO-DFP *2PI*)
                    (TO-DFP (RIZE *2PI*))))
 :SUCCESS
ACL2 !>>(TO-DF *2PI*)
#d6.283185307179586
ACL2 !>>(ASSERT-EVENT (EQUAL (TO-DFP (RIZE *2PI*)) *2PI*))
 :PASSED
ACL2 !>>(THM (EQUAL (TO-DF (RIZE *2PI*)) *2PI*))
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:EXECUTABLE-COUNTERPART EQUAL)
        (:EXECUTABLE-COUNTERPART RIZE)
        (:EXECUTABLE-COUNTERPART TO-DF))
Proof succeeded.
ACL2 !>>(DF-SIN (DF-2PI))
#d-2.4492935982947064E-16
ACL2 !>>(DF-RATIONALIZE (DF-SIN (DF-2PI)))
-1/4082809838298842
ACL2 !>>(DFP (DF-SIN (DF-2PI)))
T
ACL2 !>>(DF-SIN *2PI*)
#d-2.4492935982947064E-16
ACL2 !>>:PE DF-SIN
Note that macro DF-SIN is a macro alias for the function DF-SIN-FN;
so we print event information for each in turn.
Printing event information for DF-SIN:
   d   (DF-NON-CONSTRAINED-FUNCTIONS-INTRO)
       \
>       (DEFMACRO DF-SIN (X)
          (CONS 'DF-SIN-FN
                (TO-DF?-ARGS (LIST X))))
Printing event information for DF-SIN-FN:
   d   (DF-NON-CONSTRAINED-FUNCTIONS-INTRO)
       \
>V d    (DEFUN DF-SIN-FN (X)
          (DECLARE (TYPE DOUBLE-FLOAT X))
          (DECLARE (XARGS :GUARD T))
          (TO-DF (NON-EXEC (CONSTRAINED-DF-SIN-FN X))))
Additional events for the logical name DF-SIN-FN:
   d   (DF-NON-CONSTRAINED-FUNCTIONS-INTRO)
       \
>PVd    (DEFUN DF-SIN-FN (X)
          (DECLARE (TYPE DOUBLE-FLOAT X))
          (DECLARE (XARGS :GUARD T))
          (TO-DF (NON-EXEC (CONSTRAINED-DF-SIN-FN X))))
ACL2 !>>(TRANS '(TO-DF *2PI*))
(TO-DF '884279719003555/140737488355328)
=> :DF
ACL2 !>>(A-E (NOT (DFP (/ *DF-PI* 6))))
 :SUCCESS
ACL2 !>>(A-E (EQUAL (TO-DFP (/ *DF-PI* 6))
                    (FROM-DF (DF/ *DF-PI* 6))))
 :SUCCESS
ACL2 !>>(DEFCONST *PI/6* (TO-DFP (/ *DF-PI* 6)))
Summary
Form:  ( DEFCONST *PI/6* ...)
Rules: NIL
 *PI/6*
ACL2 !>>(DF-SIN *PI/6*)
#d0.49999999999999994
ACL2 !>>(DF-RATIONALIZE (DF-SIN *PI/6*))
3002399751580331/6004799503160663
ACL2 !>>(ASSERT-EVENT (LET ((X (DF-RATIONALIZE (DF-SIN *PI/6*))))
                        (EQUAL (DENOMINATOR X)
                               (1+ (* 2 (NUMERATOR X))))))
 :PASSED
ACL2 !>>(DF-SQRT 2)
#d1.4142135623730951
ACL2 !>>(DF* (DF-SQRT 2) (DF-SQRT 2))
#d2.0000000000000004
ACL2 !>>(A-E (EQUAL (- (FROM-DF (DF* (DF-SQRT 2) (DF-SQRT 2)))
                       (/ 2251799813685248))
                    2))
 :SUCCESS
ACL2 !>>(TO-DF #C(0 1))
ACL2 Error [Evaluation] in TOP-LEVEL:  The guard for the function call
(TO-DF X), which is (RATIONALP X), is violated by the arguments in
the call (TO-DF #C(0 1)).
See :DOC set-guard-checking for information about suppressing this
check with (set-guard-checking :none), as recommended for new users.
To debug see :DOC print-gv, see :DOC trace, and see :DOC wet.
ACL2 !>>(DEFUN F0 (X)
          (DECLARE (XARGS :VERIFY-GUARDS NIL)
                   (TYPE DOUBLE-FLOAT X))
          (DF- X))
Since F0 is non-recursive, its admission is trivial.  We observe that
the type of F0 is described by the theorem (RATIONALP (F0 X)).  We
used the :type-prescription rule UNARY-DF-.
(F0 :DF) => :DF.
Summary
Form:  ( DEFUN F0 ...)
Rules: ((:TYPE-PRESCRIPTION UNARY-DF-))
 F0
ACL2 !>>:ARGS F0
Function         F0
Formals:         (X)
Signature:       (F0 :DF)
                 => :DF
Guard:           (DFP X)
Guards Verified: NIL
Defun-Mode:      :logic
Type:            (RATIONALP (F0 X))
Badge:           none
Warrant:         none
 F0
ACL2 !>>(F0 3)
ACL2 Error [Translate] in TOP-LEVEL:  The form 3 represents an ordinary
object, but it is being used where a form representing a :DF was expected.
See :DOC df.  Note:  this error occurred in the context (F0 3).
ACL2 !>>(F0 3)
ACL2 Error [Translate] in TOP-LEVEL:  The form 3 represents an ordinary
object, but it is being used where a form representing a :DF was expected.
See :DOC df.  Note:  this error occurred in the context (F0 3).
ACL2 !>>(F0 (TO-DF 3))
#d-3.0
ACL2 !>>(DEFUN-DF F1 (X)
                  (DECLARE (XARGS :VERIFY-GUARDS NIL))
                  (DF- X))
Since F1-FN is non-recursive, its admission is trivial.  We observe
that the type of F1-FN is described by the theorem (RATIONALP (F1-FN X)).
We used the :type-prescription rule UNARY-DF-.
(F1-FN :DF) => :DF.
Summary
Form:  ( DEFUN F1-FN ...)
Rules: ((:TYPE-PRESCRIPTION UNARY-DF-))
 F1
ACL2 !>>(F1 3)
#d-3.0
ACL2 !>>(F1 (TO-DF 3))
#d-3.0
ACL2 !>>:TRANS* T (F1 3)
Iteration 1 produces (by expansion):
(F1-FN (TO-DF 3))
----------
Iteration 2 produces (by translation):
(F1-FN (TO-DF '3))
----------
ACL2 !>>(TRANS '(F1 X))
ACL2 Error [Translate] in TOP-LEVEL:  The form X represents an ordinary
object, but it is being used where a form representing a :DF was expected.
See :DOC df.  Note:  this error occurred in the context (F1-FN X).
ACL2 Error in TRANS:  :Trans has failed.  Consider trying :trans! instead;
see :DOC trans!.
ACL2 !>>(TRANS '(F1 (TO-DF X)))
(F1-FN (TO-DF X))
=> :DF
ACL2 !>>(SET-RAW-MODE-ON!)
(DEFTTAG :RAW-MODE-HACK)
(SET-RAW-MODE-ON STATE)
ACL2 P>>(VALUES (MACROEXPAND '(F1 3)))
(F1-FN (TO-DF 3))
ACL2 P>>(SET-RAW-MODE NIL)
ACL2 !>>(ASSERT-EVENT (EQUAL (F1 3) -3))
ACL2 Error [Translate] in ASSERT-EVENT:  It is illegal to invoke F1-FN
here because of a signature mismatch.  This function call returns a
result of shape :DF where a result of shape * is required.  Note: 
this error occurred in the context (F1-FN (TO-DF 3)).
ACL2 !>>(DF= (F1 3) -3)
T
ACL2 !>>(THM (EQUAL (F1 3) -3))
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:EXECUTABLE-COUNTERPART EQUAL)
        (:EXECUTABLE-COUNTERPART F1-FN)
        (:EXECUTABLE-COUNTERPART TO-DF))
Proof succeeded.
ACL2 !>>(ASSERT-EVENT (EQUAL (FROM-DF (F1 3)) -3))
 :PASSED
ACL2 !>>(VERIFY-GUARDS F1)
ACL2 Error in ( VERIFY-GUARDS F1):  F1 is not a function symbol or
a theorem name in the current ACL2 world.  Note that F1 is a macro-
alias for F1-FN.  Consider calling verify-guards with argument F1-FN
instead, or use verify-guards+.  See :DOC verify-guards, see :DOC verify-
guards+, and see :DOC macro-aliases-table.
Summary
Form:  ( VERIFY-GUARDS F1)
Rules: NIL
ACL2 Error [Failure] in ( VERIFY-GUARDS F1):  See :DOC failure.
******** FAILED ********
ACL2 !>>(VERIFY-GUARDS+ F1)
ACL2 Observation in VERIFY-GUARDS+:  Attempting to verify guards for
F1-FN.
Computing the guard conjecture for F1-FN....
The guard conjecture for F1-FN is trivial to prove.  F1-FN is compliant
with Common Lisp.
Summary
Form:  ( VERIFY-GUARDS F1-FN)
Rules: NIL
Summary
Form:  ( MAKE-EVENT (LET* ...) ...)
Rules: NIL
 F1-FN
ACL2 !>>(THM (EQUAL (F1 3) -3))
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:EXECUTABLE-COUNTERPART EQUAL)
        (:EXECUTABLE-COUNTERPART F1-FN)
        (:EXECUTABLE-COUNTERPART TO-DF))
Proof succeeded.
ACL2 !>>(ASSERT-EVENT (EQUAL (FROM-DF (F1 3)) -3))
 :PASSED
ACL2 !>>(DEFUN-DF F2 (X)
                  (DECLARE (XARGS :VERIFY-GUARDS NIL))
                  (FROM-DF (DF- X)))
Since F2-FN is non-recursive, its admission is trivial.  We observe
that the type of F2-FN is described by the theorem (RATIONALP (F2-FN X)).
We used the :type-prescription rule UNARY-DF-.
(F2-FN :DF) => *.
Summary
Form:  ( DEFUN F2-FN ...)
Rules: ((:TYPE-PRESCRIPTION UNARY-DF-))
 F2
ACL2 !>>:PE F2
Note that macro F2 is a macro alias for the function F2-FN; so we print
event information for each in turn.
Printing event information for F2:
     :x(DEFUN-DF F2 (X) ...)
       \
>       (DEFMACRO F2 (X)
          (CONS 'F2-FN (TO-DF?-ARGS (LIST X))))
Printing event information for F2-FN:
     :x(DEFUN-DF F2 (X) ...)
       \
>L      (DEFUN F2-FN (X)
          (DECLARE (TYPE DOUBLE-FLOAT X))
          (DECLARE (XARGS :VERIFY-GUARDS NIL))
          (FROM-DF (DF- X)))
ACL2 !>>:ARGS F2-FN
Function         F2-FN
Formals:         (X)
Signature:       (F2-FN :DF)
                 => *
Guard:           (DFP X)
Guards Verified: NIL
Defun-Mode:      :logic
Type:            (RATIONALP (F2 X))
Badge:           none
Warrant:         none
 F2-FN
ACL2 !>>(A-E (EQUAL (F2 3) -3))
 :SUCCESS
ACL2 !>>(A-E (EQUAL (F2 3) -3))
 :SUCCESS
ACL2 !>>(VERIFY-GUARDS F2-FN)
Computing the guard conjecture for F2-FN....
The guard conjecture for F2-FN is trivial to prove.  F2-FN is compliant
with Common Lisp.
Summary
Form:  ( VERIFY-GUARDS F2-FN)
Rules: NIL
 F2-FN
ACL2 !>>(A-E (EQUAL (F2 3) -3))
 :SUCCESS
ACL2 !>>(A-E (EQUAL (F2 3) -3))
 :SUCCESS
ACL2 !>>(DEFUN F3 (X)
          (DECLARE (XARGS :GUARD (RATIONALP X)))
          (DF- (TO-DF X)))
Since F3 is non-recursive, its admission is trivial.  We observe that
the type of F3 is described by the theorem (RATIONALP (F3 X)).  We
used the :type-prescription rule UNARY-DF-.
(F3 *) => :DF.
Computing the guard conjecture for F3....
The guard conjecture for F3 is trivial to prove.  F3 is compliant with
Common Lisp.
Summary
Form:  ( DEFUN F3 ...)
Rules: ((:TYPE-PRESCRIPTION UNARY-DF-))
 F3
ACL2 !>>:ARGS F3
Function         F3
Formals:         (X)
Signature:       (F3 *)
                 => :DF
Guard:           (RATIONALP X)
Guards Verified: T
Defun-Mode:      :logic
Type:            (RATIONALP (F3 X))
Badge:           none
Warrant:         none
 F3
ACL2 !>>(F3 30000000)
#d-3.0E+7
ACL2 !>>(THM (EQUAL (F3 30000000) -30000000))
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:EXECUTABLE-COUNTERPART EQUAL)
        (:EXECUTABLE-COUNTERPART F3))
Proof succeeded.
ACL2 !>>(DEFUN F4 (X)
          (DECLARE (XARGS :GUARD (RATIONALP X)))
          (FROM-DF (DF- (TO-DF X))))
Since F4 is non-recursive, its admission is trivial.  We observe that
the type of F4 is described by the theorem (RATIONALP (F4 X)).  We
used the :type-prescription rule UNARY-DF-.
Computing the guard conjecture for F4....
The guard conjecture for F4 is trivial to prove.  F4 is compliant with
Common Lisp.
Summary
Form:  ( DEFUN F4 ...)
Rules: ((:TYPE-PRESCRIPTION UNARY-DF-))
 F4
ACL2 !>>(A-E (EQUAL (F4 3) -3))
 :SUCCESS
ACL2 !>>(DEFUN F5 (X Y Z)
          (DECLARE (XARGS :GUARD (DFP* X Y Z)
                          :VERIFY-GUARDS NIL))
          (FROM-DF (LET ((X (TO-DF X))
                         (Y (TO-DF Y))
                         (Z (TO-DF Z)))
                     (DF* (DF+ X Y Z) 2 5))))
Since F5 is non-recursive, its admission is trivial.  We observe that
the type of F5 is described by the theorem (RATIONALP (F5 X Y Z)).
We used the :type-prescription rule BINARY-DF*.
Summary
Form:  ( DEFUN F5 ...)
Rules: ((:TYPE-PRESCRIPTION BINARY-DF*))
 F5
ACL2 !>>(A-E (EQUAL (F5 1/4 1/2 3/4) 15))
 :SUCCESS
ACL2 !>>(VERIFY-GUARDS+ F5)
ACL2 Observation in VERIFY-GUARDS+:  Attempting to verify guards for
F5.
Computing the guard conjecture for F5....
The guard conjecture for F5 is trivial to prove, given the :compound-
recognizer rule DFP-IMPLIES-RATIONALP.  F5 is compliant with Common
Lisp.
Summary
Form:  ( VERIFY-GUARDS F5)
Rules: ((:COMPOUND-RECOGNIZER DFP-IMPLIES-RATIONALP))
Summary
Form:  ( MAKE-EVENT (LET* ...) ...)
Rules: NIL
 F5
ACL2 !>>(A-E (EQUAL (F5 1/4 1/2 3/4) 15))
 :SUCCESS
ACL2 !>>(DEFUN BAD (X)
          (DECLARE (TYPE DOUBLE-FLOAT X)
                   (TYPE RATIONAL X))
          X)
ACL2 Error [Translate] in ( DEFUN BAD ...):  The form X represents
a :DF, but it is being used where a form representing an ordinary object
was expected.  See :DOC df.  Note:  this error occurred in the context
(RATIONALP X).
Summary
Form:  ( DEFUN BAD ...)
Rules: NIL
ACL2 Error [Failure] in ( DEFUN BAD ...):  See :DOC failure.
******** FAILED ********
ACL2 !>>(DEFUN G (X)
          (IF (CONSP X)
              (LET ((Y (G (CDR X))))
                (DF+ (TO-DF (CAR X)) Y))
            (DF0)))
ACL2 Error [Translate] in ( DEFUN G ...):  It is illegal to invoke
BINARY-DF+ here because of a signature mismatch.  This function call
returns a result of shape :DF where a result of shape * is required.
Note:  this error occurred in the context (BINARY-DF+ (TO-DF (CAR X)) Y).
Summary
Form:  ( DEFUN G ...)
Rules: NIL
ACL2 Error [Failure] in ( DEFUN G ...):  See :DOC failure.
******** FAILED ********
ACL2 !>>(DEFUN G0 (X)
          (IF (CONSP X)
              (LET ((Y (G0 (CDR X))))
                (DECLARE (TYPE DOUBLE-FLOAT Y))
                (DF+ (TO-DF (CAR X)) Y))
            (DF0)))
The admission of G0 is trivial, using the relation O< (which is known
to be well-founded on the domain recognized by O-P) and the measure
(ACL2-COUNT X).  We observe that the type of G0 is described by the
theorem (RATIONALP (G0 X)).  We used the :type-prescription rule BINARY-DF+.
(G0 *) => :DF.
Summary
Form:  ( DEFUN G0 ...)
Rules: ((:TYPE-PRESCRIPTION BINARY-DF+))
 G0
ACL2 !>>(DEFUN G1 (X)
          (IF (CONSP X)
              (LET ((Y (THE DOUBLE-FLOAT (G1 (CDR X)))))
                (DF+ (TO-DF (CAR X)) Y))
            (DF0)))
The admission of G1 is trivial, using the relation O< (which is known
to be well-founded on the domain recognized by O-P) and the measure
(ACL2-COUNT X).  We observe that the type of G1 is described by the
theorem (RATIONALP (G1 X)).  We used the :type-prescription rule BINARY-DF+.
(G1 *) => :DF.
Summary
Form:  ( DEFUN G1 ...)
Rules: ((:TYPE-PRESCRIPTION BINARY-DF+))
 G1
ACL2 !>>(DEFUN G2 (X)
          (IF (ATOM X)
              (DF0)
            (LET ((Y (G2 (CDR X))))
              (DF+ (TO-DF (CAR X)) Y))))
The admission of G2 is trivial, using the relation O< (which is known
to be well-founded on the domain recognized by O-P) and the measure
(ACL2-COUNT X).  We observe that the type of G2 is described by the
theorem (RATIONALP (G2 X)).  We used the :type-prescription rule BINARY-DF+.
(G2 *) => :DF.
Summary
Form:  ( DEFUN G2 ...)
Rules: ((:TYPE-PRESCRIPTION BINARY-DF+))
 G2
ACL2 !>>(ASSERT-EVENT (AND (EQUAL (STOBJS-OUT 'G0 (W STATE))
                                  '(:DF))
                           (EQUAL (STOBJS-OUT 'G1 (W STATE))
                                  '(:DF))
                           (EQUAL (STOBJS-OUT 'G2 (W STATE))
                                  '(:DF))))
 :PASSED
ACL2 !>>(DEFUN F6 (X)
          (DECLARE (XARGS :GUARD (RATIONALP X)))
          (EC-CALL (DF- (TO-DF X))))
ACL2 Error [Translate] in ( DEFUN F6 ...):  The argument (DF- (TO-DF X))
is illegal for EC-CALL, because DF- is a macro, not a function symbol.
A call of EC-CALL must only be made on an argument of the form (FN
...), where FN is a known function symbol of the current ACL2 world
not belonging to the list that is the value of the constant 
*EC-CALL-BAD-OPS*, or is a macro expanding in a certain direct way
(as with defun-inline) to a call of FN$INLINE (i.e., the result of
adding suffix "$INLINE" to the symbol-name of FN).  See :DOC ec-call.
Summary
Form:  ( DEFUN F6 ...)
Rules: NIL
ACL2 Error [Failure] in ( DEFUN F6 ...):  See :DOC failure.
******** FAILED ********
ACL2 !>>(DEFUN F6 (X)
          (DECLARE (XARGS :GUARD (RATIONALP X)))
          (EC-CALL (UNARY-DF- (TO-DF X))))
ACL2 Error [Translate] in ( DEFUN F6 ...):  A use of EC-CALL on the
term (UNARY-DF- (TO-DF X)) requires suitable :DFS-IN and :DFS-OUT keyword
arguments.  See :DOC ec-call.
Summary
Form:  ( DEFUN F6 ...)
Rules: NIL
ACL2 Error [Failure] in ( DEFUN F6 ...):  See :DOC failure.
******** FAILED ********
ACL2 !>>(DEFUN F6 (X)
          (DECLARE (XARGS :GUARD (RATIONALP X)))
          (EC-CALL (UNARY-DF- (TO-DF X))
                   :DFS-OUT '(NIL)))
ACL2 Error [Translate] in ( DEFUN F6 ...):  A use of EC-CALL on the
term (UNARY-DF- (TO-DF X)) requires suitable :DFS-IN and :DFS-OUT keyword
arguments.  See :DOC ec-call.
Summary
Form:  ( DEFUN F6 ...)
Rules: NIL
ACL2 Error [Failure] in ( DEFUN F6 ...):  See :DOC failure.
******** FAILED ********
ACL2 !>>(DEFUN F6 (X)
          (DECLARE (XARGS :GUARD (RATIONALP X)))
          (EC-CALL (UNARY-DF- (TO-DF X))
                   :DFS-OUT (T)))
HARD ACL2 ERROR in EC-CALL:  The call
(EC-CALL (UNARY-DF- (TO-DF X)) :DFS-OUT (T))
is illegal because the :dfs-out argument fails to be either nil or
a quoted true list of Booleans.  See :DOC ec-call.
ACL2 Error [Translate] in ( DEFUN F6 ...):  In the attempt to macroexpand
the form (EC-CALL (UNARY-DF- (TO-DF X)) :DFS-OUT (T)), evaluation of
the macro body caused the error below.
Evaluation aborted.  To debug see :DOC print-gv, see :DOC trace, and
see :DOC wet.
Summary
Form:  ( DEFUN F6 ...)
Rules: NIL
ACL2 Error [Failure] in ( DEFUN F6 ...):  See :DOC failure.
******** FAILED ********
ACL2 !>>(DEFUN F6 (X)
          (DECLARE (XARGS :GUARD (RATIONALP X)))
          (EC-CALL (UNARY-DF- (TO-DF X))
                   :DFS-OUT '(T NIL)))
ACL2 Error [Translate] in ( DEFUN F6 ...):  A use of EC-CALL on the
term (UNARY-DF- (TO-DF X)) requires suitable :DFS-IN and :DFS-OUT keyword
arguments.  See :DOC ec-call.
Summary
Form:  ( DEFUN F6 ...)
Rules: NIL
ACL2 Error [Failure] in ( DEFUN F6 ...):  See :DOC failure.
******** FAILED ********
ACL2 !>>(DEFUN F6 (X)
          (DECLARE (XARGS :GUARD (RATIONALP X)))
          (EC-CALL (UNARY-DF- (TO-DF X))
                   :DFS-OUT '(T)))
ACL2 Error [Translate] in ( DEFUN F6 ...):  A use of EC-CALL on the
term (UNARY-DF- (TO-DF X)) requires a suitable :DFS-IN keyword argument.
See :DOC ec-call.
Summary
Form:  ( DEFUN F6 ...)
Rules: NIL
ACL2 Error [Failure] in ( DEFUN F6 ...):  See :DOC failure.
******** FAILED ********
ACL2 !>>(DEFUN F6 (X)
          (DECLARE (XARGS :GUARD (RATIONALP X)))
          (EC-CALL (UNARY-DF- (TO-DF X))
                   :DFS-IN '(T)
                   :DFS-OUT '(T)))
Since F6 is non-recursive, its admission is trivial.  We observe that
the type of F6 is described by the theorem (RATIONALP (F6 X)).  We
used the :type-prescription rule UNARY-DF-.
(F6 *) => :DF.
Computing the guard conjecture for F6....
The guard conjecture for F6 is trivial to prove.  F6 is compliant with
Common Lisp.
Summary
Form:  ( DEFUN F6 ...)
Rules: ((:TYPE-PRESCRIPTION UNARY-DF-))
 F6
ACL2 !>>(F6 7/2)
#d-3.5
ACL2 !>>(SET-RAW-MODE-ON!)
(DEFTTAG :RAW-MODE-HACK)
(SET-RAW-MODE-ON STATE)
ACL2 P>>(F6 7/2)
[Note:  Printing non-ACL2 result.]
-3.5
ACL2 P>>(SET-RAW-MODE NIL)
ACL2 !>>(DEFUN F6-IDEAL (X)
          (DECLARE (XARGS :GUARD (RATIONALP X)
                          :VERIFY-GUARDS NIL))
          (EC-CALL (UNARY-DF- (TO-DF X))
                   :DFS-IN '(T)
                   :DFS-OUT '(T)))
Since F6-IDEAL is non-recursive, its admission is trivial.  We observe
that the type of F6-IDEAL is described by the theorem 
(RATIONALP (F6-IDEAL X)).  We used the :type-prescription rule UNARY-DF-.
(F6-IDEAL *) => :DF.
Summary
Form:  ( DEFUN F6-IDEAL ...)
Rules: ((:TYPE-PRESCRIPTION UNARY-DF-))
 F6-IDEAL
ACL2 !>>(F6-IDEAL 7/2)
#d-3.5
ACL2 !>>(DEFUN F6-PROG (X)
          (DECLARE (XARGS :GUARD (RATIONALP X)
                          :MODE :PROGRAM))
          (EC-CALL (UNARY-DF- (TO-DF X))
                   :DFS-IN '(T)
                   :DFS-OUT '(T)))
Summary
Form:  ( DEFUN F6-PROG ...)
Rules: NIL
 F6-PROG
ACL2 !>>(F6-PROG 7/2)
#d-3.5
ACL2 !>>(DEFUN F7 (X)
          (DECLARE (XARGS :MODE :PROGRAM))
          (MV (F6 X) (F6-IDEAL X) (F6-PROG X)))
Summary
Form:  ( DEFUN F7 ...)
Rules: NIL
 F7
ACL2 !>>(F7 7/2)
(#d-3.5 #d-3.5 #d-3.5)
ACL2 !>>(DEFUN F8 (X)
          (DECLARE (XARGS :MODE :PROGRAM))
          (EC-CALL (F7 X) :DFS-OUT '(T T T)))
Summary
Form:  ( DEFUN F8 ...)
Rules: NIL
 F8
ACL2 !>>(F8 7/2)
(#d-3.5 #d-3.5 #d-3.5)
ACL2 !>>(SET-RAW-MODE-ON!)
(DEFTTAG :RAW-MODE-HACK)
(SET-RAW-MODE-ON STATE)
ACL2 P>>(F8 7/2)
[Note:  Printing non-ACL2 result.]
(-3.5
 -3.5
 -3.5)
ACL2 P>>(SET-RAW-MODE NIL)
ACL2 !>>(DEFUN F9 (X)
          (DECLARE (XARGS :MODE :PROGRAM
                          :GUARD (RATIONALP X)))
          (MV-LET (A B C) (F8 X) (DF+ A B C)))
Summary
Form:  ( DEFUN F9 ...)
Rules: NIL
 F9
ACL2 !>>(F9 7/2)
#d-10.5
ACL2 !>>(VERIFY-TERMINATION F6-PROG)
Since F6-PROG is non-recursive, its admission is trivial.  We observe
that the type of F6-PROG is described by the theorem (RATIONALP (F6-PROG X)).
We used the :type-prescription rule UNARY-DF-.
(F6-PROG *) => :DF.
Computing the guard conjecture for F6-PROG....
The guard conjecture for F6-PROG is trivial to prove.  F6-PROG is compliant
with Common Lisp.
Summary
Form:  ( DEFUN F6-PROG ...)
Rules: ((:TYPE-PRESCRIPTION UNARY-DF-))
Summary
Form:  ( MAKE-EVENT (VERIFY-TERMINATION-FN ...))
Rules: NIL
 F6-PROG
ACL2 !>>(VERIFY-TERMINATION F7)
Since F7 is non-recursive, its admission is trivial.  We observe that
the type of F7 is described by the theorem 
(AND (CONSP (F7 X)) (TRUE-LISTP (F7 X))).  We used primitive type reasoning.
(F7 *) => (MV :DF :DF :DF).
Summary
Form:  ( DEFUN F7 ...)
Rules: ((:FAKE-RUNE-FOR-TYPE-SET NIL))
Summary
Form:  ( MAKE-EVENT (VERIFY-TERMINATION-FN ...))
Rules: NIL
 F7
ACL2 !>>(VERIFY-TERMINATION F8)
Since F8 is non-recursive, its admission is trivial.  We observe that
the type of F8 is described by the theorem 
(AND (CONSP (F8 X)) (TRUE-LISTP (F8 X))).  We used the :type-prescription
rule F7.
(F8 *) => (MV :DF :DF :DF).
Summary
Form:  ( DEFUN F8 ...)
Rules: ((:TYPE-PRESCRIPTION F7))
Summary
Form:  ( MAKE-EVENT (VERIFY-TERMINATION-FN ...))
Rules: NIL
 F8
ACL2 !>>(VERIFY-TERMINATION F9 (DECLARE (XARGS :VERIFY-GUARDS NIL)))
Since F9 is non-recursive, its admission is trivial.  We observe that
the type of F9 is described by the theorem (RATIONALP (F9 X)).  We
used the :type-prescription rule BINARY-DF+.
(F9 *) => :DF.
Summary
Form:  ( DEFUN F9 ...)
Rules: ((:TYPE-PRESCRIPTION BINARY-DF+))
Summary
Form:  ( MAKE-EVENT (VERIFY-TERMINATION-FN ...))
Rules: NIL
 F9
ACL2 !>>(F9 7/2)
#d-10.5
ACL2 !>>(DEFUN F8-LOGIC (X)
          (DECLARE (XARGS :GUARD (RATIONALP X)))
          (EC-CALL (F7 X) :DFS-OUT (T T T)))
HARD ACL2 ERROR in EC-CALL:  The call
(EC-CALL (F7 X) :DFS-OUT (T T T))
is illegal because the :dfs-out argument fails to be either nil or
a quoted true list of Booleans.  See :DOC ec-call.
ACL2 Error [Translate] in ( DEFUN F8-LOGIC ...):  In the attempt to
macroexpand the form (EC-CALL (F7 X) :DFS-OUT (T T T)), evaluation
of the macro body caused the error below.
Evaluation aborted.  To debug see :DOC print-gv, see :DOC trace, and
see :DOC wet.
Summary
Form:  ( DEFUN F8-LOGIC ...)
Rules: NIL
ACL2 Error [Failure] in ( DEFUN F8-LOGIC ...):  See :DOC failure.
******** FAILED ********
ACL2 !>>(DEFUN F8-LOGIC (X)
          (DECLARE (XARGS :GUARD (RATIONALP X)))
          (EC-CALL (F7 X) :DFS-OUT '(T T T)))
Since F8-LOGIC is non-recursive, its admission is trivial.  We observe
that the type of F8-LOGIC is described by the theorem 
(AND (CONSP (F8-LOGIC X)) (TRUE-LISTP (F8-LOGIC X))).  We used the
:type-prescription rule F7.
(F8-LOGIC *) => (MV :DF :DF :DF).
Computing the guard conjecture for F8-LOGIC....
The guard conjecture for F8-LOGIC is trivial to prove.  F8-LOGIC is
compliant with Common Lisp.
Summary
Form:  ( DEFUN F8-LOGIC ...)
Rules: ((:TYPE-PRESCRIPTION F7))
 F8-LOGIC
ACL2 !>>(F8-LOGIC 7/2)
(#d-3.5 #d-3.5 #d-3.5)
ACL2 !>>(DEFUN F9-LOGIC (X)
          (DECLARE (XARGS :GUARD (RATIONALP X)))
          (MV-LET (A B C)
                  (F8-LOGIC X)
            (DF+ A B C)))
Since F9-LOGIC is non-recursive, its admission is trivial.  We observe
that the type of F9-LOGIC is described by the theorem 
(RATIONALP (F9-LOGIC X)).  We used the :type-prescription rule BINARY-DF+.
(F9-LOGIC *) => :DF.
Computing the guard conjecture for F9-LOGIC....
The guard conjecture for F9-LOGIC is trivial to prove.  F9-LOGIC is
compliant with Common Lisp.
Summary
Form:  ( DEFUN F9-LOGIC ...)
Rules: ((:TYPE-PRESCRIPTION BINARY-DF+))
 F9-LOGIC
ACL2 !>>(F9-LOGIC 7/2)
#d-10.5
ACL2 !>>(SET-GUARD-CHECKING NIL)
Masking guard violations but still checking guards except for self-
recursive calls.  To avoid guard checking entirely, :SET-GUARD-CHECKING
:NONE.  See :DOC set-guard-checking.
ACL2 >>(F7 7/2)
(#d-3.5 #d-3.5 #d-3.5)
ACL2 >>(F8 7/2)
(#d-3.5 #d-3.5 #d-3.5)
ACL2 >>(F9 7/2)
#d-10.5
ACL2 >>(F8-LOGIC 7/2)
(#d-3.5 #d-3.5 #d-3.5)
ACL2 >>(F9-LOGIC 7/2)
#d-10.5
ACL2 >>(SET-GUARD-CHECKING :ALL)
Turning guard checking on, value :ALL.
ACL2 !>>(F7 7/2)
(#d-3.5 #d-3.5 #d-3.5)
ACL2 !>>(F8 7/2)
(#d-3.5 #d-3.5 #d-3.5)
ACL2 !>>(F9 7/2)
#d-10.5
ACL2 !>>(F8-LOGIC 7/2)
(#d-3.5 #d-3.5 #d-3.5)
ACL2 !>>(F9-LOGIC 7/2)
#d-10.5
ACL2 !>>(SET-GUARD-CHECKING :NONE)
Turning off guard checking entirely.  To allow execution in raw Lisp
for functions with guards other than T, while continuing to mask guard
violations, :SET-GUARD-CHECKING NIL.  See :DOC set-guard-checking.
ACL2 >>(F7 7/2)
(#d-3.5 #d-3.5 #d-3.5)
ACL2 >>(F8 7/2)
(#d-3.5 #d-3.5 #d-3.5)
ACL2 >>(F9 7/2)
#d-10.5
ACL2 >>(F8-LOGIC 7/2)
(#d-3.5 #d-3.5 #d-3.5)
ACL2 >>(F9-LOGIC 7/2)
#d-10.5
ACL2 >>(SET-GUARD-CHECKING T)
Turning guard checking on, value T.
ACL2 !>>(DEFSTOBJ ST0 FLD0)
Summary
Form:  ( DEFSTOBJ ST0 ...)
Rules: NIL
 ST0
ACL2 !>>(DEFUN H1 (X Y ST0)
          (DECLARE (XARGS :STOBJS ST0 :DFS Y))
          (LET ((ST0 (UPDATE-FLD0 X ST0)))
            (MV 3 Y ST0)))
Since H1 is non-recursive, its admission is trivial.  We observe that
the type of H1 is described by the theorem 
(AND (CONSP (H1 X Y ST0)) (TRUE-LISTP (H1 X Y ST0))).  We used primitive
type reasoning.
(H1 * :DF ST0) => (MV * :DF ST0).
Computing the guard conjecture for H1....
The guard conjecture for H1 is trivial to prove.  H1 is compliant with
Common Lisp.
Summary
Form:  ( DEFUN H1 ...)
Rules: ((:FAKE-RUNE-FOR-TYPE-SET NIL))
 H1
ACL2 !>>(DEFUN H2 (X Y ST0)
          (DECLARE (XARGS :STOBJS ST0 :DFS Y))
          (EC-CALL (H1 X Y ST0)
                   :DFS-IN '(NIL T NIL)
                   :DFS-OUT '(NIL T NIL)))
Since H2 is non-recursive, its admission is trivial.  We observe that
the type of H2 is described by the theorem 
(AND (CONSP (H2 X Y ST0)) (TRUE-LISTP (H2 X Y ST0))).  We used the
:type-prescription rule H1.
(H2 * :DF ST0) => (MV * :DF ST0).
Computing the guard conjecture for H2....
The guard conjecture for H2 is trivial to prove.  H2 is compliant with
Common Lisp.
Summary
Form:  ( DEFUN H2 ...)
Rules: ((:TYPE-PRESCRIPTION H1))
 H2
ACL2 !>>(H2 3 (TO-DF 4) ST0)
(3 #d4.0 <st0>)
ACL2 !>>(THM (DFP (TO-DF X)))
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:REWRITE DFP-TO-DF))
Proof succeeded.
ACL2 !>>(THM (EQUAL (DFP X)
                    (AND (RATIONALP X)
                         (EQUAL (TO-DF X) X))))
Subgoal 2
Subgoal 2.2
Subgoal 2.2'
Subgoal 2.2''
Subgoal 2.1
Subgoal 1
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:COMPOUND-RECOGNIZER DFP-IMPLIES-RATIONALP)
        (:DEFINITION HIDE)
        (:EXECUTABLE-COUNTERPART TAU-SYSTEM)
        (:FAKE-RUNE-FOR-TYPE-SET NIL)
        (:FORWARD-CHAINING DFP-IMPLIES-TO-DF-IS-IDENTITY)
        (:REWRITE DFP-TO-DF)
        (:TYPE-PRESCRIPTION DFP))
Proof succeeded.
ACL2 !>>(THM (DFP (DF+ X Y Z)))
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:DEFINITION BINARY-DF+)
        (:REWRITE DFP-DF-ROUND))
Proof succeeded.
ACL2 !>>(THM (DFP (DF- X)))
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:DEFINITION UNARY-DF-)
        (:REWRITE DFP-DF-ROUND))
Proof succeeded.
ACL2 !>>(THM (DFP (DF/ X Y)))
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:DEFINITION BINARY-DF/)
        (:REWRITE DFP-DF-ROUND))
Proof succeeded.
ACL2 !>>(THM (EQUAL (DF+ 'APPLE 3) 0))
Goal'
Goal''
([ A key checkpoint:
Goal''
NIL
A goal of NIL, Goal'', has been generated!  Obviously, the proof attempt
has failed.
])
Summary
Form:  ( THM ...)
Rules: ((:DEFINITION BINARY-DF+)
        (:EXECUTABLE-COUNTERPART BINARY-+)
        (:EXECUTABLE-COUNTERPART DFP)
        (:EXECUTABLE-COUNTERPART EQUAL)
        (:EXECUTABLE-COUNTERPART TO-DF)
        (:REWRITE DF-ROUND-IS-IDENTITY-FOR-DFP))
---
The key checkpoint goal, below, may help you to debug this failure.
See :DOC failure and see :DOC set-checkpoint-summary-limit.
---
*** Key checkpoint at the top level
    before generating a goal of NIL (see :DOC nil-goal): ***
Goal''
NIL
ACL2 Error [Failure] in ( THM ...):  See :DOC failure.
******** FAILED ********
ACL2 !>>(THM (EQUAL (DF/ X 0) 0))
Goal'
Goal''
([ A key checkpoint:
Goal''
(EQUAL (DF-ROUND (* 0 X)) 0)
*1 (Goal'') is pushed for proof by induction.
])
No induction schemes are suggested by *1.  Consequently, the proof
attempt has failed.
Summary
Form:  ( THM ...)
Rules: ((:DEFINITION BINARY-DF/)
        (:EXECUTABLE-COUNTERPART TO-DF)
        (:EXECUTABLE-COUNTERPART UNARY-/)
        (:REWRITE COMMUTATIVITY-OF-*))
---
The key checkpoint goal, below, may help you to debug this failure.
See :DOC failure and see :DOC set-checkpoint-summary-limit.
---
*** Key checkpoint at the top level: ***
Goal''
(EQUAL (DF-ROUND (* 0 X)) 0)
ACL2 Error [Failure] in ( THM ...):  See :DOC failure.
******** FAILED ********
ACL2 !>>(THM (IMPLIES (DFP X)
                      (EQUAL (TO-DF (FROM-DF X)) X)))
Goal'
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:COMPOUND-RECOGNIZER DFP-IMPLIES-RATIONALP)
        (:DEFINITION FROM-DF)
        (:FORWARD-CHAINING DFP-IMPLIES-TO-DF-IS-IDENTITY))
Proof succeeded.
ACL2 !>>(THM (IMPLIES (DFP X)
                      (EQUAL (TO-DF (DF-RATIONALIZE X)) X)))
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:COMPOUND-RECOGNIZER DFP-IMPLIES-RATIONALP)
        (:FAKE-RUNE-FOR-TYPE-SET NIL)
        (:REWRITE TO-DF-OF-DF-RATIONALIZE))
Proof succeeded.
ACL2 !>>(THM (IMPLIES (DFP* X Y)
                      (EQUAL (DF+ X Y) (DF+ Y X))))
Goal'
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:DEFINITION BINARY-DF+)
        (:FAKE-RUNE-FOR-TYPE-SET NIL)
        (:REWRITE COMMUTATIVITY-OF-+))
Proof succeeded.
ACL2 !>>(THM (IMPLIES (DFP* X Y Z)
                      (EQUAL (DF+ X Y Z) (DF+ (DF+ X Y) Z))))
Goal'
Goal''
([ A key checkpoint:
Goal''
(IMPLIES (AND (DFP X) (DFP Y) (DFP Z))
         (EQUAL (DF-ROUND (+ X (DF-ROUND (+ Y Z))))
                (DF-ROUND (+ Z (DF-ROUND (+ X Y))))))
*1 (Goal'') is pushed for proof by induction.
])
No induction schemes are suggested by *1.  Consequently, the proof
attempt has failed.
Summary
Form:  ( THM ...)
Rules: ((:DEFINITION BINARY-DF+)
        (:REWRITE COMMUTATIVITY-OF-+))
---
The key checkpoint goal, below, may help you to debug this failure.
See :DOC failure and see :DOC set-checkpoint-summary-limit.
---
*** Key checkpoint at the top level: ***
Goal''
(IMPLIES (AND (DFP X) (DFP Y) (DFP Z))
         (EQUAL (DF-ROUND (+ X (DF-ROUND (+ Y Z))))
                (DF-ROUND (+ Z (DF-ROUND (+ X Y))))))
ACL2 Error [Failure] in ( THM ...):  See :DOC failure.
******** FAILED ********
ACL2 !>>(THM (IMPLIES (AND (DFP X) (NOT (EQUAL X 0)))
                      (EQUAL (DF/ X X) 1)))
Goal'
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:COMPOUND-RECOGNIZER DFP-IMPLIES-RATIONALP)
        (:DEFINITION BINARY-DF/)
        (:DEFINITION NOT)
        (:EXECUTABLE-COUNTERPART DFP)
        (:EXECUTABLE-COUNTERPART EQUAL)
        (:REWRITE DF-ROUND-IS-IDENTITY-FOR-DFP)
        (:REWRITE INVERSE-OF-*))
Proof succeeded.
ACL2 !>>(ASSERT-EVENT (NOT (EQUAL (DF-RATIONALIZE (DF/ 1 3))
                                  (FROM-DF (DF/ 1 3)))))
 :PASSED
ACL2 !>>(THM (LET ((X (FROM-DF (DF/ 1 3))))
               (NOT (IMPLIES (RATIONALP X)
                             (EQUAL X (DF-RATIONALIZE (TO-DF X)))))))
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:EXECUTABLE-COUNTERPART BINARY-DF/)
        (:EXECUTABLE-COUNTERPART DF-RATIONALIZE)
        (:EXECUTABLE-COUNTERPART EQUAL)
        (:EXECUTABLE-COUNTERPART FROM-DF)
        (:EXECUTABLE-COUNTERPART IF)
        (:EXECUTABLE-COUNTERPART NOT)
        (:EXECUTABLE-COUNTERPART RATIONALP)
        (:EXECUTABLE-COUNTERPART TO-DF))
Proof succeeded.
ACL2 !>>(THM (IMPLIES (RATIONALP X)
                      (EQUAL X (DF-RATIONALIZE (TO-DF X)))))
*1 (the initial Goal, a key checkpoint) is pushed for proof by induction.
No induction schemes are suggested by *1.  Consequently, the proof
attempt has failed.
Summary
Form:  ( THM ...)
Rules: NIL
---
The key checkpoint goal, below, may help you to debug this failure.
See :DOC failure and see :DOC set-checkpoint-summary-limit.
---
*** Key checkpoint at the top level: ***
Goal
(IMPLIES (RATIONALP X)
         (EQUAL X (DF-RATIONALIZE (TO-DF X))))
ACL2 Error [Failure] in ( THM ...):  See :DOC failure.
******** FAILED ********
ACL2 !>>(THM (LET ((X (FROM-DF (DF/ 1 3))))
               (NOT (IMPLIES (RATIONALP X)
                             (EQUAL X (RIZE (TO-DFP X)))))))
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:EXECUTABLE-COUNTERPART BINARY-DF/)
        (:EXECUTABLE-COUNTERPART EQUAL)
        (:EXECUTABLE-COUNTERPART FROM-DF)
        (:EXECUTABLE-COUNTERPART IF)
        (:EXECUTABLE-COUNTERPART NOT)
        (:EXECUTABLE-COUNTERPART RATIONALP)
        (:EXECUTABLE-COUNTERPART RIZE)
        (:EXECUTABLE-COUNTERPART TO-DF)
        (:EXECUTABLE-COUNTERPART TO-DFP))
Proof succeeded.
ACL2 !>>(THM (IMPLIES (RATIONALP X)
                      (EQUAL X (RIZE (TO-DFP X)))))
Goal'
([ A key checkpoint:
Goal'
(IMPLIES (RATIONALP X)
         (EQUAL X (DF-RATIONALIZE (TO-DF X))))
*1 (Goal') is pushed for proof by induction.
])
No induction schemes are suggested by *1.  Consequently, the proof
attempt has failed.
Summary
Form:  ( THM ...)
Rules: ((:DEFINITION RIZE)
        (:DEFINITION TO-DFP)
        (:REWRITE TO-DF-IDEMPOTENT))
---
The key checkpoint goal, below, may help you to debug this failure.
See :DOC failure and see :DOC set-checkpoint-summary-limit.
---
*** Key checkpoint at the top level: ***
Goal'
(IMPLIES (RATIONALP X)
         (EQUAL X (DF-RATIONALIZE (TO-DF X))))
ACL2 Error [Failure] in ( THM ...):  See :DOC failure.
******** FAILED ********
ACL2 !>>(THM (IMPLIES (DFP* X Y)
                      (OR (DF< X Y) (DF< Y X) (DF= X Y))))
Goal'
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:COMPOUND-RECOGNIZER DFP-IMPLIES-RATIONALP)
        (:DEFINITION DF<-FN)
        (:DEFINITION DF=-FN)
        (:FAKE-RUNE-FOR-LINEAR-EQUALITIES NIL)
        (:FAKE-RUNE-FOR-TYPE-SET NIL)
        (:LINEAR TO-DF-MONOTONICITY)
        (:REWRITE DFP-IMPLIES-TO-DF-IS-IDENTITY))
Proof succeeded.
ACL2 !>>(DF+ 3602879701896397/36028797018963968
             3602879701896397/18014398509481984
             5404319552844595/18014398509481984)
#d0.6
ACL2 !>>(DF+ 5404319552844595/18014398509481984
             3602879701896397/18014398509481984
             3602879701896397/36028797018963968)
#d0.6000000000000001
ACL2 !>>(THM (EQUAL (DF+ X Y Z) (DF+ Z Y X)))
Goal'
Goal''
([ A key checkpoint:
Goal''
(EQUAL (DF-ROUND (+ X (DF-ROUND (+ Y Z))))
       (DF-ROUND (+ Z (DF-ROUND (+ X Y)))))
*1 (Goal'') is pushed for proof by induction.
])
No induction schemes are suggested by *1.  Consequently, the proof
attempt has failed.
Summary
Form:  ( THM ...)
Rules: ((:DEFINITION BINARY-DF+)
        (:REWRITE COMMUTATIVITY-OF-+))
---
The key checkpoint goal, below, may help you to debug this failure.
See :DOC failure and see :DOC set-checkpoint-summary-limit.
---
*** Key checkpoint at the top level: ***
Goal''
(EQUAL (DF-ROUND (+ X (DF-ROUND (+ Y Z))))
       (DF-ROUND (+ Z (DF-ROUND (+ X Y)))))
ACL2 Error [Failure] in ( THM ...):  See :DOC failure.
******** FAILED ********
ACL2 !>>(INCLUDE-BOOK "kestrel/utilities/checkpoints"
                      :DIR :SYSTEM)
Summary
Form:  ( INCLUDE-BOOK "kestrel/utilities/checkpoints" ...)
Rules: NIL
 (:SYSTEM . "kestrel/utilities/checkpoints.lisp")
ACL2 !>>(ASSERT-EVENT
         (EQUAL
             (CHECKPOINT-LIST T STATE)
             '(((EQUAL (DF-ROUND (BINARY-+ X (DF-ROUND (BINARY-+ Y Z))))
                       (DF-ROUND (BINARY-+ Z (DF-ROUND (BINARY-+ X Y)))))))))
 :PASSED
ACL2 !>>(THM (DF= (DF+ X 'BAD) (DF+ X 0)))
Goal'
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:DEFINITION BINARY-DF+)
        (:DEFINITION DF=-FN)
        (:DEFINITION FIX)
        (:EXECUTABLE-COUNTERPART TO-DF)
        (:FAKE-RUNE-FOR-TYPE-SET NIL)
        (:REWRITE COMMUTATIVITY-OF-+)
        (:REWRITE DEFAULT-+-2)
        (:REWRITE UNICITY-OF-0))
Proof succeeded.
ACL2 !>>(THM (IMPLIES (DFP X) (DF= (DF+ X 'BAD) X)))
Goal'
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:COMPOUND-RECOGNIZER DFP-IMPLIES-RATIONALP)
        (:DEFINITION BINARY-DF+)
        (:DEFINITION DF=-FN)
        (:DEFINITION FIX)
        (:FAKE-RUNE-FOR-TYPE-SET NIL)
        (:REWRITE DEFAULT-+-2)
        (:REWRITE DF-ROUND-IS-IDENTITY-FOR-DFP))
Proof succeeded.
ACL2 !>>(THM (IMPLIES (DFP X)
                      (DF= (DF+ X (DF- X)) 0)))
Goal'
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:COMPOUND-RECOGNIZER DFP-IMPLIES-RATIONALP)
        (:DEFINITION BINARY-DF+)
        (:DEFINITION DF=-FN)
        (:DEFINITION UNARY-DF-)
        (:EXECUTABLE-COUNTERPART DFP)
        (:EXECUTABLE-COUNTERPART EQUAL)
        (:EXECUTABLE-COUNTERPART TO-DF)
        (:REWRITE DF-ROUND-IS-IDENTITY-FOR-DFP)
        (:REWRITE DFP-MINUS)
        (:REWRITE INVERSE-OF-+))
Proof succeeded.
ACL2 !>>(DEFSTOBJ ST1
          (ACCUM :TYPE DOUBLE-FLOAT :INITIALLY 0))
Summary
Form:  ( DEFSTOBJ ST1 ...)
Rules: NIL
 ST1
ACL2 !>>(ASSERT-EVENT (DF= (ACCUM ST1) 0))
 :PASSED
ACL2 !>>(UPDATE-ACCUM (TO-DF 3) ST1)
<st1>
ACL2 !>>(ASSERT-EVENT (DF= (ACCUM ST1) 3))
 :PASSED
ACL2 !>>(DEFSTOBJ ST2
          (HT :TYPE (HASH-TABLE EQL 70 DOUBLE-FLOAT)
              :INITIALLY 0))
Summary
Form:  ( DEFSTOBJ ST2 ...)
Rules: NIL
 ST2
ACL2 !>>(DEFUN F10 (KEY ST2)
          (DECLARE (XARGS :STOBJS ST2
                          :GUARD (EQLABLEP KEY)))
          (HT-GET KEY ST2))
Since F10 is non-recursive, its admission is trivial.  We could deduce
no constraints on the type of F10.
(F10 * ST2) => :DF.
Computing the guard conjecture for F10....
The guard conjecture for F10 is trivial to prove.  F10 is compliant
with Common Lisp.
Summary
Form:  ( DEFUN F10 ...)
Rules: NIL
 F10
ACL2 !>>(ASSERT-EVENT (DF= (F10 'A ST2) 0))
 :PASSED
ACL2 !>>(HT-PUT 'B (TO-DF 1/3) ST2)
<st2>
ACL2 !>>(ASSERT-EVENT (DF= (F10 'A ST2) 0))
 :PASSED
ACL2 !>>(ASSERT-EVENT (DF= (F10 'B ST2) (TO-DF 1/3)))
 :PASSED
ACL2 !>>(DEFSTOBJ ST3
          (AR :TYPE (ARRAY DOUBLE-FLOAT (8))
              :INITIALLY 0))
Summary
Form:  ( DEFSTOBJ ST3 ...)
Rules: NIL
 ST3
ACL2 !>>(DEFUN LOAD-AR (I MAX LST ST3)
          (DECLARE (XARGS :STOBJS ST3
                          :GUARD (AND (RATIONAL-LISTP LST)
                                      (NATP I)
                                      (= (+ I (LENGTH LST)) (AR-LENGTH ST3))
                                      (INTEGERP MAX)
                                      (<= I MAX)
                                      (<= MAX (AR-LENGTH ST3)))
                          :MEASURE (NFIX (- (AR-LENGTH ST3) I))))
          (IF (MBT (AND (NATP I)
                        (INTEGERP MAX)
                        (<= I MAX)
                        (<= MAX (AR-LENGTH ST3))
                        (RATIONAL-LISTP LST)))
              (IF (< I MAX)
                  (LET ((ST3 (UPDATE-ARI I (TO-DF (CAR LST)) ST3)))
                    (LOAD-AR (1+ I) MAX (CDR LST) ST3))
                ST3)
            ST3))
For the admission of LOAD-AR we will use the relation O< (which is
known to be well-founded on the domain recognized by O-P) and the measure
(NFIX (+ (AR-LENGTH ST3) (- I))).  The non-trivial part of the measure
conjecture is
Goal
(AND (O-P (NFIX (+ (AR-LENGTH ST3) (- I))))
     (IMPLIES (AND (AND (NATP I)
                        (INTEGERP MAX)
                        (<= I MAX)
                        (<= MAX (AR-LENGTH ST3))
                        (RATIONAL-LISTP LST))
                   (< I MAX))
              (O< (NFIX (+ (AR-LENGTH (UPDATE-ARI I (TO-DF (CAR LST)) ST3))
                           (- (+ 1 I))))
                  (NFIX (+ (AR-LENGTH ST3) (- I)))))).
Subgoal 2
Subgoal 1
Splitter note (see :DOC splitter) for Subgoal 1 (3 subgoals).
  if-intro: ((:DEFINITION NFIX) (:DEFINITION O<))
Subgoal 1.3
Subgoal 1.2
Subgoal 1.1
Q.E.D.
That completes the proof of the measure theorem for LOAD-AR.  Thus,
we admit this function under the principle of definition.  We observe
that the type of LOAD-AR is described by the theorem 
(OR (CONSP (LOAD-AR I MAX LST ST3)) (EQUAL (LOAD-AR I MAX LST ST3) ST3)).
We used the :type-prescription rule UPDATE-ARI.
(LOAD-AR * * * ST3) => ST3.
Computing the guard conjecture for LOAD-AR....
The non-trivial part of the guard conjecture for LOAD-AR, given the
:compound-recognizer rule NATP-COMPOUND-RECOGNIZER, primitive type
reasoning, the :forward-chaining rules 
ACL2-NUMBER-LISTP-FORWARD-TO-TRUE-LISTP and 
RATIONAL-LISTP-FORWARD-TO-ACL2-NUMBER-LISTP and the :type-prescription
rules ACL2-NUMBER-LISTP, AR-LENGTH, LENGTH and RATIONAL-LISTP, is
Goal
(AND (IMPLIES (AND (<= MAX (AR-LENGTH ST3))
                   (<= I MAX)
                   (INTEGERP MAX)
                   (EQUAL (+ I (LENGTH LST))
                          (AR-LENGTH ST3))
                   (NATP I)
                   (RATIONAL-LISTP LST)
                   (ST3P ST3)
                   (AND (NATP I)
                        (INTEGERP MAX)
                        (<= I MAX)
                        (<= MAX (AR-LENGTH ST3))
                        (RATIONAL-LISTP LST))
                   (< I MAX))
              (RATIONALP (CAR LST)))
     (IMPLIES (AND (<= MAX (AR-LENGTH ST3))
                   (<= I MAX)
                   (INTEGERP MAX)
                   (EQUAL (+ I (LENGTH LST))
                          (AR-LENGTH ST3))
                   (NATP I)
                   (RATIONAL-LISTP LST)
                   (ST3P ST3)
                   (AND (NATP I)
                        (INTEGERP MAX)
                        (<= I MAX)
                        (<= MAX (AR-LENGTH ST3))
                        (RATIONAL-LISTP LST))
                   (< I MAX))
              (LET ((ST3 (UPDATE-ARI I (TO-DF (CAR LST)) ST3)))
                (AND (ACL2-NUMBERP I)
                     (OR (CONSP LST) (EQUAL LST NIL))
                     (RATIONAL-LISTP (CDR LST))
                     (<= (+ 1 I) MAX)
                     (= (+ (+ 1 I) (LENGTH (CDR LST)))
                        (AR-LENGTH ST3))
                     (NATP (+ 1 I))
                     (<= MAX (AR-LENGTH ST3))
                     (INTEGERP MAX))))
     (IMPLIES (AND (<= MAX (AR-LENGTH ST3))
                   (<= I MAX)
                   (INTEGERP MAX)
                   (EQUAL (+ I (LENGTH LST))
                          (AR-LENGTH ST3))
                   (NATP I)
                   (RATIONAL-LISTP LST)
                   (ST3P ST3)
                   (AND (NATP I)
                        (INTEGERP MAX)
                        (<= I MAX)
                        (<= MAX (AR-LENGTH ST3))
                        (RATIONAL-LISTP LST))
                   (< I MAX))
              (< I (AR-LENGTH ST3)))).
Subgoal 2
Subgoal 2'
Subgoal 1
Splitter note (see :DOC splitter) for Subgoal 1 (3 subgoals).
  if-intro: ((:DEFINITION NOT) (:DEFINITION NTH))
Subgoal 1.3
Subgoal 1.2
Splitter note (see :DOC splitter) for Subgoal 1.2 (2 subgoals).
  if-intro: ((:DEFINITION LEN)
             (:DEFINITION RATIONAL-LISTP))
Subgoal 1.2.2
Subgoal 1.2.1
Subgoal 1.1
Q.E.D.
That completes the proof of the guard theorem for LOAD-AR.  LOAD-AR
is compliant with Common Lisp.
Summary
Form:  ( DEFUN LOAD-AR ...)
Rules: ((:COMPOUND-RECOGNIZER NATP-COMPOUND-RECOGNIZER)
        (:DEFINITION =)
        (:DEFINITION AR-LENGTH)
        (:DEFINITION LEN)
        (:DEFINITION LENGTH)
        (:DEFINITION NATP)
        (:DEFINITION NFIX)
        (:DEFINITION NOT)
        (:DEFINITION NTH)
        (:DEFINITION O-FINP)
        (:DEFINITION O-P)
        (:DEFINITION O<)
        (:DEFINITION RATIONAL-LISTP)
        (:DEFINITION ST3P)
        (:DEFINITION SYNP)
        (:DEFINITION UPDATE-ARI)
        (:DEFINITION UPDATE-NTH-ARRAY)
        (:EXECUTABLE-COUNTERPART BINARY-+)
        (:EXECUTABLE-COUNTERPART CAR)
        (:EXECUTABLE-COUNTERPART CDR)
        (:EXECUTABLE-COUNTERPART CONSP)
        (:EXECUTABLE-COUNTERPART EQUAL)
        (:EXECUTABLE-COUNTERPART LEN)
        (:EXECUTABLE-COUNTERPART NOT)
        (:EXECUTABLE-COUNTERPART NTH)
        (:EXECUTABLE-COUNTERPART RATIONAL-LISTP)
        (:EXECUTABLE-COUNTERPART RATIONALP)
        (:EXECUTABLE-COUNTERPART TAU-SYSTEM)
        (:EXECUTABLE-COUNTERPART UNARY--)
        (:EXECUTABLE-COUNTERPART ZP)
        (:FAKE-RUNE-FOR-LINEAR NIL)
        (:FAKE-RUNE-FOR-TYPE-SET NIL)
        (:FORWARD-CHAINING ACL2-NUMBER-LISTP-FORWARD-TO-TRUE-LISTP)
        (:FORWARD-CHAINING RATIONAL-LISTP-FORWARD-TO-ACL2-NUMBER-LISTP)
        (:REWRITE ASSOCIATIVITY-OF-+)
        (:REWRITE DISTRIBUTIVITY-OF-MINUS-OVER-+)
        (:REWRITE FOLD-CONSTS-IN-+)
        (:TYPE-PRESCRIPTION ACL2-NUMBER-LISTP)
        (:TYPE-PRESCRIPTION AR-LENGTH)
        (:TYPE-PRESCRIPTION LEN)
        (:TYPE-PRESCRIPTION LENGTH)
        (:TYPE-PRESCRIPTION RATIONAL-LISTP)
        (:TYPE-PRESCRIPTION UPDATE-ARI))
Splitter rules (see :DOC splitter):
  if-intro: ((:DEFINITION LEN)
             (:DEFINITION NFIX)
             (:DEFINITION NOT)
             (:DEFINITION NTH)
             (:DEFINITION O<)
             (:DEFINITION RATIONAL-LISTP))
 LOAD-AR
ACL2 !>>(LOAD-AR 0 8 (LIST 3 0 *DF-PI* 3/4 -2/3 5 -6 7)
                 ST3)
<st3>
ACL2 !>>(ASSERT-EVENT (AND (= (FROM-DF (ARI 2 ST3)) *DF-PI*)
                           (= (FROM-DF (ARI 6 ST3)) -6)
                           (DF= (ARI 6 ST3) -6)
                           (DF< (ARI 0 ST3) 5)))
 :PASSED
ACL2 !>>(THM (LET ((ST3 (LOAD-AR 0 8 (LIST 3 0 *DF-PI* 3/4 -2/3 5 -6 7)
                                 ST3)))
               (AND (= (FROM-DF (ARI 2 ST3)) *DF-PI*)
                    (= (FROM-DF (ARI 6 ST3)) -6)
                    (DF= (ARI 6 ST3) -6)
                    (DF< (ARI 0 ST3) 5)))
             :HINTS (("Goal" :EXPAND (:FREE (I MAX LST ST3)
                                            (LOAD-AR I MAX LST ST3)))))
Subgoal 3
Subgoal 2
Subgoal 1
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:DEFINITION =)
        (:DEFINITION AR-LENGTH)
        (:DEFINITION ARI)
        (:DEFINITION DF<-FN)
        (:DEFINITION DF=-FN)
        (:DEFINITION FROM-DF)
        (:DEFINITION LOAD-AR)
        (:DEFINITION NTH)
        (:DEFINITION UPDATE-ARI)
        (:DEFINITION UPDATE-NTH)
        (:DEFINITION UPDATE-NTH-ARRAY)
        (:EXECUTABLE-COUNTERPART <)
        (:EXECUTABLE-COUNTERPART BINARY-+)
        (:EXECUTABLE-COUNTERPART CAR)
        (:EXECUTABLE-COUNTERPART CDR)
        (:EXECUTABLE-COUNTERPART EQUAL)
        (:EXECUTABLE-COUNTERPART INTEGERP)
        (:EXECUTABLE-COUNTERPART NATP)
        (:EXECUTABLE-COUNTERPART RATIONAL-LISTP)
        (:EXECUTABLE-COUNTERPART TO-DF)
        (:EXECUTABLE-COUNTERPART ZP)
        (:REWRITE CAR-CONS)
        (:REWRITE CDR-CONS)
        (:REWRITE NTH-0-CONS)
        (:REWRITE NTH-ADD1))
Proof succeeded.
ACL2 !>>(DEFTHM DFP-NTH-ARP
          (IMPLIES (AND (ARP AR) (NATP I) (< I (LEN AR)))
                   (DFP (NTH I AR))))
Goal'
([ A key checkpoint:
Goal'
(IMPLIES (AND (ARP AR)
              (INTEGERP I)
              (<= 0 I)
              (< I (LEN AR)))
         (DFP (NTH I AR)))
*1 (Goal') is pushed for proof by induction.
])
Perhaps we can prove *1 by induction.  Three induction schemes are
suggested by this conjecture.  These merge into one derived induction
scheme.  
We will induct according to a scheme suggested by (NTH I AR).
This suggestion was produced using the :induction rules ARP, LEN and
NTH.  If we let (:P AR I) denote *1 above then the induction scheme
we'll use is
(AND (IMPLIES (AND (NOT (ENDP AR))
                   (NOT (ZP I))
                   (:P (CDR AR) (+ -1 I)))
              (:P AR I))
     (IMPLIES (AND (NOT (ENDP AR)) (ZP I))
              (:P AR I))
     (IMPLIES (ENDP AR) (:P AR I))).
This induction is justified by the same argument used to admit NTH.
Note, however, that the unmeasured variable AR is being instantiated.
When applied to the goal at hand the above induction scheme produces
seven nontautological subgoals.
Subgoal *1/7
Subgoal *1/7'
Subgoal *1/6
Subgoal *1/6'
Subgoal *1/5
Subgoal *1/4
Subgoal *1/3
Subgoal *1/3'
Subgoal *1/2
Subgoal *1/2'
Subgoal *1/2''
Subgoal *1/1
Subgoal *1/1'
*1 is COMPLETED!
Thus key checkpoint Goal' is COMPLETED!
Q.E.D.
The storage of DFP-NTH-ARP depends upon the :compound-recognizer rule
DFP-IMPLIES-RATIONALP and the :type-prescription rule DFP.
Summary
Form:  ( DEFTHM DFP-NTH-ARP ...)
Rules: ((:COMPOUND-RECOGNIZER DFP-IMPLIES-RATIONALP)
        (:COMPOUND-RECOGNIZER ZP-COMPOUND-RECOGNIZER)
        (:DEFINITION ARP)
        (:DEFINITION ENDP)
        (:DEFINITION LEN)
        (:DEFINITION NATP)
        (:DEFINITION NOT)
        (:DEFINITION NTH)
        (:EXECUTABLE-COUNTERPART <)
        (:EXECUTABLE-COUNTERPART CONSP)
        (:EXECUTABLE-COUNTERPART INTEGERP)
        (:EXECUTABLE-COUNTERPART LEN)
        (:EXECUTABLE-COUNTERPART NOT)
        (:EXECUTABLE-COUNTERPART ZP)
        (:FAKE-RUNE-FOR-LINEAR-EQUALITIES NIL)
        (:FAKE-RUNE-FOR-TYPE-SET NIL)
        (:INDUCTION ARP)
        (:INDUCTION LEN)
        (:INDUCTION NTH)
        (:TYPE-PRESCRIPTION DFP)
        (:TYPE-PRESCRIPTION LEN))
 DFP-NTH-ARP
ACL2 !>>(DEFUN SCALAR-MULTIPLY-AR (I MULT ST3)
          (DECLARE (XARGS :STOBJS ST3
                          :GUARD (AND (NATP I) (<= I 8)))
                   (TYPE DOUBLE-FLOAT MULT))
          (COND ((ZP I) ST3)
                (T (LET* ((I (1- I))
                          (OLD (ARI I ST3))
                          (ST3 (UPDATE-ARI I (DF* MULT OLD) ST3)))
                     (DECLARE (TYPE DOUBLE-FLOAT OLD))
                     (SCALAR-MULTIPLY-AR I MULT ST3)))))
The admission of SCALAR-MULTIPLY-AR is trivial, using the relation
O< (which is known to be well-founded on the domain recognized by O-P)
and the measure (ACL2-COUNT I).  We observe that the type of 
SCALAR-MULTIPLY-AR is described by the theorem 
(OR (CONSP (SCALAR-MULTIPLY-AR I MULT ST3))
    (EQUAL (SCALAR-MULTIPLY-AR I MULT ST3)
           ST3)).
We used the :type-prescription rule UPDATE-ARI.
(SCALAR-MULTIPLY-AR * :DF ST3) => ST3.
Computing the guard conjecture for SCALAR-MULTIPLY-AR....
The non-trivial part of the guard conjecture for SCALAR-MULTIPLY-AR,
given the :compound-recognizer rules NATP-COMPOUND-RECOGNIZER and 
ZP-COMPOUND-RECOGNIZER and primitive type reasoning, is
Goal
(IMPLIES (AND (DFP MULT)
              (<= I 8)
              (NATP I)
              (ST3P ST3)
              (NOT (ZP I)))
         (LET ((I (+ -1 I)))
           (AND (INTEGERP I)
                (< I (AR-LENGTH ST3))
                (<= 0 I)
                (LET ((OLD (ARI I ST3)))
                  (AND (DFP OLD)
                       (INTEGERP I)
                       (< I (AR-LENGTH ST3))
                       (<= 0 I)
                       (NATP I)
                       (<= I 8)))))).
Goal'
Goal''
Q.E.D.
That completes the proof of the guard theorem for SCALAR-MULTIPLY-AR.
SCALAR-MULTIPLY-AR is compliant with Common Lisp.
Summary
Form:  ( DEFUN SCALAR-MULTIPLY-AR ...)
Rules: ((:COMPOUND-RECOGNIZER NATP-COMPOUND-RECOGNIZER)
        (:COMPOUND-RECOGNIZER ZP-COMPOUND-RECOGNIZER)
        (:DEFINITION AR-LENGTH)
        (:DEFINITION ARI)
        (:DEFINITION LENGTH)
        (:DEFINITION NATP)
        (:DEFINITION NOT)
        (:DEFINITION NTH)
        (:DEFINITION ST3P)
        (:EXECUTABLE-COUNTERPART EQUAL)
        (:EXECUTABLE-COUNTERPART LEN)
        (:EXECUTABLE-COUNTERPART NTH)
        (:EXECUTABLE-COUNTERPART TAU-SYSTEM)
        (:EXECUTABLE-COUNTERPART ZP)
        (:FAKE-RUNE-FOR-LINEAR NIL)
        (:FAKE-RUNE-FOR-TYPE-SET NIL)
        (:REWRITE DFP-NTH-ARP)
        (:TYPE-PRESCRIPTION ARP)
        (:TYPE-PRESCRIPTION UPDATE-ARI))
 SCALAR-MULTIPLY-AR
ACL2 !>>(DEFUN SCALAR-MULTIPLY-AR-EXAMPLE (ST3)
          (DECLARE (XARGS :STOBJS ST3))
          (SCALAR-MULTIPLY-AR 4 (TO-DF 4) ST3))
Since SCALAR-MULTIPLY-AR-EXAMPLE is non-recursive, its admission is
trivial.  We observe that the type of SCALAR-MULTIPLY-AR-EXAMPLE is
described by the theorem 
(OR (CONSP (SCALAR-MULTIPLY-AR-EXAMPLE ST3))
    (EQUAL (SCALAR-MULTIPLY-AR-EXAMPLE ST3)
           ST3)).
We used the :type-prescription rule SCALAR-MULTIPLY-AR.
(SCALAR-MULTIPLY-AR-EXAMPLE ST3) => ST3.
Computing the guard conjecture for SCALAR-MULTIPLY-AR-EXAMPLE....
The guard conjecture for SCALAR-MULTIPLY-AR-EXAMPLE is trivial to prove,
given the :executable-counterpart of NATP.  SCALAR-MULTIPLY-AR-EXAMPLE
is compliant with Common Lisp.
Summary
Form:  ( DEFUN SCALAR-MULTIPLY-AR-EXAMPLE ...)
Rules: ((:EXECUTABLE-COUNTERPART NATP)
        (:TYPE-PRESCRIPTION SCALAR-MULTIPLY-AR))
 SCALAR-MULTIPLY-AR-EXAMPLE
ACL2 !>>(LOAD-AR 0 8 (LIST 3 0 *DF-PI* 3/4 -2/3 5 -6 7)
                 ST3)
<st3>
ACL2 !>>(SCALAR-MULTIPLY-AR-EXAMPLE ST3)
<st3>
ACL2 !>>(ASSERT-EVENT (AND (= (FROM-DF (ARI 2 ST3)) (* 4 *DF-PI*))
                           (= (FROM-DF (ARI 6 ST3)) -6)
                           (DF= (ARI 6 ST3) -6)
                           (DF< (ARI 0 ST3) 20)))
 :PASSED
ACL2 !>>(LOAD-AR 0 8 (LIST 3 0 *DF-PI* 3/4 -2/3 5 -6 7)
                 ST3)
<st3>
ACL2 !>>(SCALAR-MULTIPLY-AR 8 (TO-DF 4) ST3)
<st3>
ACL2 !>>(ASSERT-EVENT (AND (= (FROM-DF (ARI 2 ST3)) (* 4 *DF-PI*))
                           (= (FROM-DF (ARI 6 ST3)) -24)
                           (DF= (ARI 6 ST3) (TO-DF -24))
                           (DF< (ARI 0 ST3) (TO-DF 20))))
 :PASSED
ACL2 !>>(DEFSTOBJ ST-B-X
          (B :TYPE (ARRAY DOUBLE-FLOAT (10))
             :INITIALLY 0)
          (X :TYPE (ARRAY DOUBLE-FLOAT (10))
             :INITIALLY 0))
Summary
Form:  ( DEFSTOBJ ST-B-X ...)
Rules: NIL
 ST-B-X
ACL2 !>>(DEFUN ST-B-X-FN (I ST-B-X)
          (DECLARE (XARGS :STOBJS (ST-B-X) :MODE :PROGRAM)
                   (TYPE (UNSIGNED-BYTE 30) I))
          (LET* ((B (DF1))
                 (ST-B-X (UPDATE-XI I (DF- B (DF1)) ST-B-X)))
            ST-B-X))
Summary
Form:  ( DEFUN ST-B-X-FN ...)
Rules: NIL
 ST-B-X-FN
ACL2 !>>(ST-B-X-FN 2 ST-B-X)
ACL2 Warning [Invariant-risk] in ST-B-X-FN:  Invariant-risk has been
detected for a call of function ST-B-X-FN (as possibly leading to an
ill-guarded call of UPDATE-XI); see :DOC invariant-risk.
<st-b-x>
ACL2 !>>(INCLUDE-BOOK "projects/apply/top"
                      :DIR :SYSTEM)
Summary
Form:  ( INCLUDE-BOOK "projects/apply/top" ...)
Rules: NIL
 (:SYSTEM . "projects/apply/top.lisp")
ACL2 !>>(DEFWARRANT UPDATE-ARI)
UPDATE-ARI is now warranted by APPLY$-WARRANT-UPDATE-ARI, with badge
(APPLY$-BADGE 3 1 . T).
 :WARRANTED
ACL2 !>>(DEFTHM ARP-UPDATE-NTH
          (IMPLIES (AND (ARP AR)
                        (NATP I)
                        (< I (LEN AR))
                        (DFP VAL))
                   (ARP (UPDATE-NTH I VAL AR))))
Goal'
([ A key checkpoint:
Goal'
(IMPLIES (AND (ARP AR)
              (INTEGERP I)
              (<= 0 I)
              (< I (LEN AR))
              (DFP VAL))
         (ARP (UPDATE-NTH I VAL AR)))
*1 (Goal') is pushed for proof by induction.
])
Perhaps we can prove *1 by induction.  Three induction schemes are
suggested by this conjecture.  These merge into one derived induction
scheme.  
We will induct according to a scheme suggested by (UPDATE-NTH I VAL AR).
This suggestion was produced using the :induction rules ARP, LEN and
UPDATE-NTH.  If we let (:P AR I VAL) denote *1 above then the induction
scheme we'll use is
(AND (IMPLIES (AND (NOT (ZP I))
                   (:P (CDR AR) (+ -1 I) VAL))
              (:P AR I VAL))
     (IMPLIES (ZP I) (:P AR I VAL))).
This induction is justified by the same argument used to admit UPDATE-NTH.
Note, however, that the unmeasured variable AR is being instantiated.
When applied to the goal at hand the above induction scheme produces
six nontautological subgoals.
Subgoal *1/6
Subgoal *1/5
Subgoal *1/4
Subgoal *1/3
Subgoal *1/2
Subgoal *1/1
Subgoal *1/1'
*1 is COMPLETED!
Thus key checkpoint Goal' is COMPLETED!
Q.E.D.
The storage of ARP-UPDATE-NTH depends upon the :type-prescription rule
ARP.
Summary
Form:  ( DEFTHM ARP-UPDATE-NTH ...)
Rules: ((:COMPOUND-RECOGNIZER DFP-IMPLIES-RATIONALP)
        (:COMPOUND-RECOGNIZER ZP-COMPOUND-RECOGNIZER)
        (:DEFINITION ARP)
        (:DEFINITION LEN)
        (:DEFINITION NATP)
        (:DEFINITION UPDATE-NTH)
        (:EXECUTABLE-COUNTERPART <)
        (:EXECUTABLE-COUNTERPART ARP)
        (:EXECUTABLE-COUNTERPART CDR)
        (:EXECUTABLE-COUNTERPART CONSP)
        (:EXECUTABLE-COUNTERPART INTEGERP)
        (:EXECUTABLE-COUNTERPART LEN)
        (:EXECUTABLE-COUNTERPART NOT)
        (:EXECUTABLE-COUNTERPART ZP)
        (:FAKE-RUNE-FOR-LINEAR-EQUALITIES NIL)
        (:FAKE-RUNE-FOR-TYPE-SET NIL)
        (:INDUCTION ARP)
        (:INDUCTION LEN)
        (:INDUCTION UPDATE-NTH)
        (:REWRITE CAR-CONS)
        (:REWRITE CDR-CONS)
        (:TYPE-PRESCRIPTION ARP)
        (:TYPE-PRESCRIPTION LEN))
 ARP-UPDATE-NTH
ACL2 !>>(DEFUN LOAD-AR-LOOP (LST ST3)
          (DECLARE (XARGS :STOBJS ST3
                          :GUARD (AND (RATIONAL-LISTP LST)
                                      (<= (LENGTH LST) (AR-LENGTH ST3)))))
          (LOOP$ WITH
                 I = 0 WITH TMP = LST DO :VALUES (ST3)
                 :MEASURE (LEN TMP)
                 :GUARD
                 (AND (RATIONAL-LISTP TMP)
                      (ST3P ST3)
                      (NATP I)
                      (<= (+ I (LEN TMP)) (AR-LENGTH ST3)))
                 (IF (ATOM TMP)
                     (RETURN ST3)
                   (PROGN (SETQ ST3
                                (UPDATE-ARI I (TO-DF (CAR TMP)) ST3))
                          (SETQ TMP (CDR TMP))
                          (SETQ I (1+ I))))))
Since LOAD-AR-LOOP is non-recursive, its admission is trivial.  We
could deduce no constraints on the type of LOAD-AR-LOOP.
(LOAD-AR-LOOP * ST3) => ST3.
Computing the guard conjecture for LOAD-AR-LOOP....
The non-trivial part of the guard conjecture for LOAD-AR-LOOP, given
the :compound-recognizer rule NATP-COMPOUND-RECOGNIZER, the :executable-
counterparts of APPLY$-GUARD, CONS and WEAK-DOLIA-P, primitive type
reasoning, the :forward-chaining rules 
ACL2-NUMBER-LISTP-FORWARD-TO-TRUE-LISTP and 
RATIONAL-LISTP-FORWARD-TO-ACL2-NUMBER-LISTP and the :type-prescription
rules ACL2-NUMBER-LISTP, AR-LENGTH, ASSOC-EQ-SAFE, DO-BODY-GUARD-WRAPPER,
LEN, LENGTH and RATIONAL-LISTP, is
Goal
(AND
 (IMPLIES
  (APPLY$-WARRANT-UPDATE-ARI)
  (LET
   ((TRIPLE
     (TRUE-LIST-FIX
      (APPLY$
       (LAMBDA$ (ALIST)
        (DECLARE
         (XARGS
          :GUARD
          (DO-BODY-GUARD-WRAPPER
            (AND (ALISTP ALIST)
                 (RATIONAL-LISTP (CDR (ASSOC-EQ-SAFE 'TMP ALIST)))
                 (ST3P (CDR (ASSOC-EQ-SAFE 'ST3 ALIST)))
                 (NATP (CDR (ASSOC-EQ-SAFE 'I ALIST)))
                 (NOT (< (AR-LENGTH (CDR (ASSOC-EQ-SAFE 'ST3 ALIST)))
                         (BINARY-+ (CDR (ASSOC-EQ-SAFE 'I ALIST))
                                   (LEN (CDR (ASSOC-EQ-SAFE 'TMP ALIST)))))))
            '(ST3))))
        (LET ((I (CDR (ASSOC-EQ-SAFE 'I ALIST)))
              (TMP (CDR (ASSOC-EQ-SAFE 'TMP ALIST)))
              (ST3 (CDR (ASSOC-EQ-SAFE 'ST3 ALIST))))
         (DECLARE (IGNORABLE I TMP ST3))
         (IF (ATOM TMP)
             (CONS ':RETURN
                   (CONS ST3
                         (CONS (CONS (CONS 'I I)
                                     (CONS (CONS 'TMP TMP)
                                           (CONS (CONS 'ST3 ST3) 'NIL)))
                               'NIL)))
          ((LAMBDA (ST3 I TMP)
            ((LAMBDA (TMP ST3 I)
              (CONS 'NIL
                    (CONS 'NIL
                          (CONS ((LAMBDA (I ST3 TMP)
                                   (CONS (CONS 'I I)
                                         (CONS (CONS 'TMP TMP)
                                               (CONS (CONS 'ST3 ST3) 'NIL))))
                                 (BINARY-+ '1 I)
                                 ST3 TMP)
                                'NIL))))
             (CDR TMP)
             ST3 I))
           (UPDATE-ARI I (TO-DF (CAR TMP)) ST3)
           I TMP))))
       (LIST ALIST)))))
   (LET ((EXIT-FLG (CAR TRIPLE))
         (NEW-ALIST (CADDR TRIPLE)))
    (IMPLIES
     (DO-BODY-GUARD-WRAPPER
          (AND (ALISTP ALIST)
               (RATIONAL-LISTP (CDR (ASSOC-EQ-SAFE 'TMP ALIST)))
               (ST3P (CDR (ASSOC-EQ-SAFE 'ST3 ALIST)))
               (NATP (CDR (ASSOC-EQ-SAFE 'I ALIST)))
               (<= (+ (CDR (ASSOC-EQ-SAFE 'I ALIST))
                      (LEN (CDR (ASSOC-EQ-SAFE 'TMP ALIST))))
                   (AR-LENGTH (CDR (ASSOC-EQ-SAFE 'ST3 ALIST)))))
          '(ST3))
     (CASE EXIT-FLG
      ((NIL)
       (AND
        (DO-BODY-GUARD-WRAPPER
             (AND (ALISTP NEW-ALIST)
                  (RATIONAL-LISTP (CDR (ASSOC-EQ-SAFE 'TMP NEW-ALIST)))
                  (ST3P (CDR (ASSOC-EQ-SAFE 'ST3 NEW-ALIST)))
                  (NATP (CDR (ASSOC-EQ-SAFE 'I NEW-ALIST)))
                  (<= (+ (CDR (ASSOC-EQ-SAFE 'I NEW-ALIST))
                         (LEN (CDR (ASSOC-EQ-SAFE 'TMP NEW-ALIST))))
                      (AR-LENGTH (CDR (ASSOC-EQ-SAFE 'ST3 NEW-ALIST)))))
             '(ST3))
        (L<
         (LEX-FIX
          (APPLY$
           (LAMBDA$ (ALIST)
            (DECLARE
             (XARGS
              :GUARD
              (DO-BODY-GUARD-WRAPPER
               (AND
                 (ALISTP ALIST)
                 (RATIONAL-LISTP (CDR (ASSOC-EQ-SAFE 'TMP ALIST)))
                 (ST3P (CDR (ASSOC-EQ-SAFE 'ST3 ALIST)))
                 (NATP (CDR (ASSOC-EQ-SAFE 'I ALIST)))
                 (NOT (< (AR-LENGTH (CDR (ASSOC-EQ-SAFE 'ST3 ALIST)))
                         (BINARY-+ (CDR (ASSOC-EQ-SAFE 'I ALIST))
                                   (LEN (CDR (ASSOC-EQ-SAFE 'TMP ALIST)))))))
               '(ST3))))
            (LET ((I (CDR (ASSOC-EQ-SAFE 'I ALIST)))
                  (TMP (CDR (ASSOC-EQ-SAFE 'TMP ALIST)))
                  (ST3 (CDR (ASSOC-EQ-SAFE 'ST3 ALIST))))
              (DECLARE (IGNORABLE I TMP ST3))
              (LEN TMP)))
           (LIST NEW-ALIST)))
         (LEX-FIX
          (APPLY$
           (LAMBDA$ (ALIST)
            (DECLARE
             (XARGS
              :GUARD
              (DO-BODY-GUARD-WRAPPER
               (AND
                 (ALISTP ALIST)
                 (RATIONAL-LISTP (CDR (ASSOC-EQ-SAFE 'TMP ALIST)))
                 (ST3P (CDR (ASSOC-EQ-SAFE 'ST3 ALIST)))
                 (NATP (CDR (ASSOC-EQ-SAFE 'I ALIST)))
                 (NOT (< (AR-LENGTH (CDR (ASSOC-EQ-SAFE 'ST3 ALIST)))
                         (BINARY-+ (CDR (ASSOC-EQ-SAFE 'I ALIST))
                                   (LEN (CDR (ASSOC-EQ-SAFE 'TMP ALIST)))))))
               '(ST3))))
            (LET ((I (CDR (ASSOC-EQ-SAFE 'I ALIST)))
                  (TMP (CDR (ASSOC-EQ-SAFE 'TMP ALIST)))
                  (ST3 (CDR (ASSOC-EQ-SAFE 'ST3 ALIST))))
              (DECLARE (IGNORABLE I TMP ST3))
              (LEN TMP)))
           (LIST ALIST))))))
      (:LOOP-FINISH (DO-BODY-GUARD-WRAPPER (ALISTP NEW-ALIST)
                                           '(ST3)))
      (OTHERWISE T))))))
 (IMPLIES
     (AND (APPLY$-WARRANT-UPDATE-ARI)
          (ST3P ST3)
          (RATIONAL-LISTP LST)
          (<= (LENGTH LST) (AR-LENGTH ST3)))
     (DO-BODY-GUARD-WRAPPER
          (AND (ALISTP (LIST '(I . 0)
                             (CONS 'TMP LST)
                             (CONS 'ST3 ST3)))
               (RATIONAL-LISTP (CDR (ASSOC-EQ-SAFE 'TMP
                                                   (LIST '(I . 0)
                                                         (CONS 'TMP LST)
                                                         (CONS 'ST3 ST3)))))
               (ST3P (CDR (ASSOC-EQ-SAFE 'ST3
                                         (LIST '(I . 0)
                                               (CONS 'TMP LST)
                                               (CONS 'ST3 ST3)))))
               (NATP (CDR (ASSOC-EQ-SAFE 'I
                                         (LIST '(I . 0)
                                               (CONS 'TMP LST)
                                               (CONS 'ST3 ST3)))))
               (<= (+ (CDR (ASSOC-EQ-SAFE 'I
                                          (LIST '(I . 0)
                                                (CONS 'TMP LST)
                                                (CONS 'ST3 ST3))))
                      (LEN (CDR (ASSOC-EQ-SAFE 'TMP
                                               (LIST '(I . 0)
                                                     (CONS 'TMP LST)
                                                     (CONS 'ST3 ST3))))))
                   (AR-LENGTH (CDR (ASSOC-EQ-SAFE 'ST3
                                                  (LIST '(I . 0)
                                                        (CONS 'TMP LST)
                                                        (CONS 'ST3 ST3)))))))
          '(ST3)))
 (IMPLIES (AND (<= (+ (CDR (ASSOC-EQ-SAFE 'I ALIST))
                      (LEN (CDR (ASSOC-EQ-SAFE 'TMP ALIST))))
                   (AR-LENGTH (CDR (ASSOC-EQ-SAFE 'ST3 ALIST))))
               (NATP (CDR (ASSOC-EQ-SAFE 'I ALIST)))
               (ST3P (CDR (ASSOC-EQ-SAFE 'ST3 ALIST)))
               (RATIONAL-LISTP (CDR (ASSOC-EQ-SAFE 'TMP ALIST)))
               (ALISTP ALIST))
          (LET ((I (CDR (ASSOC-EQ-SAFE 'I ALIST)))
                (TMP (CDR (ASSOC-EQ-SAFE 'TMP ALIST)))
                (ST3 (CDR (ASSOC-EQ-SAFE 'ST3 ALIST))))
            (AND (OR (ATOM TMP)
                     (CONSP TMP)
                     (EQUAL TMP NIL))
                 (OR (ATOM TMP) (RATIONALP (CAR TMP)))
                 (OR (ATOM TMP) (ST3P ST3))
                 (OR (ATOM TMP) (DFP (TO-DF (CAR TMP))))
                 (OR (ATOM TMP) (<= 0 I))
                 (OR (ATOM TMP) (INTEGERP I))
                 (OR (ATOM TMP) (< I (AR-LENGTH ST3)))
                 (OR (ATOM TMP)
                     (AND (OR (CONSP TMP) (EQUAL TMP NIL))
                          (ACL2-NUMBERP I))))))).
Subgoal 3
Splitter note (see :DOC splitter) for Subgoal 3 (3 subgoals).
  if-intro: ((:DEFINITION ATOM) (:DEFINITION NTH))
Subgoal 3.3
Subgoal 3.2
Splitter note (see :DOC splitter) for Subgoal 3.2 (4 subgoals).
  if-intro: ((:DEFINITION MAX)
             (:DEFINITION NATP)
             (:DEFINITION NOT)
             (:DEFINITION RATIONAL-LISTP)
             (:DEFINITION ST3P)
             (:REWRITE EQUAL-LEN-1))
Subgoal 3.2.4
Subgoal 3.2.3
Subgoal 3.2.2
Subgoal 3.2.1
Subgoal 3.1
Subgoal 2
Subgoal 1
Splitter note (see :DOC splitter) for Subgoal 1 (2 subgoals).
  if-intro: ((:DEFINITION ATOM)
             (:DEFINITION NOT)
             (:REWRITE EQUAL-LEN-1))
Subgoal 1.2
Subgoal 1.1
Subgoal 1.1'
Subgoal 1.1''
Q.E.D.
That completes the proof of the guard theorem for LOAD-AR-LOOP.  LOAD-AR-LOOP
is compliant with Common Lisp.
Summary
Form:  ( DEFUN LOAD-AR-LOOP ...)
Rules: ((:COMPOUND-RECOGNIZER NATP-COMPOUND-RECOGNIZER)
        (:DEFINITION ALISTP)
        (:DEFINITION AR-LENGTH)
        (:DEFINITION ATOM)
        (:DEFINITION DO-BODY-GUARD-WRAPPER)
        (:DEFINITION FIX)
        (:DEFINITION L<)
        (:DEFINITION LEN)
        (:DEFINITION LENGTH)
        (:DEFINITION LEX-FIX)
        (:DEFINITION MAX)
        (:DEFINITION NATP)
        (:DEFINITION NFIX)
        (:DEFINITION NOT)
        (:DEFINITION NTH)
        (:DEFINITION PAIRLIS$)
        (:DEFINITION RATIONAL-LISTP)
        (:DEFINITION RETURN-LAST)
        (:DEFINITION ST3P)
        (:DEFINITION SYNP)
        (:DEFINITION TRUE-LISTP)
        (:DEFINITION UPDATE-ARI)
        (:DEFINITION UPDATE-NTH)
        (:DEFINITION UPDATE-NTH-ARRAY)
        (:EXECUTABLE-COUNTERPART <)
        (:EXECUTABLE-COUNTERPART ALISTP)
        (:EXECUTABLE-COUNTERPART APPLY$-GUARD)
        (:EXECUTABLE-COUNTERPART BINARY-+)
        (:EXECUTABLE-COUNTERPART CAR)
        (:EXECUTABLE-COUNTERPART CDR)
        (:EXECUTABLE-COUNTERPART CONS)
        (:EXECUTABLE-COUNTERPART CONSP)
        (:EXECUTABLE-COUNTERPART EQUAL)
        (:EXECUTABLE-COUNTERPART INTEGERP)
        (:EXECUTABLE-COUNTERPART LEN)
        (:EXECUTABLE-COUNTERPART LENGTH)
        (:EXECUTABLE-COUNTERPART NATP)
        (:EXECUTABLE-COUNTERPART NOT)
        (:EXECUTABLE-COUNTERPART PAIRLIS$)
        (:EXECUTABLE-COUNTERPART WEAK-DOLIA-P)
        (:EXECUTABLE-COUNTERPART ZP)
        (:FAKE-RUNE-FOR-LINEAR NIL)
        (:FAKE-RUNE-FOR-LINEAR-EQUALITIES NIL)
        (:FAKE-RUNE-FOR-TYPE-SET NIL)
        (:FORWARD-CHAINING ACL2-NUMBER-LISTP-FORWARD-TO-TRUE-LISTP)
        (:FORWARD-CHAINING RATIONAL-LISTP-FORWARD-TO-ACL2-NUMBER-LISTP)
        (:REWRITE APPLY$-UPDATE-ARI)
        (:REWRITE ARP-UPDATE-NTH)
        (:REWRITE ASSOC-EQ-SAFE-CONS-CONS)
        (:REWRITE ASSOCIATIVITY-OF-+)
        (:REWRITE BETA-REDUCTION)
        (:REWRITE CAR-CONS)
        (:REWRITE CDR-CONS)
        (:REWRITE COMMUTATIVITY-2-OF-+)
        (:REWRITE COMMUTATIVITY-OF-+)
        (:REWRITE DEFAULT-CDR)
        (:REWRITE DFP-TO-DF)
        (:REWRITE EQUAL-LEN-0)
        (:REWRITE EQUAL-LEN-1)
        (:REWRITE EV$-OPENER)
        (:REWRITE LEN-UPDATE-NTH)
        (:REWRITE NTH-0-CONS)
        (:REWRITE TRUE-LISTP-TRUE-LIST-FIX-ID)
        (:REWRITE UNICITY-OF-0)
        (:TYPE-PRESCRIPTION ACL2-NUMBER-LISTP)
        (:TYPE-PRESCRIPTION AR-LENGTH)
        (:TYPE-PRESCRIPTION ARP)
        (:TYPE-PRESCRIPTION ASSOC-EQ-SAFE)
        (:TYPE-PRESCRIPTION DO-BODY-GUARD-WRAPPER)
        (:TYPE-PRESCRIPTION LEN)
        (:TYPE-PRESCRIPTION LENGTH)
        (:TYPE-PRESCRIPTION RATIONAL-LISTP))
Splitter rules (see :DOC splitter):
  if-intro: ((:DEFINITION ATOM)
             (:DEFINITION MAX)
             (:DEFINITION NATP)
             (:DEFINITION NOT)
             (:DEFINITION NTH)
             (:DEFINITION RATIONAL-LISTP)
             (:DEFINITION ST3P)
             (:REWRITE EQUAL-LEN-1))
 LOAD-AR-LOOP
ACL2 !>>(LOAD-AR-LOOP (LIST 10 11 12 13 14 15 16 17)
                      ST3)
<st3>
ACL2 !>>(ASSERT-EVENT (AND (= (FROM-DF (ARI 2 ST3)) 12)
                           (= (FROM-DF (ARI 6 ST3)) 16)
                           (DF= (ARI 6 ST3) 16)
                           (DF< (ARI 0 ST3) 11)))
 :PASSED
ACL2 !>>(DEFUN F11 (LST)
          (DECLARE (XARGS :GUARD (RATIONAL-LISTP LST)))
          (LOOP$ WITH TEMP = LST WITH
                 ANS OF-TYPE DOUBLE-FLOAT = (TO-DF 0)
                 DO :VALUES (:DF)
                 :GUARD (RATIONAL-LISTP TEMP)
                 (COND ((ENDP TEMP) (RETURN ANS))
                       (T (PROGN (SETQ ANS (DF+ (TO-DF (CAR TEMP)) ANS))
                                 (SETQ TEMP (CDR TEMP)))))))
Since F11 is non-recursive, its admission is trivial.  We could deduce
no constraints on the type of F11.
(F11 *) => :DF.
Computing the guard conjecture for F11....
The non-trivial part of the guard conjecture for F11, given the :executable-
counterparts of APPLY$-GUARD, CONS, TO-DF and WEAK-DOLIA-P, primitive
type reasoning and the :type-prescription rules ASSOC-EQ-SAFE and 
DO-BODY-GUARD-WRAPPER, is
Goal
(AND
 (LET
  ((TRIPLE
    (TRUE-LIST-FIX
     (APPLY$
      (LAMBDA$ (ALIST)
       (DECLARE
        (XARGS
         :GUARD (DO-BODY-GUARD-WRAPPER
                     (AND (ALISTP ALIST)
                          (DFP (CDR (ASSOC-EQ-SAFE 'ANS ALIST)))
                          (RATIONAL-LISTP (CDR (ASSOC-EQ-SAFE 'TEMP ALIST))))
                     'NIL)))
       (LET ((TEMP (CDR (ASSOC-EQ-SAFE 'TEMP ALIST)))
             (ANS (CDR (ASSOC-EQ-SAFE 'ANS ALIST))))
         (DECLARE (IGNORABLE TEMP ANS))
         (IF (ENDP TEMP)
             (CONS ':RETURN
                   (CONS ANS
                         (CONS (CONS (CONS 'TEMP TEMP)
                                     (CONS (CONS 'ANS ANS) 'NIL))
                               'NIL)))
           ((LAMBDA (ANS TEMP)
              (RETURN-LAST
                   'PROGN
                   (CHECK-DCL-GUARDIAN
                        (DFP ANS)
                        '(SETQ ANS
                               (THE DOUBLE-FLOAT
                                    (BINARY-DF+ (TO-DF (CAR TEMP)) ANS))))
                   (CONS 'NIL
                         (CONS 'NIL
                               (CONS ((LAMBDA (TEMP ANS)
                                        (CONS (CONS 'TEMP TEMP)
                                              (CONS (CONS 'ANS ANS) 'NIL)))
                                      (CDR TEMP)
                                      ANS)
                                     'NIL)))))
            (BINARY-DF+ (TO-DF (CAR TEMP)) ANS)
            TEMP))))
      (LIST ALIST)))))
  (LET ((EXIT-FLG (CAR TRIPLE))
        (NEW-ALIST (CADDR TRIPLE)))
   (IMPLIES
    (DO-BODY-GUARD-WRAPPER
         (AND (ALISTP ALIST)
              (DFP (CDR (ASSOC-EQ-SAFE 'ANS ALIST)))
              (RATIONAL-LISTP (CDR (ASSOC-EQ-SAFE 'TEMP ALIST))))
         NIL)
    (CASE EXIT-FLG
     ((NIL)
      (AND
       (DO-BODY-GUARD-WRAPPER
            (AND (ALISTP NEW-ALIST)
                 (DFP (CDR (ASSOC-EQ-SAFE 'ANS NEW-ALIST)))
                 (RATIONAL-LISTP (CDR (ASSOC-EQ-SAFE 'TEMP NEW-ALIST))))
            NIL)
       (L<
        (LEX-FIX
         (APPLY$
          (LAMBDA$ (ALIST)
           (DECLARE
            (XARGS
                :GUARD
                (DO-BODY-GUARD-WRAPPER
                     (AND (ALISTP ALIST)
                          (DFP (CDR (ASSOC-EQ-SAFE 'ANS ALIST)))
                          (RATIONAL-LISTP (CDR (ASSOC-EQ-SAFE 'TEMP ALIST))))
                     'NIL)))
           (LET ((TEMP (CDR (ASSOC-EQ-SAFE 'TEMP ALIST)))
                 (ANS (CDR (ASSOC-EQ-SAFE 'ANS ALIST))))
             (DECLARE (IGNORABLE TEMP ANS))
             (ACL2-COUNT TEMP)))
          (LIST NEW-ALIST)))
        (LEX-FIX
         (APPLY$
          (LAMBDA$ (ALIST)
           (DECLARE
            (XARGS
                :GUARD
                (DO-BODY-GUARD-WRAPPER
                     (AND (ALISTP ALIST)
                          (DFP (CDR (ASSOC-EQ-SAFE 'ANS ALIST)))
                          (RATIONAL-LISTP (CDR (ASSOC-EQ-SAFE 'TEMP ALIST))))
                     'NIL)))
           (LET ((TEMP (CDR (ASSOC-EQ-SAFE 'TEMP ALIST)))
                 (ANS (CDR (ASSOC-EQ-SAFE 'ANS ALIST))))
             (DECLARE (IGNORABLE TEMP ANS))
             (ACL2-COUNT TEMP)))
          (LIST ALIST))))))
     (:LOOP-FINISH
      (DO-BODY-GUARD-WRAPPER (AND (ALISTP NEW-ALIST)
                                  (DFP (CDR (ASSOC-EQ-SAFE 'ANS NEW-ALIST))))
                             NIL))
     (OTHERWISE T)))))
 (IMPLIES
  (RATIONAL-LISTP LST)
  (DO-BODY-GUARD-WRAPPER
       (AND (ALISTP (CONS (CONS 'TEMP LST) '((ANS . 0))))
            (DFP (CDR (ASSOC-EQ-SAFE 'ANS
                                     (CONS (CONS 'TEMP LST) '((ANS . 0))))))
            (RATIONAL-LISTP
                 (CDR (ASSOC-EQ-SAFE 'TEMP
                                     (CONS (CONS 'TEMP LST) '((ANS . 0)))))))
       NIL))
 (IMPLIES
  (AND
    (DO-BODY-GUARD-WRAPPER (RATIONAL-LISTP (CDR (ASSOC-EQ-SAFE 'TEMP ALIST)))
                           NIL)
    (DFP (CDR (ASSOC-EQ-SAFE 'ANS ALIST)))
    (ALISTP ALIST))
  (LET ((TEMP (CDR (ASSOC-EQ-SAFE 'TEMP ALIST)))
        (ANS (CDR (ASSOC-EQ-SAFE 'ANS ALIST))))
    (AND (OR (CONSP TEMP) (EQ TEMP NIL))
         (OR (ENDP TEMP)
             (CONSP TEMP)
             (EQUAL TEMP NIL))
         (OR (ENDP TEMP) (RATIONALP (CAR TEMP)))
         (OR (ENDP TEMP)
             (DFP (TO-DF (CAR TEMP))))
         (OR (ENDP TEMP) (DFP ANS))
         (OR (ENDP TEMP)
             (LET ((ANS (DF+ (TO-DF (CAR TEMP)) ANS)))
               (AND (DFP ANS)
                    (OR (CONSP TEMP)
                        (EQUAL TEMP NIL))))))))).
Subgoal 3
Splitter note (see :DOC splitter) for Subgoal 3 (2 subgoals).
  if-intro: ((:DEFINITION ENDP))
Subgoal 3.2
Splitter note (see :DOC splitter) for Subgoal 3.2 (4 subgoals).
  if-intro: ((:DEFINITION ACL2-COUNT)
             (:DEFINITION INTEGER-ABS)
             (:DEFINITION L<)
             (:DEFINITION LEX-FIX)
             (:DEFINITION NFIX)
             (:DEFINITION RATIONAL-LISTP))
Subgoal 3.2.4
Subgoal 3.2.3
Subgoal 3.2.2
Subgoal 3.2.1
Subgoal 3.1
Subgoal 2
Subgoal 1
Subgoal 1'
Q.E.D.
That completes the proof of the guard theorem for F11.  F11 is compliant
with Common Lisp.
Summary
Form:  ( DEFUN F11 ...)
Rules: ((:COMPOUND-RECOGNIZER DFP-IMPLIES-RATIONALP)
        (:DEFINITION ACL2-COUNT)
        (:DEFINITION ALISTP)
        (:DEFINITION BINARY-DF+)
        (:DEFINITION DO-BODY-GUARD-WRAPPER)
        (:DEFINITION ENDP)
        (:DEFINITION EQ)
        (:DEFINITION INTEGER-ABS)
        (:DEFINITION L<)
        (:DEFINITION LEN)
        (:DEFINITION LEX-FIX)
        (:DEFINITION NFIX)
        (:DEFINITION NOT)
        (:DEFINITION PAIRLIS$)
        (:DEFINITION RATIONAL-LISTP)
        (:DEFINITION RETURN-LAST)
        (:DEFINITION SYNP)
        (:EXECUTABLE-COUNTERPART <)
        (:EXECUTABLE-COUNTERPART ALISTP)
        (:EXECUTABLE-COUNTERPART APPLY$-GUARD)
        (:EXECUTABLE-COUNTERPART ASSOC-EQ-SAFE)
        (:EXECUTABLE-COUNTERPART CAR)
        (:EXECUTABLE-COUNTERPART CDR)
        (:EXECUTABLE-COUNTERPART CHECK-DCL-GUARDIAN)
        (:EXECUTABLE-COUNTERPART CONS)
        (:EXECUTABLE-COUNTERPART CONSP)
        (:EXECUTABLE-COUNTERPART DFP)
        (:EXECUTABLE-COUNTERPART EQUAL)
        (:EXECUTABLE-COUNTERPART PAIRLIS$)
        (:EXECUTABLE-COUNTERPART TO-DF)
        (:EXECUTABLE-COUNTERPART WEAK-DOLIA-P)
        (:FAKE-RUNE-FOR-LINEAR NIL)
        (:FAKE-RUNE-FOR-TYPE-SET NIL)
        (:FORWARD-CHAINING ACL2-NUMBER-LISTP-FORWARD-TO-TRUE-LISTP)
        (:FORWARD-CHAINING RATIONAL-LISTP-FORWARD-TO-ACL2-NUMBER-LISTP)
        (:REWRITE ASSOC-EQ-SAFE-CONS-CONS)
        (:REWRITE BETA-REDUCTION)
        (:REWRITE CAR-CONS)
        (:REWRITE CDR-CONS)
        (:REWRITE COMMUTATIVITY-OF-+)
        (:REWRITE DFP-DF-ROUND)
        (:REWRITE DFP-TO-DF)
        (:REWRITE EV$-OPENER)
        (:REWRITE TRUE-LISTP-TRUE-LIST-FIX-ID)
        (:TYPE-PRESCRIPTION ACL2-COUNT)
        (:TYPE-PRESCRIPTION ACL2-NUMBER-LISTP)
        (:TYPE-PRESCRIPTION ASSOC-EQ-SAFE)
        (:TYPE-PRESCRIPTION DO-BODY-GUARD-WRAPPER)
        (:TYPE-PRESCRIPTION RATIONAL-LISTP)
        (:TYPE-PRESCRIPTION RATIONALP-DF-ROUND))
Splitter rules (see :DOC splitter):
  if-intro: ((:DEFINITION ACL2-COUNT)
             (:DEFINITION ENDP)
             (:DEFINITION INTEGER-ABS)
             (:DEFINITION L<)
             (:DEFINITION LEX-FIX)
             (:DEFINITION NFIX)
             (:DEFINITION RATIONAL-LISTP))
 F11
ACL2 !>>(ASSERT-EVENT (DF= (F11 '(3 1/2 4)) 15/2))
 :PASSED
ACL2 !>>(DEFUN F12 (LST)
          (DECLARE (XARGS :GUARD T :VERIFY-GUARDS NIL))
          (LOOP$
               WITH TEMP = LST WITH
               ANS OF-TYPE DOUBLE-FLOAT = (TO-DF 0)
               DO :VALUES (:DF NIL)
               (COND ((ATOM TEMP) (RETURN (MV ANS TEMP)))
                     (T (PROGN (SETQ ANS (DF+ (TO-DF (RFIX (CAR TEMP))) ANS))
                               (SETQ TEMP (CDR TEMP)))))))
Since F12 is non-recursive, its admission is trivial.  We could deduce
no constraints on the type of F12.
(F12 *) => (MV :DF *).
Summary
Form:  ( DEFUN F12 ...)
Rules: NIL
 F12
ACL2 !>>(ASSERT-EVENT (MV-LET (X Y)
                              (F12 '(3 1/2 4 . A))
                        (AND (DF= X 15/2) (EQ Y 'A))))
 :PASSED
ACL2 !>>(THM (MV-LET (X Y)
                     (F12 '(3 1/2 4 . A))
               (AND (DF= X 15/2) (EQ Y 'A))))
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:EXECUTABLE-COUNTERPART DF=-FN)
        (:EXECUTABLE-COUNTERPART EQ)
        (:EXECUTABLE-COUNTERPART F12)
        (:EXECUTABLE-COUNTERPART IF)
        (:EXECUTABLE-COUNTERPART MV-NTH)
        (:EXECUTABLE-COUNTERPART TO-DF))
Proof succeeded.
ACL2 !>>(VERIFY-GUARDS F12)
Computing the guard conjecture for F12....
The non-trivial part of the guard conjecture for F12, given the :executable-
counterparts of APPLY$-GUARD, CONS, TO-DF and WEAK-DOLIA-P, primitive
type reasoning and the :type-prescription rules ASSOC-EQ-SAFE and 
DO-BODY-GUARD-WRAPPER, is
Goal
(AND
 (DO-BODY-GUARD-WRAPPER
      (AND (ALISTP (CONS (CONS 'TEMP LST) '((ANS . 0))))
           (DFP (CDR (ASSOC-EQ-SAFE 'ANS
                                    (CONS (CONS 'TEMP LST) '((ANS . 0)))))))
      NIL)
 (LET
  ((TRIPLE
    (TRUE-LIST-FIX
     (APPLY$
      (LAMBDA$ (ALIST)
       (DECLARE
        (XARGS
          :GUARD
          (DO-BODY-GUARD-WRAPPER (AND (ALISTP ALIST)
                                      (DFP (CDR (ASSOC-EQ-SAFE 'ANS ALIST))))
                                 'NIL)))
       (LET ((TEMP (CDR (ASSOC-EQ-SAFE 'TEMP ALIST)))
             (ANS (CDR (ASSOC-EQ-SAFE 'ANS ALIST))))
         (DECLARE (IGNORABLE TEMP ANS))
         (IF (ATOM TEMP)
             (CONS ':RETURN
                   (CONS (CONS ANS (CONS TEMP 'NIL))
                         (CONS (CONS (CONS 'TEMP TEMP)
                                     (CONS (CONS 'ANS ANS) 'NIL))
                               'NIL)))
           ((LAMBDA (ANS TEMP)
              (RETURN-LAST
                   'PROGN
                   (CHECK-DCL-GUARDIAN
                        (DFP ANS)
                        '(SETQ ANS
                               (THE DOUBLE-FLOAT
                                    (BINARY-DF+ (TO-DF (RFIX (CAR TEMP)))
                                                ANS))))
                   (CONS 'NIL
                         (CONS 'NIL
                               (CONS ((LAMBDA (TEMP ANS)
                                        (CONS (CONS 'TEMP TEMP)
                                              (CONS (CONS 'ANS ANS) 'NIL)))
                                      (CDR TEMP)
                                      ANS)
                                     'NIL)))))
            (BINARY-DF+ (TO-DF (RFIX (CAR TEMP)))
                        ANS)
            TEMP))))
      (LIST ALIST)))))
  (LET ((EXIT-FLG (CAR TRIPLE))
        (NEW-ALIST (CADDR TRIPLE)))
   (IMPLIES
    (DO-BODY-GUARD-WRAPPER (AND (ALISTP ALIST)
                                (DFP (CDR (ASSOC-EQ-SAFE 'ANS ALIST))))
                           NIL)
    (CASE EXIT-FLG
     ((NIL)
      (AND
       (DO-BODY-GUARD-WRAPPER
            (AND (ALISTP NEW-ALIST)
                 (DFP (CDR (ASSOC-EQ-SAFE 'ANS NEW-ALIST))))
            NIL)
       (L<
        (LEX-FIX
         (APPLY$
          (LAMBDA$ (ALIST)
           (DECLARE
              (XARGS :GUARD (DO-BODY-GUARD-WRAPPER
                                 (AND (ALISTP ALIST)
                                      (DFP (CDR (ASSOC-EQ-SAFE 'ANS ALIST))))
                                 'NIL)))
           (LET ((TEMP (CDR (ASSOC-EQ-SAFE 'TEMP ALIST)))
                 (ANS (CDR (ASSOC-EQ-SAFE 'ANS ALIST))))
             (DECLARE (IGNORABLE TEMP ANS))
             (ACL2-COUNT TEMP)))
          (LIST NEW-ALIST)))
        (LEX-FIX
         (APPLY$
          (LAMBDA$ (ALIST)
           (DECLARE
              (XARGS :GUARD (DO-BODY-GUARD-WRAPPER
                                 (AND (ALISTP ALIST)
                                      (DFP (CDR (ASSOC-EQ-SAFE 'ANS ALIST))))
                                 'NIL)))
           (LET ((TEMP (CDR (ASSOC-EQ-SAFE 'TEMP ALIST)))
                 (ANS (CDR (ASSOC-EQ-SAFE 'ANS ALIST))))
             (DECLARE (IGNORABLE TEMP ANS))
             (ACL2-COUNT TEMP)))
          (LIST ALIST))))))
     (:LOOP-FINISH
      (DO-BODY-GUARD-WRAPPER (AND (ALISTP NEW-ALIST)
                                  (DFP (CDR (ASSOC-EQ-SAFE 'ANS NEW-ALIST))))
                             NIL))
     (OTHERWISE T)))))
 (IMPLIES (AND (DO-BODY-GUARD-WRAPPER (DFP (CDR (ASSOC-EQ-SAFE 'ANS ALIST)))
                                      NIL)
               (ALISTP ALIST))
          (LET ((TEMP (CDR (ASSOC-EQ-SAFE 'TEMP ALIST)))
                (ANS (CDR (ASSOC-EQ-SAFE 'ANS ALIST))))
            (AND (OR (ATOM TEMP)
                     (CONSP TEMP)
                     (EQUAL TEMP NIL))
                 (OR (ATOM TEMP)
                     (RATIONALP (RFIX (CAR TEMP))))
                 (OR (ATOM TEMP)
                     (DFP (TO-DF (RFIX (CAR TEMP)))))
                 (OR (ATOM TEMP) (DFP ANS))
                 (OR (ATOM TEMP)
                     (LET ((ANS (DF+ (TO-DF (RFIX (CAR TEMP))) ANS)))
                       (AND (DFP ANS)
                            (OR (CONSP TEMP)
                                (EQUAL TEMP NIL))))))))).
Subgoal 4
Subgoal 3
Subgoal 2
Splitter note (see :DOC splitter) for Subgoal 2 (3 subgoals).
  if-intro: ((:DEFINITION ATOM) (:DEFINITION RFIX))
Subgoal 2.3
Subgoal 2.2
Subgoal 2.2'
Splitter note (see :DOC splitter) for Subgoal 2.2' (4 subgoals).
  if-intro: ((:DEFINITION ACL2-COUNT)
             (:DEFINITION INTEGER-ABS)
             (:DEFINITION L<)
             (:DEFINITION LEX-FIX)
             (:DEFINITION NFIX))
Subgoal 2.2.4
Subgoal 2.2.3
Subgoal 2.2.2
Subgoal 2.2.1
Subgoal 2.1
Subgoal 2.1'
Splitter note (see :DOC splitter) for Subgoal 2.1' (2 subgoals).
  if-intro: ((:DEFINITION FIX))
Subgoal 2.1.2
Subgoal 2.1.2'
Subgoal 2.1.1
Subgoal 1
Q.E.D.
That completes the proof of the guard theorem for F12.  F12 is compliant
with Common Lisp.
Summary
Form:  ( VERIFY-GUARDS F12)
Rules: ((:COMPOUND-RECOGNIZER DFP-IMPLIES-RATIONALP)
        (:DEFINITION ACL2-COUNT)
        (:DEFINITION ALISTP)
        (:DEFINITION ATOM)
        (:DEFINITION BINARY-DF+)
        (:DEFINITION CHECK-DCL-GUARDIAN)
        (:DEFINITION DO-BODY-GUARD-WRAPPER)
        (:DEFINITION FIX)
        (:DEFINITION INTEGER-ABS)
        (:DEFINITION L<)
        (:DEFINITION LEN)
        (:DEFINITION LEX-FIX)
        (:DEFINITION NFIX)
        (:DEFINITION NOT)
        (:DEFINITION PAIRLIS$)
        (:DEFINITION RETURN-LAST)
        (:DEFINITION RFIX)
        (:DEFINITION SYNP)
        (:EXECUTABLE-COUNTERPART <)
        (:EXECUTABLE-COUNTERPART ALISTP)
        (:EXECUTABLE-COUNTERPART APPLY$-GUARD)
        (:EXECUTABLE-COUNTERPART ASSOC-EQ-SAFE)
        (:EXECUTABLE-COUNTERPART CAR)
        (:EXECUTABLE-COUNTERPART CDR)
        (:EXECUTABLE-COUNTERPART CONS)
        (:EXECUTABLE-COUNTERPART CONSP)
        (:EXECUTABLE-COUNTERPART DFP)
        (:EXECUTABLE-COUNTERPART EQUAL)
        (:EXECUTABLE-COUNTERPART PAIRLIS$)
        (:EXECUTABLE-COUNTERPART TO-DF)
        (:EXECUTABLE-COUNTERPART WEAK-DOLIA-P)
        (:FAKE-RUNE-FOR-LINEAR NIL)
        (:FAKE-RUNE-FOR-TYPE-SET NIL)
        (:REWRITE ASSOC-EQ-SAFE-CONS-CONS)
        (:REWRITE BETA-REDUCTION)
        (:REWRITE CAR-CONS)
        (:REWRITE CDR-CONS)
        (:REWRITE COMMUTATIVITY-OF-+)
        (:REWRITE DF-ROUND-IS-IDENTITY-FOR-DFP)
        (:REWRITE DFP-DF-ROUND)
        (:REWRITE DFP-TO-DF)
        (:REWRITE EV$-OPENER)
        (:REWRITE TRUE-LISTP-TRUE-LIST-FIX-ID)
        (:REWRITE UNICITY-OF-0)
        (:TYPE-PRESCRIPTION ACL2-COUNT)
        (:TYPE-PRESCRIPTION ASSOC-EQ-SAFE)
        (:TYPE-PRESCRIPTION DO-BODY-GUARD-WRAPPER)
        (:TYPE-PRESCRIPTION RATIONALP-DF-ROUND))
Splitter rules (see :DOC splitter):
  if-intro: ((:DEFINITION ACL2-COUNT)
             (:DEFINITION ATOM)
             (:DEFINITION FIX)
             (:DEFINITION INTEGER-ABS)
             (:DEFINITION L<)
             (:DEFINITION LEX-FIX)
             (:DEFINITION NFIX)
             (:DEFINITION RFIX))
 F12
ACL2 !>>(ASSERT-EVENT (MV-LET (X Y)
                              (F12 '(3 1/2 4 . A))
                        (AND (DF= X 15/2) (EQ Y 'A))))
 :PASSED
ACL2 !>>(THM (MV-LET (X Y)
                     (F12 '(3 1/2 4 . A))
               (AND (DF= X 15/2) (EQ Y 'A))))
Q.E.D.
Summary
Form:  ( THM ...)
Rules: ((:EXECUTABLE-COUNTERPART DF=-FN)
        (:EXECUTABLE-COUNTERPART EQ)
        (:EXECUTABLE-COUNTERPART F12)
        (:EXECUTABLE-COUNTERPART IF)
        (:EXECUTABLE-COUNTERPART MV-NTH)
        (:EXECUTABLE-COUNTERPART TO-DF))
Proof succeeded.
ACL2 !>>(DEFSTOBJ ST4
          (FLD4 :TYPE DOUBLE-FLOAT :INITIALLY 0))
Summary
Form:  ( DEFSTOBJ ST4 ...)
Rules: NIL
 ST4
ACL2 !>>(DEFWARRANT FLD4)
FLD4 is now warranted by APPLY$-WARRANT-FLD4, with badge 
(APPLY$-BADGE 1 1 . T).
 :WARRANTED
ACL2 !>>(DEFUN MEASURE-NOT-DECREASING (ST4)
          (DECLARE (XARGS :STOBJS (ST4)
                          :VERIFY-GUARDS NIL))
          (LOOP$ WITH X = 5
                 WITH AC OF-TYPE DOUBLE-FLOAT = (TO-DF 0)
                 DO :MEASURE (ACL2-COUNT X)
                 :VALUES (:DF)
                 (IF (ZP X)
                     (RETURN AC)
                   (SETQ AC (DF+ AC (FLD4 ST4))))))
Since MEASURE-NOT-DECREASING is non-recursive, its admission is trivial.
We could deduce no constraints on the type of MEASURE-NOT-DECREASING.
(MEASURE-NOT-DECREASING ST4) => :DF.
Summary
Form:  ( DEFUN MEASURE-NOT-DECREASING ...)
Rules: NIL
 MEASURE-NOT-DECREASING
ACL2 !>>(MEASURE-NOT-DECREASING ST4)
HARD ACL2 ERROR in DO$:  The measure, (ACL2-COUNT X), used in the do
loop$ statement
(LOOP$ WITH X = 5
       WITH AC OF-TYPE DOUBLE-FLOAT = (TO-DF 0)
       DO :MEASURE (ACL2-COUNT X)
       :VALUES (:DF)
       (IF (ZP X)
           (RETURN AC)
         (SETQ AC (DF+ AC (FLD4 ST4)))))
failed to decrease!  Recall that do$ tracks the values of do loop$
variables in an alist.  The measure is computed using the values in
the alist from before and after execution of the body.  We cannot print
the values of double floats and live stobjs, if any are found in the
alist, because they are raw Lisp objects, not ACL2 objects.  We print
any double float as its corresponding rational and simply print the
name of any live stobj (as a string).
Before execution of the do body the alist was
((X . 5) (AC . 0) (ST4 . "<st4>")).
After the execution of the do body the alist was
((X . 5) (AC . 0) (ST4 . "<st4>")).
Before the execution of the body the measure was
5.
After the execution of the body the measure was
5.
Logically, in this situation the do$ returns the value of a term whose
output signature is (:DF), where the value of any component of type
:df is #d0.0 and the value of any stobj component is the last latched
value of that stobj.
ACL2 Error [Evaluation] in TOP-LEVEL:  Evaluation aborted.  To debug
see :DOC print-gv, see :DOC trace, and see :DOC wet.
ACL2 !>>(LET ((W (TO-DF 7)))
          (LOOP$ FOR V FROM
                 1 TO 3 SUM (FROM-DF (DF+ W (TO-DF V)))))
ACL2 Error [Translate] in TOP-LEVEL:  The form W represents an ordinary
object, but it is being used where a form representing a :DF was expected.
See :DOC df.  Note:  this error occurred in the context 
(BINARY-DF+ W (TO-DF V)).
ACL2 !>>(ASSERT-EVENT (EQUAL (LET ((V (TO-DF 7)))
                               (CONS (LOOP$ FOR V FROM 1 TO 3 SUM V)
                                     (FROM-DF V)))
                             '(6 . 7)))
 :PASSED
ACL2 !>>(DEFSTOBJ ST5 (ST4A :TYPE ST4))
Summary
Form:  ( DEFSTOBJ ST5 ...)
Rules: NIL
 ST5
ACL2 !>>(DEFUN SET-FLD4 (X ST5)
          (DECLARE (XARGS :STOBJS ST5))
          (DECLARE (TYPE DOUBLE-FLOAT X))
          (STOBJ-LET ((ST4 (ST4A ST5) UPDATE-ST4A))
                     (ST4)
                     (UPDATE-FLD4 X ST4)
                     ST5))
Since SET-FLD4 is non-recursive, its admission is trivial.  We observe
that the type of SET-FLD4 is described by the theorem 
(CONSP (SET-FLD4 X ST5)).  We used the :type-prescription rule UPDATE-ST4A.
(SET-FLD4 :DF ST5) => ST5.
Computing the guard conjecture for SET-FLD4....
The guard conjecture for SET-FLD4 is trivial to prove.  SET-FLD4 is
compliant with Common Lisp.
Summary
Form:  ( DEFUN SET-FLD4 ...)
Rules: ((:TYPE-PRESCRIPTION UPDATE-ST4A))
 SET-FLD4
ACL2 !>>(DEFUN GET-FLD4 (ST5)
          (DECLARE (XARGS :STOBJS ST5))
          (STOBJ-LET ((ST4 (ST4A ST5)))
                     (VAL)
                     (FLD4 ST4)
                     VAL))
Since GET-FLD4 is non-recursive, its admission is trivial.  We could
deduce no constraints on the type of GET-FLD4.
(GET-FLD4 ST5) => :DF.
Computing the guard conjecture for GET-FLD4....
The guard conjecture for GET-FLD4 is trivial to prove.  GET-FLD4 is
compliant with Common Lisp.
Summary
Form:  ( DEFUN GET-FLD4 ...)
Rules: NIL
 GET-FLD4
ACL2 !>>(ASSERT-EVENT (DF= (GET-FLD4 ST5) 0))
 :PASSED
ACL2 !>>(SET-FLD4 (TO-DF 7) ST5)
<st5>
ACL2 !>>(ASSERT-EVENT (DF= (GET-FLD4 ST5) 7))
 :PASSED
ACL2 !>>(DEFUN F0 (X)
          (DECLARE (XARGS :VERIFY-GUARDS NIL)
                   (TYPE DOUBLE-FLOAT X))
          (DF- X))
The event ( DEFUN F0 ...) is redundant.  See :DOC redundant-events.
Summary
Form:  ( DEFUN F0 ...)
Rules: NIL
 :REDUNDANT
ACL2 !>>(INCLUDE-BOOK "projects/apply/top"
                      :DIR :SYSTEM)
The event ( INCLUDE-BOOK "projects/apply/top" ...) is redundant.  See
:DOC redundant-events.
Summary
Form:  ( INCLUDE-BOOK "projects/apply/top" ...)
Rules: NIL
 :REDUNDANT
ACL2 !>>(DEFWARRANT F0)
F0 is now warranted by APPLY$-WARRANT-F0, with badge (APPLY$-BADGE 1 1 . T).
 :WARRANTED
ACL2 !>>(ASSERT-EVENT (EQUAL (APPLY$ 'F0 (LIST 1/4)) -1/4))
 :PASSED
ACL2 !>>(ASSERT-EVENT (EQUAL (APPLY$ 'F0 (LIST 1/4)) -1/4))
 :PASSED
ACL2 !>>(APPLY$ 'F0 (LIST 1/3))
ACL2 Error [Evaluation] in TOP-LEVEL:  The guard for the function call
(F0 X), which is (DFP X), is violated by the arguments in the call
(F0 1/3).
See :DOC set-guard-checking for information about suppressing this
check with (set-guard-checking :none), as recommended for new users.
To debug see :DOC print-gv, see :DOC trace, and see :DOC wet.
ACL2 !>>(WITH-GUARD-CHECKING NIL (APPLY$ 'F0 (LIST 1/3)))
ACL2 Error [Evaluation] in TOP-LEVEL:  ACL2 cannot ev the call of non-
executable function DF-ROUND on argument list:
(-1/3)
To debug see :DOC print-gv, see :DOC trace, and see :DOC wet.
ACL2 !>>(VERIFY-GUARDS F0)
Computing the guard conjecture for F0....
The guard conjecture for F0 is trivial to prove.  F0 is compliant with
Common Lisp.
Summary
Form:  ( VERIFY-GUARDS F0)
Rules: NIL
 F0
ACL2 !>>(ASSERT-EVENT (EQUAL (APPLY$ 'F0 (LIST 1/4)) -1/4))
 :PASSED
ACL2 !>>(ASSERT-EVENT (EQUAL (APPLY$ 'F0 (LIST 1/4)) -1/4))
 :PASSED
ACL2 !>>(APPLY$ 'F0 (LIST 1/3))
ACL2 Error [Evaluation] in TOP-LEVEL:  The guard for the function call
(F0 X), which is (DFP X), is violated by the arguments in the call
(F0 1/3).
See :DOC set-guard-checking for information about suppressing this
check with (set-guard-checking :none), as recommended for new users.
To debug see :DOC print-gv, see :DOC trace, and see :DOC wet.
ACL2 !>>(WITH-GUARD-CHECKING NIL (APPLY$ 'F0 (LIST 1/3)))
ACL2 Error [Evaluation] in TOP-LEVEL:  ACL2 cannot ev the call of non-
executable function DF-ROUND on argument list:
(-1/3)
To debug see :DOC print-gv, see :DOC trace, and see :DOC wet.
ACL2 !>>(ER-PROGN (SET-TRACE-CO (STANDARD-CO STATE) STATE)
                  (VALUE NIL))
 NIL
ACL2 !>>(TRACE$ F0)
 ((F0))
ACL2 !>>(F0 (TO-DF 3))
1> (ACL2_*1*_ACL2::F0 3)
  2> (F0 3.0)
  <2 (F0 -3.0)
<1 (ACL2_*1*_ACL2::F0 -3)
#d-3.0
ACL2 !>>(APPLY$ 'F0 (LIST 3))
1> (ACL2_*1*_ACL2::F0 3)
  2> (F0 3.0)
  <2 (F0 -3.0)
<1 (ACL2_*1*_ACL2::F0 -3)
-3
ACL2 !>>(APPLY$ '(LAMBDA (Y) (F0 Y)) (LIST 3))
1> (ACL2_*1*_ACL2::F0 3)
  2> (F0 3.0)
  <2 (F0 -3.0)
<1 (ACL2_*1*_ACL2::F0 -3)
-3
ACL2 !>>(APPLY$ (LAMBDA$ (Y) (F0 Y)) (LIST 3))
ACL2 Error [Translate] in TOP-LEVEL:  It is illegal to invoke F0 here
because of a signature mismatch.  This function call returns a result
of shape :DF where a result of shape * is required.  Note:  this error
occurred in the context (F0 Y).
ACL2 !>>(UNTRACE$ F0)
 (F0)
ACL2 !>>(INCLUDE-BOOK "projects/apply/top"
                      :DIR :SYSTEM)
The event ( INCLUDE-BOOK "projects/apply/top" ...) is redundant.  See
:DOC redundant-events.
Summary
Form:  ( INCLUDE-BOOK "projects/apply/top" ...)
Rules: NIL
 :REDUNDANT
ACL2 !>>(DEFUN$ F0 (X)
                (DECLARE (TYPE DOUBLE-FLOAT X))
                (DF- X))
ACL2 !>>>(DEFUN F0 (X)
           (DECLARE (TYPE DOUBLE-FLOAT X))
           (DF- X))
The event ( DEFUN F0 ...) is redundant.  See :DOC redundant-events.
Summary
Form:  ( DEFUN F0 ...)
Rules: NIL
:REDUNDANT
ACL2 !>>>(DEFWARRANT F0)
:REDUNDANT
Summary
Form:  ( PROGN (DEFUN F0 ...) ...)
Rules: NIL
 :REDUNDANT
ACL2 !>>(DEFUN$ APPLY$-QUOTE-F0
                NIL (DECLARE (XARGS :GUARD T))
                (APPLY$ 'F0 (LIST 3)))
ACL2 !>>>(DEFUN APPLY$-QUOTE-F0 NIL
           (DECLARE (XARGS :GUARD T))
           (APPLY$ 'F0 (LIST 3)))
Since APPLY$-QUOTE-F0 is non-recursive, its admission is trivial. 
We could deduce no constraints on the type of APPLY$-QUOTE-F0.
Computing the guard conjecture for APPLY$-QUOTE-F0....
The guard conjecture for APPLY$-QUOTE-F0 is trivial to prove, given
the :executable-counterpart of APPLY$-GUARD.  APPLY$-QUOTE-F0 is compliant
with Common Lisp.
Summary
Form:  ( DEFUN APPLY$-QUOTE-F0 ...)
Rules: ((:EXECUTABLE-COUNTERPART APPLY$-GUARD))
APPLY$-QUOTE-F0
ACL2 !>>>(DEFWARRANT APPLY$-QUOTE-F0)
APPLY$-QUOTE-F0 is now warranted by APPLY$-WARRANT-APPLY$-QUOTE-F0,
with badge (APPLY$-BADGE 0 1 . T).
:WARRANTED
Summary
Form:  ( PROGN (DEFUN APPLY$-QUOTE-F0 ...) ...)
Rules: NIL
 :WARRANTED
ACL2 !>>(TRACE$ F0)
 ((F0))
ACL2 !>>(APPLY$-QUOTE-F0)
1> (ACL2_*1*_ACL2::F0 3)
  2> (F0 3.0)
  <2 (F0 -3.0)
<1 (ACL2_*1*_ACL2::F0 -3)
-3
ACL2 !>>(DEFUN LOOP$-APPLY$-QUOTE-F0 NIL
          (DECLARE (XARGS :GUARD T))
          (LOOP$ FOR I
                 FROM 1 TO 3 COLLECT (APPLY$-QUOTE-F0)))
Since LOOP$-APPLY$-QUOTE-F0 is non-recursive, its admission is trivial.
We observe that the type of LOOP$-APPLY$-QUOTE-F0 is described by the
theorem (TRUE-LISTP (LOOP$-APPLY$-QUOTE-F0)).  We used the :type-prescription
rule COLLECT$.
Computing the guard conjecture for LOOP$-APPLY$-QUOTE-F0....
The guard conjecture for LOOP$-APPLY$-QUOTE-F0 is trivial to prove,
given the :executable-counterpart of APPLY$-GUARD and the :type-prescription
rule FROM-TO-BY.  LOOP$-APPLY$-QUOTE-F0 is compliant with Common Lisp.
Summary
Form:  ( DEFUN LOOP$-APPLY$-QUOTE-F0 ...)
Rules: ((:EXECUTABLE-COUNTERPART APPLY$-GUARD)
        (:TYPE-PRESCRIPTION COLLECT$)
        (:TYPE-PRESCRIPTION FROM-TO-BY))
 LOOP$-APPLY$-QUOTE-F0
ACL2 !>>(LOOP$-APPLY$-QUOTE-F0)
1> (ACL2_*1*_ACL2::F0 3)
  2> (F0 3.0)
  <2 (F0 -3.0)
<1 (ACL2_*1*_ACL2::F0 -3)
1> (ACL2_*1*_ACL2::F0 3)
  2> (F0 3.0)
  <2 (F0 -3.0)
<1 (ACL2_*1*_ACL2::F0 -3)
1> (ACL2_*1*_ACL2::F0 3)
  2> (F0 3.0)
  <2 (F0 -3.0)
<1 (ACL2_*1*_ACL2::F0 -3)
(-3 -3 -3)
ACL2 !>>(WITH-OUTPUT
             :OFF EVENT
             (DEFUN DO-LOOP$-ON-F0 NIL
               (DECLARE (XARGS :GUARD T))
               (LOOP$ WITH
                      ANS OF-TYPE DOUBLE-FLOAT = (TO-DF 2)
                      WITH I OF-TYPE (INTEGER 0 *)
                      = 3 DO :VALUES (:DF)
                      (COND ((ZP I) (RETURN ANS))
                            (T (PROGN (SETQ I (1- I))
                                      (SETQ ANS (DF* (F0 ANS) ANS))))))))
Subgoal 2
Splitter note (see :DOC splitter) for Subgoal 2 (2 subgoals).
  if-intro: ((:DEFINITION NOT) (:REWRITE ZP-OPEN))
Subgoal 2.2
Subgoal 2.2'
Subgoal 2.1
Subgoal 1
Q.E.D.
Summary
Form:  ( DEFUN DO-LOOP$-ON-F0 ...)
Rules: ((:COMPOUND-RECOGNIZER DFP-IMPLIES-RATIONALP)
        (:DEFINITION ACL2-COUNT)
        (:DEFINITION ALISTP)
        (:DEFINITION BINARY-DF*)
        (:DEFINITION DO-BODY-GUARD-WRAPPER)
        (:DEFINITION F0)
        (:DEFINITION INTEGER-ABS)
        (:DEFINITION L<)
        (:DEFINITION LEN)
        (:DEFINITION LEX-FIX)
        (:DEFINITION NFIX)
        (:DEFINITION NOT)
        (:DEFINITION PAIRLIS$)
        (:DEFINITION RETURN-LAST)
        (:DEFINITION SYNP)
        (:DEFINITION UNARY-DF-)
        (:EXECUTABLE-COUNTERPART <)
        (:EXECUTABLE-COUNTERPART ALISTP)
        (:EXECUTABLE-COUNTERPART APPLY$-GUARD)
        (:EXECUTABLE-COUNTERPART ASSOC-EQ-SAFE)
        (:EXECUTABLE-COUNTERPART CAR)
        (:EXECUTABLE-COUNTERPART CDR)
        (:EXECUTABLE-COUNTERPART CHECK-DCL-GUARDIAN)
        (:EXECUTABLE-COUNTERPART CONS)
        (:EXECUTABLE-COUNTERPART CONSP)
        (:EXECUTABLE-COUNTERPART DFP)
        (:EXECUTABLE-COUNTERPART DO-BODY-GUARD-WRAPPER)
        (:EXECUTABLE-COUNTERPART EQUAL)
        (:EXECUTABLE-COUNTERPART INTEGERP)
        (:EXECUTABLE-COUNTERPART NOT)
        (:EXECUTABLE-COUNTERPART PAIRLIS$)
        (:EXECUTABLE-COUNTERPART TO-DF)
        (:EXECUTABLE-COUNTERPART WEAK-DOLIA-P)
        (:FAKE-RUNE-FOR-LINEAR NIL)
        (:FAKE-RUNE-FOR-TYPE-SET NIL)
        (:REWRITE APPLY$-F0)
        (:REWRITE ASSOC-EQ-SAFE-CONS-CONS)
        (:REWRITE BETA-REDUCTION)
        (:REWRITE CAR-CONS)
        (:REWRITE CDR-CONS)
        (:REWRITE COMMUTATIVITY-OF-*)
        (:REWRITE DFP-DF-ROUND)
        (:REWRITE EV$-OPENER)
        (:REWRITE TRUE-LISTP-TRUE-LIST-FIX-ID)
        (:REWRITE ZP-OPEN)
        (:TYPE-PRESCRIPTION ASSOC-EQ-SAFE)
        (:TYPE-PRESCRIPTION DFP)
        (:TYPE-PRESCRIPTION DO-BODY-GUARD-WRAPPER)
        (:TYPE-PRESCRIPTION RATIONALP-DF-ROUND))
Splitter rules (see :DOC splitter):
  if-intro: ((:DEFINITION NOT) (:REWRITE ZP-OPEN))
 DO-LOOP$-ON-F0
ACL2 !>>(DO-LOOP$-ON-F0)
1> (F0 2.0)
<1 (F0 -2.0)
1> (F0 -4.0)
<1 (F0 4.0)
1> (F0 -16.0)
<1 (F0 16.0)
#d-256.0
ACL2 !>>(DEFUN$ APPLY$-F0-IN-LAMBDA
                NIL (DECLARE (XARGS :GUARD T))
                (APPLY$ '(LAMBDA (Y)
                           (DECLARE (XARGS :GUARD (DFP Y) :SPLIT-TYPES T)
                                    (TYPE DOUBLE-FLOAT Y))
                           (F0 Y))
                        (LIST 3)))
ACL2 !>>>(DEFUN APPLY$-F0-IN-LAMBDA NIL
           (DECLARE (XARGS :GUARD T))
           (APPLY$ '(LAMBDA (Y)
                      (DECLARE (XARGS :GUARD (DFP Y) :SPLIT-TYPES T)
                               (TYPE DOUBLE-FLOAT Y))
                      (F0 Y))
                   (LIST 3)))
Since APPLY$-F0-IN-LAMBDA is non-recursive, its admission is trivial.
We could deduce no constraints on the type of APPLY$-F0-IN-LAMBDA.
Computing the guard conjecture for APPLY$-F0-IN-LAMBDA....
The guard conjecture for APPLY$-F0-IN-LAMBDA is trivial to prove, given
the :executable-counterpart of APPLY$-GUARD.  APPLY$-F0-IN-LAMBDA is
compliant with Common Lisp.
Summary
Form:  ( DEFUN APPLY$-F0-IN-LAMBDA ...)
Rules: ((:EXECUTABLE-COUNTERPART APPLY$-GUARD))
APPLY$-F0-IN-LAMBDA
ACL2 !>>>(DEFWARRANT APPLY$-F0-IN-LAMBDA)
1> (ACL2_*1*_ACL2::F0 3)
  2> (F0 3.0)
  <2 (F0 -3.0)
<1 (ACL2_*1*_ACL2::F0 -3)
1> (ACL2_*1*_ACL2::F0 3)
  2> (F0 3.0)
  <2 (F0 -3.0)
<1 (ACL2_*1*_ACL2::F0 -3)
APPLY$-F0-IN-LAMBDA is now warranted by APPLY$-WARRANT-APPLY$-F0-IN-LAMBDA,
with badge (APPLY$-BADGE 0 1 . T).
:WARRANTED
Summary
Form:  ( PROGN (DEFUN APPLY$-F0-IN-LAMBDA ...) ...)
Rules: NIL
 :WARRANTED
ACL2 !>>(APPLY$-F0-IN-LAMBDA)
1> (ACL2_*1*_ACL2::F0 3)
  2> (F0 3.0)
  <2 (F0 -3.0)
<1 (ACL2_*1*_ACL2::F0 -3)
-3
ACL2 !>>(DEFUN$ APPLY$-F0-IN-LAMBDA-ALT
                NIL (DECLARE (XARGS :GUARD T))
                (APPLY$ (LAMBDA$ (Y)
                          (DECLARE (TYPE DOUBLE-FLOAT Y))
                          (FROM-DF (F0 Y)))
                        (LIST 3)))
ACL2 !>>>(DEFUN APPLY$-F0-IN-LAMBDA-ALT NIL
           (DECLARE (XARGS :GUARD T))
           (APPLY$ (LAMBDA$ (Y)
                     (DECLARE (TYPE DOUBLE-FLOAT Y))
                     (FROM-DF (F0 Y)))
                   (LIST 3)))
Since APPLY$-F0-IN-LAMBDA-ALT is non-recursive, its admission is trivial.
We could deduce no constraints on the type of APPLY$-F0-IN-LAMBDA-ALT.
Computing the guard conjecture for APPLY$-F0-IN-LAMBDA-ALT....
The non-trivial part of the guard conjecture for APPLY$-F0-IN-LAMBDA-ALT,
given the :executable-counterpart of APPLY$-GUARD, is
Goal
(IMPLIES (DFP Y) (DFP (F0 Y))).
Q.E.D.
That completes the proof of the guard theorem for APPLY$-F0-IN-LAMBDA-ALT.
APPLY$-F0-IN-LAMBDA-ALT is compliant with Common Lisp.
Summary
Form:  ( DEFUN APPLY$-F0-IN-LAMBDA-ALT ...)
Rules: ((:DEFINITION F0)
        (:DEFINITION UNARY-DF-)
        (:EXECUTABLE-COUNTERPART APPLY$-GUARD)
        (:REWRITE DFP-DF-ROUND))
APPLY$-F0-IN-LAMBDA-ALT
ACL2 !>>>(DEFWARRANT APPLY$-F0-IN-LAMBDA-ALT)
1> (ACL2_*1*_ACL2::F0 3)
  2> (F0 3.0)
  <2 (F0 -3.0)
<1 (ACL2_*1*_ACL2::F0 -3)
1> (ACL2_*1*_ACL2::F0 3)
  2> (F0 3.0)
  <2 (F0 -3.0)
<1 (ACL2_*1*_ACL2::F0 -3)
APPLY$-F0-IN-LAMBDA-ALT is now warranted by 
APPLY$-WARRANT-APPLY$-F0-IN-LAMBDA-ALT, with badge (APPLY$-BADGE 0 1 . T).
:WARRANTED
Summary
Form:  ( PROGN (DEFUN APPLY$-F0-IN-LAMBDA-ALT ...) ...)
Rules: NIL
 :WARRANTED
ACL2 !>>(APPLY$-F0-IN-LAMBDA-ALT)
1> (ACL2_*1*_ACL2::F0 3)
  2> (F0 3.0)
  <2 (F0 -3.0)
<1 (ACL2_*1*_ACL2::F0 -3)
-3
ACL2 !>>(DEFUN$ DF1-AS-LAMBDA
                NIL (DECLARE (XARGS :GUARD T))
                (APPLY$ (LAMBDA$ NIL
                          (DECLARE (XARGS :GUARD 'T :SPLIT-TYPES T))
                          (DF1))
                        NIL))
ACL2 !>>>(DEFUN DF1-AS-LAMBDA NIL
           (DECLARE (XARGS :GUARD T))
           (APPLY$ (LAMBDA$ NIL
                     (DECLARE (XARGS :GUARD 'T :SPLIT-TYPES T))
                     (DF1))
                   NIL))
ACL2 Error [Translate] in ( DEFUN DF1-AS-LAMBDA ...):  It is illegal
to invoke DF1 here because of a signature mismatch.  This function
call returns a result of shape :DF where a result of shape * is required.
Note:  this error occurred in the context (DF1).
Summary
Form:  ( DEFUN DF1-AS-LAMBDA ...)
Rules: NIL
ACL2 Error [Failure] in ( DEFUN DF1-AS-LAMBDA ...):  See :DOC failure.
******** FAILED ********
Summary
Form:  ( PROGN (DEFUN DF1-AS-LAMBDA ...) ...)
Rules: NIL
ACL2 Error [Failure] in ( PROGN (DEFUN DF1-AS-LAMBDA ...) ...):  See
:DOC failure.
******** FAILED ********
ACL2 !>>(DEFUN$ DF1-AS-LAMBDA
                NIL (DECLARE (XARGS :GUARD T))
                (APPLY$ (LAMBDA$ NIL
                          (DECLARE (XARGS :GUARD 'T :SPLIT-TYPES T))
                          (FROM-DF (DF1)))
                        NIL))
ACL2 !>>>(DEFUN DF1-AS-LAMBDA NIL
           (DECLARE (XARGS :GUARD T))
           (APPLY$ (LAMBDA$ NIL
                     (DECLARE (XARGS :GUARD 'T :SPLIT-TYPES T))
                     (FROM-DF (DF1)))
                   NIL))
Since DF1-AS-LAMBDA is non-recursive, its admission is trivial.  We
could deduce no constraints on the type of DF1-AS-LAMBDA.
Computing the guard conjecture for DF1-AS-LAMBDA....
The guard conjecture for DF1-AS-LAMBDA is trivial to prove, given the
:executable-counterparts of APPLY$-GUARD and DFP.  DF1-AS-LAMBDA is
compliant with Common Lisp.
Summary
Form:  ( DEFUN DF1-AS-LAMBDA ...)
Rules: ((:EXECUTABLE-COUNTERPART APPLY$-GUARD)
        (:EXECUTABLE-COUNTERPART DFP))
DF1-AS-LAMBDA
ACL2 !>>>(DEFWARRANT DF1-AS-LAMBDA)
DF1-AS-LAMBDA is now warranted by APPLY$-WARRANT-DF1-AS-LAMBDA, with
badge (APPLY$-BADGE 0 1 . T).
:WARRANTED
Summary
Form:  ( PROGN (DEFUN DF1-AS-LAMBDA ...) ...)
Rules: NIL
 :WARRANTED
ACL2 !>>(DF1-AS-LAMBDA)
1
ACL2 !>>(ENCAPSULATE (((F13 :DF) => *))
          (LOCAL (DEFUN F13 (X)
                   (DECLARE (TYPE DOUBLE-FLOAT X))
                   (FROM-DF X)))
          (DEFTHM DFP-F13
            (IMPLIES (DFP X) (DFP (F13 X)))))
To verify that the two encapsulated events correctly extend the current
theory we will evaluate them.  The theory thus constructed is only
ephemeral.
Encapsulated Events:
ACL2 !>>>(LOCAL (DEFUN F13 (X)
                  (DECLARE (TYPE DOUBLE-FLOAT X))
                  (FROM-DF X)))
Since F13 is non-recursive, its admission is trivial.  We observe that
the type of F13 is described by the theorem (EQUAL (F13 X) X).  
(F13 :DF) => *.
Computing the guard conjecture for F13....
The guard conjecture for F13 is trivial to prove.  F13 is compliant
with Common Lisp.
Summary
Form:  ( DEFUN F13 ...)
Rules: NIL
F13
ACL2 !>>>(DEFTHM DFP-F13
           (IMPLIES (DFP X) (DFP (F13 X))))
ACL2 Warning [Non-rec] in ( DEFTHM DFP-F13 ...):  A :REWRITE rule generated
from DFP-F13 will be triggered only by terms containing the function
symbol F13, which has a non-recursive definition.  Unless this definition
is disabled, this rule is unlikely ever to be used.
Q.E.D.
The storage of DFP-F13 depends upon the :compound-recognizer rule 
DFP-IMPLIES-RATIONALP and the :type-prescription rule DFP.
Summary
Form:  ( DEFTHM DFP-F13 ...)
Rules: ((:COMPOUND-RECOGNIZER DFP-IMPLIES-RATIONALP)
        (:DEFINITION F13)
        (:TYPE-PRESCRIPTION DFP))
Warnings:  Non-rec
DFP-F13
End of Encapsulated Events.
Having verified that the encapsulated events validate the signatures
of the ENCAPSULATE event, we discard the ephemeral theory and extend
the original theory as directed by the signatures and the non-LOCAL
events.
The following constraint is associated with the function F13:
(IMPLIES (DFP X) (DFP (F13 X)))
(F13 :DF) => *.
Summary
Form:  ( ENCAPSULATE (((F13 :DF ...) ...) ...) ...)
Rules: NIL
Warnings:  Non-rec
 F13
ACL2 !>>(ENCAPSULATE (((F14 :DF) => :DF))
          (LOCAL (DEFUN F14 (X)
                   (DECLARE (TYPE DOUBLE-FLOAT X))
                   (DF- X)))
          (DEFTHM DFP-F14
            (IMPLIES (DFP X) (DFP (F14 X)))))
To verify that the two encapsulated events correctly extend the current
theory we will evaluate them.  The theory thus constructed is only
ephemeral.
Encapsulated Events:
ACL2 !>>>(LOCAL (DEFUN F14 (X)
                  (DECLARE (TYPE DOUBLE-FLOAT X))
                  (DF- X)))
Since F14 is non-recursive, its admission is trivial.  We observe that
the type of F14 is described by the theorem (RATIONALP (F14 X)).  We
used the :type-prescription rule UNARY-DF-.
(F14 :DF) => :DF.
Computing the guard conjecture for F14....
The guard conjecture for F14 is trivial to prove.  F14 is compliant
with Common Lisp.
Summary
Form:  ( DEFUN F14 ...)
Rules: ((:TYPE-PRESCRIPTION UNARY-DF-))
F14
ACL2 !>>>(DEFTHM DFP-F14
           (IMPLIES (DFP X) (DFP (F14 X))))
ACL2 Warning [Non-rec] in ( DEFTHM DFP-F14 ...):  A :REWRITE rule generated
from DFP-F14 will be triggered only by terms containing the function
symbol F14, which has a non-recursive definition.  Unless this definition
is disabled, this rule is unlikely ever to be used.
Q.E.D.
The storage of DFP-F14 depends upon the :compound-recognizer rule 
DFP-IMPLIES-RATIONALP and the :type-prescription rule DFP.
Summary
Form:  ( DEFTHM DFP-F14 ...)
Rules: ((:COMPOUND-RECOGNIZER DFP-IMPLIES-RATIONALP)
        (:DEFINITION F14)
        (:DEFINITION UNARY-DF-)
        (:EXECUTABLE-COUNTERPART IF)
        (:REWRITE DFP-DF-ROUND)
        (:TYPE-PRESCRIPTION DFP))
Warnings:  Non-rec
DFP-F14
End of Encapsulated Events.
Having verified that the encapsulated events validate the signatures
of the ENCAPSULATE event, we discard the ephemeral theory and extend
the original theory as directed by the signatures and the non-LOCAL
events.
The following constraint is associated with the function F14:
(IMPLIES (DFP X) (DFP (F14 X)))
(F14 :DF) => :DF.
Summary
Form:  ( ENCAPSULATE (((F14 :DF ...) ...) ...) ...)
Rules: NIL
Warnings:  Non-rec
 F14
ACL2 !>>(ENCAPSULATE (((F15 *) => :DF))
          (LOCAL (DEFUN F15 (X)
                   (DECLARE (IGNORE X))
                   (TO-DF 0)))
          (DEFTHM DFP-F15 (DFP (F15 X))))
To verify that the two encapsulated events correctly extend the current
theory we will evaluate them.  The theory thus constructed is only
ephemeral.
Encapsulated Events:
ACL2 !>>>(LOCAL (DEFUN F15 (X)
                  (DECLARE (IGNORE X))
                  (TO-DF 0)))
Since F15 is non-recursive, its admission is trivial.  We observe that
the type of F15 is described by the theorem (EQUAL (F15 X) 0).  
(F15 *) => :DF.
Summary
Form:  ( DEFUN F15 ...)
Rules: NIL
F15
ACL2 !>>>(DEFTHM DFP-F15 (DFP (F15 X)))
ACL2 Warning [Non-rec] in ( DEFTHM DFP-F15 ...):  A :REWRITE rule generated
from DFP-F15 will be triggered only by terms containing the function
symbol F15, which has a non-recursive definition.  Unless this definition
is disabled, this rule is unlikely ever to be used.
Q.E.D.
The storage of DFP-F15 depends upon the :compound-recognizer rule 
DFP-IMPLIES-RATIONALP and the :type-prescription rule DFP.
Summary
Form:  ( DEFTHM DFP-F15 ...)
Rules: ((:COMPOUND-RECOGNIZER DFP-IMPLIES-RATIONALP)
        (:DEFINITION F15)
        (:EXECUTABLE-COUNTERPART DFP)
        (:TYPE-PRESCRIPTION DFP))
Warnings:  Non-rec
DFP-F15
End of Encapsulated Events.
Having verified that the encapsulated events validate the signatures
of the ENCAPSULATE event, we discard the ephemeral theory and extend
the original theory as directed by the signatures and the non-LOCAL
events.
The following constraint is associated with the function F15:
(DFP (F15 X))
(F15 *) => :DF.
Summary
Form:  ( ENCAPSULATE (((F15 * ...) ...) ...) ...)
Rules: NIL
Warnings:  Non-rec
 F15
ACL2 !>>(ENCAPSULATE (((F16 *)
                       => :DF
                       :FORMALS (X)
                       :GUARD (RATIONALP X)))
          (LOCAL (DEFUN F16 (X)
                   (DECLARE (IGNORE X))
                   (TO-DF 0))))
To verify that the encapsulated event correctly extends the current
theory we will evaluate it.  The theory thus constructed is only ephemeral.
Encapsulated Event:
ACL2 !>>>(LOCAL (DEFUN F16 (X)
                  (DECLARE (IGNORE X))
                  (TO-DF 0)))
Since F16 is non-recursive, its admission is trivial.  We observe that
the type of F16 is described by the theorem (EQUAL (F16 X) 0).  
(F16 *) => :DF.
Summary
Form:  ( DEFUN F16 ...)
Rules: NIL
F16
End of Encapsulated Event.
Having verified that the encapsulated event validates the signatures
of the ENCAPSULATE event, we discard the ephemeral theory and extend
the original theory as directed by the signatures and the non-LOCAL
events.
(F16 *) => :DF.
Summary
Form:  ( ENCAPSULATE (((F16 * ...) ...) ...) ...)
Rules: NIL
 F16
ACL2 !>>(DEFSTUB F17 (*) => :DF)
Summary
Form:  (DEFSTUB F17 ...)
Rules: NIL
 F17
ACL2 !>>(ARGS 'F17)
Function         F17
Formals:         (X1)
Signature:       (F17 *)
                 => :DF
Guard:           T
Guards Verified: T
Defun-Mode:      :logic
Type:            built-in (or unrestricted)
Badge:           none
Warrant:         none
 F17
ACL2 !>>(DEFSTUB F18 (:DF) => :DF)
Summary
Form:  (DEFSTUB F18 ...)
Rules: NIL
 F18
ACL2 !>>(ARGS 'F18)
Function         F18
Formals:         (X1)
Signature:       (F18 :DF)
                 => :DF
Guard:           (DFP X1)
Guards Verified: T
Defun-Mode:      :logic
Type:            built-in (or unrestricted)
Badge:           none
Warrant:         none
 F18
ACL2 !>>(DEFSTUB F19 (:DF) => (MV :DF :DF))
Summary
Form:  (DEFSTUB F19 ...)
Rules: NIL
 F19
ACL2 !>>(ARGS 'F19)
Function         F19
Formals:         (X1)
Signature:       (F19 :DF)
                 => (MV :DF :DF)
Guard:           (DFP X1)
Guards Verified: T
Defun-Mode:      :logic
Type:            built-in (or unrestricted)
Badge:           none
Warrant:         none
Constraint:      (TRUE-LISTP (F19 X1))
 F19
ACL2 !>>(DEFSTUB F20 (:DF) => *)
Summary
Form:  (DEFSTUB F20 ...)
Rules: NIL
 F20
ACL2 !>>(ARGS 'F20)
Function         F20
Formals:         (X1)
Signature:       (F20 :DF)
                 => *
Guard:           (DFP X1)
Guards Verified: T
Defun-Mode:      :logic
Type:            built-in (or unrestricted)
Badge:           none
Warrant:         none
 F20
ACL2 !>>(DEFSTUB F21 (:DF ST1 * :DF)
                 => (MV * * ST1 :DF))
Summary
Form:  (DEFSTUB F21 ...)
Rules: NIL
 F21
ACL2 !>>(ARGS 'F21)
Function         F21
Formals:         (X1 ST1 X3 X4)
Signature:       (F21 :DF ST1 * :DF)
                 => (MV * * ST1 :DF)
Guard:           (AND (ST1P ST1) (DFP X1) (DFP X4))
Guards Verified: T
Defun-Mode:      :logic
Type:            built-in (or unrestricted)
Badge:           none
Warrant:         none
Constraint:      (TRUE-LISTP (F21 X1 ST1 X3 X4))
 F21
ACL2 !>>(DEFSTUB F22 (X) T :DFS (X))
Summary
Form:  (DEFSTUB F22 ...)
Rules: NIL
 F22
ACL2 !>>(ARGS 'F22)
Function         F22
Formals:         (X)
Signature:       (F22 :DF)
                 => *
Guard:           (DFP X)
Guards Verified: T
Defun-Mode:      :logic
Type:            built-in (or unrestricted)
Badge:           none
Warrant:         none
 F22
ACL2 !>>(DEFSTUB BAD (X ST1)
                 T
                 :STOBJS ST1
                 :DFS (X ST1))
ACL2 Error in (DEFSTUB BAD ...):  The formal ST1 of function BAD is
declared both with xargs :STOBJS and with a double-float type declaration.
But a formal cannot name both a stobj and a df.
Summary
Form:  (DEFSTUB BAD ...)
Rules: NIL
ACL2 Error [Failure] in (DEFSTUB BAD ...):  See :DOC failure.
******** FAILED ********
ACL2 !>>(DEFUN F23A NIL
          (DECLARE (XARGS :GUARD T))
          T)
Since F23A is non-recursive, its admission is trivial.  We observe
that the type of F23A is described by the theorem (EQUAL (F23A) T).
Computing the guard conjecture for F23A....
The guard conjecture for F23A is trivial to prove.  F23A is compliant
with Common Lisp.
Summary
Form:  ( DEFUN F23A ...)
Rules: NIL
 F23A
ACL2 !>>(DEFUN F23 (X Y)
          (DECLARE (TYPE DOUBLE-FLOAT X Y))
          (PROG2$ (F23A) (DF+ X Y)))
Since F23 is non-recursive, its admission is trivial.  We observe that
the type of F23 is described by the theorem (RATIONALP (F23 X Y)).
We used the :type-prescription rule BINARY-DF+.
(F23 :DF :DF) => :DF.
Computing the guard conjecture for F23....
The guard conjecture for F23 is trivial to prove.  F23 is compliant
with Common Lisp.
Summary
Form:  ( DEFUN F23 ...)
Rules: ((:TYPE-PRESCRIPTION BINARY-DF+))
 F23
ACL2 !>>(TRACE$ F23A)
 ((F23A))
ACL2 !>>(MEMOIZE 'F23)
 F23
ACL2 !>>(F23 (TO-DF 3) (TO-DF 4))
1> (F23A)
<1 (F23A T)
#d7.0
ACL2 !>>(F23 (TO-DF 3) (TO-DF 4))
#d7.0
ACL2 !>>(F23 (TO-DF 3) (TO-DF 4))
#d7.0
ACL2 !>>(UNMEMOIZE 'F23)
ACL2 !>>>(TABLE MEMOIZE-TABLE
           (DEREF-MACRO-NAME 'F23
                             (MACRO-ALIASES WORLD))
           NIL)
ACL2 !>>>(VALUE-TRIPLE (DEREF-MACRO-NAME 'F23
                                         (MACRO-ALIASES (W STATE))))
 F23
ACL2 !>>(MEMOIZE 'F23 :CONDITION '(DF< X Y))
 F23
ACL2 !>>(F23 (TO-DF 3) (TO-DF 4))
1> (F23A)
<1 (F23A T)
#d7.0
ACL2 !>>(F23 (TO-DF 3) (TO-DF 4))
#d7.0
ACL2 !>>(F23 (TO-DF 3) (TO-DF 4))
#d7.0
ACL2 !>>(F23 (TO-DF 4) (TO-DF 3))
1> (F23A)
<1 (F23A T)
#d7.0
ACL2 !>>(F23 (TO-DF 4) (TO-DF 3))
1> (F23A)
<1 (F23A T)
#d7.0
ACL2 !>>(DEFUN-SK F24 (X)
          (DECLARE (XARGS :DFS (X)))
          (EXISTS (Y) (DF< X (TO-DF Y))))
Summary
Form:  (DEFUN-SK F24 ...)
Rules: NIL
 F24
ACL2 !>>(DEFUN-SK F25 (X)
          (DECLARE (XARGS :DFS (X)))
          (EXISTS (Y) (DF< X Y)))
Summary
Form:  (DEFUN-SK F25 ...)
Rules: NIL
 F25
ACL2 !>>(DEFUN-SK F25-BAD (X)
          (DECLARE (XARGS :DFS (X) :NON-EXECUTABLE NIL))
          (EXISTS (Y) (DF< X Y)))
ACL2 Error [Translate] in (DEFUN-SK F25-BAD ...):  The form Y represents
an ordinary object, but it is being used where a form representing
a :DF was expected.  See :DOC df.  Note:  this error occurred in the
context (DF<-FN X Y).
Summary
Form:  (DEFUN-SK F25-BAD ...)
Rules: NIL
ACL2 Error [Failure] in (DEFUN-SK F25-BAD ...):  See :DOC failure.
******** FAILED ********
ACL2 !>>(DEFUN-SK F24-EXECUTABLE (X)
          (DECLARE (XARGS :DFS (X) :NON-EXECUTABLE NIL))
          (EXISTS (Y) (DF< X (TO-DF Y))))
Summary
Form:  (DEFUN-SK F24-EXECUTABLE ...)
Rules: NIL
 F24-EXECUTABLE
ACL2 !>>(DEFUN COLLATZ-1-LIMIT (N LIMIT)
          (DECLARE (XARGS :GUARD (NATP LIMIT)
                          :MEASURE (ACL2-COUNT LIMIT))
                   (TYPE DOUBLE-FLOAT N))
          (IF (ZP LIMIT)
              (PROG2$ (ER HARD? 'COLLATZ-1-LIMIT
                          "Limit exceeded!")
                      0)
            (LET ((LIMIT (1- LIMIT)))
              (IF (DF= N 1)
                  0
                (1+ (COLLATZ-1-LIMIT (IF (LET ((K (DF-RATIONALIZE N)))
                                           (AND (INTEGERP K) (EVENP K)))
                                         (DF/ N 2)
                                       (DF+ 1 (DF* 3 N)))
                                     LIMIT))))))
The admission of COLLATZ-1-LIMIT is trivial, using the relation O<
(which is known to be well-founded on the domain recognized by O-P)
and the measure (ACL2-COUNT LIMIT).  We observe that the type of 
COLLATZ-1-LIMIT is described by the theorem 
(AND (INTEGERP (COLLATZ-1-LIMIT N LIMIT)) (<= 0 (COLLATZ-1-LIMIT N LIMIT))).
We used primitive type reasoning.
(COLLATZ-1-LIMIT :DF *) => *.
Computing the guard conjecture for COLLATZ-1-LIMIT....
The guard conjecture for COLLATZ-1-LIMIT is trivial to prove, given
the :compound-recognizer rules NATP-COMPOUND-RECOGNIZER and 
ZP-COMPOUND-RECOGNIZER, the :executable-counterparts of = and NOT,
primitive type reasoning and the :type-prescription rule COLLATZ-1-LIMIT.
COLLATZ-1-LIMIT is compliant with Common Lisp.
Summary
Form:  ( DEFUN COLLATZ-1-LIMIT ...)
Rules: ((:COMPOUND-RECOGNIZER NATP-COMPOUND-RECOGNIZER)
        (:COMPOUND-RECOGNIZER ZP-COMPOUND-RECOGNIZER)
        (:EXECUTABLE-COUNTERPART =)
        (:EXECUTABLE-COUNTERPART NOT)
        (:FAKE-RUNE-FOR-TYPE-SET NIL)
        (:TYPE-PRESCRIPTION COLLATZ-1-LIMIT))
 COLLATZ-1-LIMIT
ACL2 !>>(MEMOIZE-PARTIAL COLLATZ-1)
ACL2 !>>>(MAKE-EVENT
          (ER-PROGN
             (MEMOIZE-PARTIAL-BASIC-CHECKS
                  '((COLLATZ-1 COLLATZ-1-LIMIT COLLATZ-1-LIMIT-CHANGE
                               COLLATZ-1-LIMIT-STABLE))
                  'MEMOIZE-PARTIAL
                  STATE)
             (MV-LET (MSG DEFS TABLE-EVENT)
                     (MEMOIZE-PARTIAL-SUPPORTING-EVENTS
                          '((COLLATZ-1 COLLATZ-1-LIMIT COLLATZ-1-LIMIT-CHANGE
                                       COLLATZ-1-LIMIT-STABLE))
                          (W STATE))
               (COND (MSG (ER SOFT 'MEMOIZE-PARTIAL "~@0" MSG))
                     (T (VALUE (CONS 'PROGN
                                     (APPEND DEFS (LIST TABLE-EVENT))))))))
          :ON-BEHALF-OF :QUIET!)
ACL2 !>>>(DEFCHOOSE COLLATZ-1-LIMIT-CHANGE (LARGE)
                                           (N LIMIT)
           (AND (NATP LARGE)
                (<= LIMIT LARGE)
                (NOT (EQUAL (COLLATZ-1-LIMIT N LIMIT)
                            (COLLATZ-1-LIMIT N LARGE)))))
Summary
Form:  ( DEFCHOOSE COLLATZ-1-LIMIT-CHANGE ...)
Rules: NIL
COLLATZ-1-LIMIT-CHANGE
ACL2 !>>>(DEFCHOOSE COLLATZ-1-LIMIT-STABLE (LIMIT)
                                           (N)
          (AND (NATP LIMIT)
               (EQUAL (COLLATZ-1-LIMIT N LIMIT)
                      (COLLATZ-1-LIMIT N (COLLATZ-1-LIMIT-CHANGE N LIMIT)))))
Summary
Form:  ( DEFCHOOSE COLLATZ-1-LIMIT-STABLE ...)
Rules: NIL
COLLATZ-1-LIMIT-STABLE
ACL2 !>>>(DEFUN COLLATZ-1 (N)
           (DECLARE (TYPE DOUBLE-FLOAT N)
                    (XARGS :GUARD
                           (LET ((LIMIT 0))
                             (DECLARE (IGNORABLE LIMIT))
                             (NATP LIMIT))))
           (COLLATZ-1-LIMIT N
                            (NFIX (NON-EXEC (COLLATZ-1-LIMIT-STABLE N)))))
Since COLLATZ-1 is non-recursive, its admission is trivial.  We observe
that the type of COLLATZ-1 is described by the theorem 
(AND (INTEGERP (COLLATZ-1 N)) (<= 0 (COLLATZ-1 N))).  We used the :type-
prescription rule COLLATZ-1-LIMIT.
(COLLATZ-1 :DF) => *.
Computing the guard conjecture for COLLATZ-1....
The guard conjecture for COLLATZ-1 is trivial to prove, given the :compound-
recognizer rule NATP-COMPOUND-RECOGNIZER, the :executable-counterpart
of NOT and the :type-prescription rule NFIX.  COLLATZ-1 is compliant
with Common Lisp.
Summary
Form:  ( DEFUN COLLATZ-1 ...)
Rules: ((:COMPOUND-RECOGNIZER NATP-COMPOUND-RECOGNIZER)
        (:EXECUTABLE-COUNTERPART NOT)
        (:TYPE-PRESCRIPTION COLLATZ-1-LIMIT)
        (:TYPE-PRESCRIPTION NFIX))
COLLATZ-1
ACL2 !>>>(TABLE PARTIAL-FUNCTIONS-TABLE
          'COLLATZ-1-LIMIT
          (PUT-ASSOC-EQ-ALIST
           (CDR (ASSOC-EQ 'COLLATZ-1-LIMIT
                          (TABLE-ALIST 'PARTIAL-FUNCTIONS-TABLE
                                       WORLD)))
           '((COLLATZ-1
              COLLATZ-1-LIMIT COLLATZ-1-LIMIT-CHANGE
              COLLATZ-1-LIMIT-STABLE
              (DEFUN COLLATZ-1 (N)
               (DECLARE (IGNORABLE N))
               (DECLARE (TYPE DOUBLE-FLOAT N))
               (FLET
                 ((COLLATZ-1-LIMIT (N LIMIT)
                                   (DECLARE (IGNORE LIMIT))
                                   (COLLATZ-1 N)))
                 (DECLARE (INLINE COLLATZ-1-LIMIT))
                 (LET ((LIMIT 0))
                   (DECLARE (IGNORABLE LIMIT))
                   (IF (DF= N 1)
                       0
                     (1+ (COLLATZ-1-LIMIT (IF (LET ((K (DF-RATIONALIZE N)))
                                                (AND (INTEGERP K) (EVENP K)))
                                              (DF/ N 2)
                                            (DF+ 1 (DF* 3 N)))
                                          LIMIT))))))))))
Summary
Form:  ( TABLE PARTIAL-FUNCTIONS-TABLE ...)
Rules: NIL
PARTIAL-FUNCTIONS-TABLE
Summary
Form:  ( PROGN (DEFCHOOSE COLLATZ-1-LIMIT-CHANGE ...) ...)
Rules: NIL
Summary
Form:  ( MAKE-EVENT (ER-PROGN ...) ...)
Rules: NIL
PARTIAL-FUNCTIONS-TABLE
ACL2 !>>>(MEMOIZE 'COLLATZ-1
                  :TOTAL 'COLLATZ-1-LIMIT)
COLLATZ-1
Summary
Form:  ( PROGN (MAKE-EVENT ...) ...)
Rules: NIL
 COLLATZ-1
ACL2 !>>(COLLATZ-1 (TO-DF 6))
8
ACL2 !>>(ASSERT-EVENT (= (COLLATZ-1 (TO-DF 6)) 8))
 :PASSED
ACL2 !>>(ASSERT-EVENT (= (COLLATZ-1 (TO-DF 10)) 6))
 :PASSED
ACL2 !>>(ASSERT-EVENT (= (COLLATZ-1 (TO-DF 100)) 25))
 :PASSED
ACL2 !>>(DEFUN COLLATZ-2-LIMIT (N LIMIT)
          (DECLARE (XARGS :GUARD (NATP LIMIT)
                          :MEASURE (ACL2-COUNT LIMIT))
                   (TYPE DOUBLE-FLOAT N))
          (IF (ZP LIMIT)
              (PROG2$ (ER HARD? 'COLLATZ-2-LIMIT
                          "Limit exceeded!")
                      (DF0))
            (LET ((LIMIT (1- LIMIT)))
              (IF (DF= N 1)
                  (DF0)
                (DF+ 1
                     (COLLATZ-2-LIMIT (IF (LET ((K (DF-RATIONALIZE N)))
                                            (AND (INTEGERP K) (EVENP K)))
                                          (DF/ N 2)
                                        (DF+ 1 (DF* 3 N)))
                                      LIMIT))))))
The admission of COLLATZ-2-LIMIT is trivial, using the relation O<
(which is known to be well-founded on the domain recognized by O-P)
and the measure (ACL2-COUNT LIMIT).  We observe that the type of 
COLLATZ-2-LIMIT is described by the theorem 
(RATIONALP (COLLATZ-2-LIMIT N LIMIT)).  We used the :type-prescription
rule BINARY-DF+.
(COLLATZ-2-LIMIT :DF *) => :DF.
Computing the guard conjecture for COLLATZ-2-LIMIT....
The guard conjecture for COLLATZ-2-LIMIT is trivial to prove, given
the :compound-recognizer rules NATP-COMPOUND-RECOGNIZER and 
ZP-COMPOUND-RECOGNIZER, the :executable-counterparts of = and NOT and
primitive type reasoning.  COLLATZ-2-LIMIT is compliant with Common
Lisp.
Summary
Form:  ( DEFUN COLLATZ-2-LIMIT ...)
Rules: ((:COMPOUND-RECOGNIZER NATP-COMPOUND-RECOGNIZER)
        (:COMPOUND-RECOGNIZER ZP-COMPOUND-RECOGNIZER)
        (:EXECUTABLE-COUNTERPART =)
        (:EXECUTABLE-COUNTERPART NOT)
        (:FAKE-RUNE-FOR-TYPE-SET NIL)
        (:TYPE-PRESCRIPTION BINARY-DF+))
 COLLATZ-2-LIMIT
ACL2 !>>(MEMOIZE-PARTIAL COLLATZ-2)
ACL2 !>>>(MAKE-EVENT
          (ER-PROGN
             (MEMOIZE-PARTIAL-BASIC-CHECKS
                  '((COLLATZ-2 COLLATZ-2-LIMIT COLLATZ-2-LIMIT-CHANGE
                               COLLATZ-2-LIMIT-STABLE))
                  'MEMOIZE-PARTIAL
                  STATE)
             (MV-LET (MSG DEFS TABLE-EVENT)
                     (MEMOIZE-PARTIAL-SUPPORTING-EVENTS
                          '((COLLATZ-2 COLLATZ-2-LIMIT COLLATZ-2-LIMIT-CHANGE
                                       COLLATZ-2-LIMIT-STABLE))
                          (W STATE))
               (COND (MSG (ER SOFT 'MEMOIZE-PARTIAL "~@0" MSG))
                     (T (VALUE (CONS 'PROGN
                                     (APPEND DEFS (LIST TABLE-EVENT))))))))
          :ON-BEHALF-OF :QUIET!)
ACL2 !>>>(DEFCHOOSE COLLATZ-2-LIMIT-CHANGE (LARGE)
                                           (N LIMIT)
           (AND (NATP LARGE)
                (<= LIMIT LARGE)
                (NOT (EQUAL (COLLATZ-2-LIMIT N LIMIT)
                            (COLLATZ-2-LIMIT N LARGE)))))
Summary
Form:  ( DEFCHOOSE COLLATZ-2-LIMIT-CHANGE ...)
Rules: NIL
COLLATZ-2-LIMIT-CHANGE
ACL2 !>>>(DEFCHOOSE COLLATZ-2-LIMIT-STABLE (LIMIT)
                                           (N)
          (AND (NATP LIMIT)
               (EQUAL (COLLATZ-2-LIMIT N LIMIT)
                      (COLLATZ-2-LIMIT N (COLLATZ-2-LIMIT-CHANGE N LIMIT)))))
Summary
Form:  ( DEFCHOOSE COLLATZ-2-LIMIT-STABLE ...)
Rules: NIL
COLLATZ-2-LIMIT-STABLE
ACL2 !>>>(DEFUN COLLATZ-2 (N)
           (DECLARE (TYPE DOUBLE-FLOAT N)
                    (XARGS :GUARD
                           (LET ((LIMIT 0))
                             (DECLARE (IGNORABLE LIMIT))
                             (NATP LIMIT))))
           (COLLATZ-2-LIMIT N
                            (NFIX (NON-EXEC (COLLATZ-2-LIMIT-STABLE N)))))
Since COLLATZ-2 is non-recursive, its admission is trivial.  We observe
that the type of COLLATZ-2 is described by the theorem 
(RATIONALP (COLLATZ-2 N)).  We used the :type-prescription rule 
COLLATZ-2-LIMIT.
(COLLATZ-2 :DF) => :DF.
Computing the guard conjecture for COLLATZ-2....
The guard conjecture for COLLATZ-2 is trivial to prove, given the :compound-
recognizer rule NATP-COMPOUND-RECOGNIZER, the :executable-counterpart
of NOT and the :type-prescription rule NFIX.  COLLATZ-2 is compliant
with Common Lisp.
Summary
Form:  ( DEFUN COLLATZ-2 ...)
Rules: ((:COMPOUND-RECOGNIZER NATP-COMPOUND-RECOGNIZER)
        (:EXECUTABLE-COUNTERPART NOT)
        (:TYPE-PRESCRIPTION COLLATZ-2-LIMIT)
        (:TYPE-PRESCRIPTION NFIX))
COLLATZ-2
ACL2 !>>>(TABLE PARTIAL-FUNCTIONS-TABLE
          'COLLATZ-2-LIMIT
          (PUT-ASSOC-EQ-ALIST
           (CDR (ASSOC-EQ 'COLLATZ-2-LIMIT
                          (TABLE-ALIST 'PARTIAL-FUNCTIONS-TABLE
                                       WORLD)))
           '((COLLATZ-2
              COLLATZ-2-LIMIT COLLATZ-2-LIMIT-CHANGE
              COLLATZ-2-LIMIT-STABLE
              (DEFUN COLLATZ-2 (N)
               (DECLARE (IGNORABLE N))
               (DECLARE (TYPE DOUBLE-FLOAT N))
               (FLET
                ((COLLATZ-2-LIMIT (N LIMIT)
                                  (DECLARE (IGNORE LIMIT))
                                  (COLLATZ-2 N)))
                (DECLARE (INLINE COLLATZ-2-LIMIT))
                (LET ((LIMIT 0))
                  (DECLARE (IGNORABLE LIMIT))
                  (IF (DF= N 1)
                      (DF0)
                    (DF+ 1
                         (COLLATZ-2-LIMIT (IF (LET ((K (DF-RATIONALIZE N)))
                                                (AND (INTEGERP K) (EVENP K)))
                                              (DF/ N 2)
                                            (DF+ 1 (DF* 3 N)))
                                          LIMIT))))))))))
Summary
Form:  ( TABLE PARTIAL-FUNCTIONS-TABLE ...)
Rules: NIL
PARTIAL-FUNCTIONS-TABLE
Summary
Form:  ( PROGN (DEFCHOOSE COLLATZ-2-LIMIT-CHANGE ...) ...)
Rules: NIL
Summary
Form:  ( MAKE-EVENT (ER-PROGN ...) ...)
Rules: NIL
PARTIAL-FUNCTIONS-TABLE
ACL2 !>>>(MEMOIZE 'COLLATZ-2
                  :TOTAL 'COLLATZ-2-LIMIT)
COLLATZ-2
Summary
Form:  ( PROGN (MAKE-EVENT ...) ...)
Rules: NIL
 COLLATZ-2
ACL2 !>>(COLLATZ-2 (TO-DF 6))
#d8.0
ACL2 !>>(ASSERT-EVENT (DF= (COLLATZ-2 (TO-DF 6)) 8))
 :PASSED
ACL2 !>>(ASSERT-EVENT (DF= (COLLATZ-2 (TO-DF 10)) 6))
 :PASSED
ACL2 !>>(ASSERT-EVENT (DF= (COLLATZ-2 (TO-DF 100)) 25))
 :PASSED
ACL2 !>>(DEFEXEC F26 (X Y)
                 (DECLARE (XARGS :GUARD (NATP X) :DFS (Y))
                          (EXEC-XARGS :DEFAULT-VALUE (TO-DF 1)))
                 (MBE :LOGIC
                      (IF (ZP X)
                          Y
                        (DF* (TO-DF X) (F26 (- X 1) Y)))
                      :EXEC
                      (IF (= X 0)
                          Y
                        (DF* (TO-DF X) (F26 (- X 1) Y)))))
To verify that the two encapsulated events correctly extend the current
theory we will evaluate them.  The theory thus constructed is only
ephemeral.
Encapsulated Events:
ACL2 !>>>(LOCAL (ENCAPSULATE NIL
                  (SET-IGNORE-OK T)
                  (SET-IRRELEVANT-FORMALS-OK T)
                  (LOCAL (DEFUN F26 (X Y)
                           (DECLARE (XARGS :VERIFY-GUARDS NIL :DFS (Y)))
                           (IF (NATP X)
                               (IF (= X 0)
                                   Y
                                 (DF* (TO-DF X) (F26 (- X 1) Y)))
                             (TO-DF 1))))
                  (LOCAL (DEFTHM F26-GUARD-IMPLIES-TEST
                           (IMPLIES (NATP X) (NATP X))
                           :RULE-CLASSES NIL))))
To verify that the four encapsulated events correctly extend the current
theory we will evaluate them.  The theory thus constructed is only
ephemeral.
Encapsulated Events:
ACL2 !>>>(SET-IGNORE-OK T)
T
ACL2 !>>>(SET-IRRELEVANT-FORMALS-OK T)
T
ACL2 !>>>(LOCAL (DEFUN F26 (X Y)
                  (DECLARE (XARGS :VERIFY-GUARDS NIL :DFS (Y)))
                  (IF (NATP X)
                      (IF (= X 0)
                          Y
                        (DF* (TO-DF X) (F26 (- X 1) Y)))
                    (TO-DF 1))))
For the admission of F26 we will use the relation O< (which is known
to be well-founded on the domain recognized by O-P) and the measure
(ACL2-COUNT X).  The non-trivial part of the measure conjecture is
Goal
(IMPLIES (AND (NATP X) (NOT (= X 0)))
         (O< (ACL2-COUNT (+ -1 X))
             (ACL2-COUNT X))).
Goal'
Q.E.D.
That completes the proof of the measure theorem for F26.  Thus, we
admit this function under the principle of definition.  We observe
that the type of F26 is described by the theorem 
(OR (RATIONALP (F26 X Y)) (EQUAL (F26 X Y) Y)).  We used the :type-
prescription rule BINARY-DF*.
(F26 * :DF) => :DF.
Summary
Form:  ( DEFUN F26 ...)
Rules: ((:DEFINITION =)
        (:DEFINITION NATP)
        (:DEFINITION NOT)
        (:TYPE-PRESCRIPTION BINARY-DF*))
F26
ACL2 !>>>(LOCAL (DEFTHM F26-GUARD-IMPLIES-TEST
                  (IMPLIES (NATP X) (NATP X))
                  :RULE-CLASSES NIL))
Q.E.D.
Summary
Form:  ( DEFTHM F26-GUARD-IMPLIES-TEST ...)
Rules: ((:COMPOUND-RECOGNIZER NATP-COMPOUND-RECOGNIZER))
F26-GUARD-IMPLIES-TEST
End of Encapsulated Events.
Having verified that the encapsulated events validate the signatures
of the ENCAPSULATE event, we discard the ephemeral theory and extend
the original theory as directed by the signatures and the non-LOCAL
events.
Summary
Form:  ( ENCAPSULATE NIL (SET-IGNORE-OK T) ...)
Rules: NIL
T
ACL2 !>>>(DEFUN F26 (X Y)
           (DECLARE (XARGS :GUARD (NATP X) :DFS (Y)))
           (MBE :LOGIC
                (IF (ZP X)
                    Y
                  (DF* (TO-DF X) (F26 (- X 1) Y)))
                :EXEC
                (IF (= X 0)
                    Y
                  (DF* (TO-DF X) (F26 (- X 1) Y)))))
The admission of F26 is trivial, using the relation O< (which is known
to be well-founded on the domain recognized by O-P) and the measure
(ACL2-COUNT X).  We observe that the type of F26 is described by the
theorem (OR (RATIONALP (F26 X Y)) (EQUAL (F26 X Y) Y)).  We used the
:type-prescription rule BINARY-DF*.
(F26 * :DF) => :DF.
Computing the guard conjecture for F26....
The non-trivial part of the guard conjecture for F26, given the :compound-
recognizer rule NATP-COMPOUND-RECOGNIZER and primitive type reasoning,
is
Goal
(IMPLIES (AND (NATP X) (DFP Y))
         (EQUAL (IF (ZP X)
                    Y
                  (DF* (TO-DF X) (F26 (+ -1 X) Y)))
                (IF (= X 0)
                    Y
                  (DF* (TO-DF X) (F26 (+ -1 X) Y))))).
Goal'
Goal''
Q.E.D.
That completes the proof of the guard theorem for F26.  F26 is compliant
with Common Lisp.
Summary
Form:  ( DEFUN F26 ...)
Rules: ((:COMPOUND-RECOGNIZER NATP-COMPOUND-RECOGNIZER)
        (:DEFINITION =)
        (:DEFINITION BINARY-DF*)
        (:DEFINITION NATP)
        (:DEFINITION NOT)
        (:EXECUTABLE-COUNTERPART <)
        (:EXECUTABLE-COUNTERPART BINARY-+)
        (:EXECUTABLE-COUNTERPART INTEGERP)
        (:EXECUTABLE-COUNTERPART NOT)
        (:EXECUTABLE-COUNTERPART TAU-SYSTEM)
        (:EXECUTABLE-COUNTERPART TO-DF)
        (:EXECUTABLE-COUNTERPART ZP)
        (:FAKE-RUNE-FOR-TYPE-SET NIL)
        (:TYPE-PRESCRIPTION BINARY-DF*))
F26
End of Encapsulated Events.
Having verified that the encapsulated events validate the signatures
of the ENCAPSULATE event, we discard the ephemeral theory and extend
the original theory as directed by the signatures and the non-LOCAL
events.
We export F26.
Summary
Form:  ( ENCAPSULATE NIL (LOCAL ...) ...)
Rules: NIL
 T
ACL2 !>>(ASSERT-EVENT (DF= (F26 3 (TO-DF 7)) 42))
 :PASSED
ACL2 !>>(DEFUN F27-BAD (X)
          (IF (CONSP X)
              (MV-LET (Y Z)
                      (F27-BAD (CDR X))
                (MV Y Z))
            (MV (DF0) X)))
ACL2 Error [Translate] in ( DEFUN F27-BAD ...):  It is illegal to invoke
DF0 here because of a signature mismatch.  This function call returns
a result of shape :DF where a result of shape * is required.  Note:
this error occurred in the context (DF0).
Summary
Form:  ( DEFUN F27-BAD ...)
Rules: NIL
ACL2 Error [Failure] in ( DEFUN F27-BAD ...):  See :DOC failure.
******** FAILED ********
ACL2 !>>(DEFUN F27 (X)
          (IF (CONSP X)
              (MV-LET (Y Z)
                      (F27 (CDR X))
                (DECLARE (TYPE DOUBLE-FLOAT Y))
                (MV Y Z))
            (MV (DF0) X)))
The admission of F27 is trivial, using the relation O< (which is known
to be well-founded on the domain recognized by O-P) and the measure
(ACL2-COUNT X).  We observe that the type of F27 is described by the
theorem (AND (CONSP (F27 X)) (TRUE-LISTP (F27 X))).  We used primitive
type reasoning.
(F27 *) => (MV :DF *).
Summary
Form:  ( DEFUN F27 ...)
Rules: ((:FAKE-RUNE-FOR-TYPE-SET NIL))
 F27
ACL2 !>>(DEFUN F27-EASY (X)
          (IF (NOT (CONSP X))
              (MV (DF0) X)
            (MV-LET (Y Z)
                    (F27-EASY (CDR X))
              (MV Y Z))))
The admission of F27-EASY is trivial, using the relation O< (which
is known to be well-founded on the domain recognized by O-P) and the
measure (ACL2-COUNT X).  We observe that the type of F27-EASY is described
by the theorem (AND (CONSP (F27-EASY X)) (TRUE-LISTP (F27-EASY X))).
We used primitive type reasoning.
(F27-EASY *) => (MV :DF *).
Summary
Form:  ( DEFUN F27-EASY ...)
Rules: ((:FAKE-RUNE-FOR-TYPE-SET NIL))
 F27-EASY
ACL2 !>>(DEFUN F28-BAD (X)
          (IF (CONSP X)
              (MV-LET (Y Z)
                      (MV (TO-DF (CAR X)) (F28-BAD (CDR X)))
                (DF+ Y Z))
            (DF1)))
ACL2 Error [Translate] in ( DEFUN F28-BAD ...):  It is illegal to invoke
BINARY-DF+ here because of a signature mismatch.  This function call
returns a result of shape :DF where a result of shape * is required.
Note:  this error occurred in the context (BINARY-DF+ Y Z).
Summary
Form:  ( DEFUN F28-BAD ...)
Rules: NIL
ACL2 Error [Failure] in ( DEFUN F28-BAD ...):  See :DOC failure.
******** FAILED ********
ACL2 !>>(DEFUN F28 (X)
          (IF (CONSP X)
              (MV-LET (Y Z)
                      (MV (TO-DF (CAR X)) (F28 (CDR X)))
                (DECLARE (TYPE DOUBLE-FLOAT Z))
                (DF+ Y Z))
            (DF1)))
The admission of F28 is trivial, using the relation O< (which is known
to be well-founded on the domain recognized by O-P) and the measure
(ACL2-COUNT X).  We observe that the type of F28 is described by the
theorem (RATIONALP (F28 X)).  We used the :type-prescription rule BINARY-DF+.
(F28 *) => :DF.
Summary
Form:  ( DEFUN F28 ...)
Rules: ((:TYPE-PRESCRIPTION BINARY-DF+))
 F28
ACL2 !>>(DEFUN F28-ALT (X)
          (IF (CONSP X)
              (MV-LET (Y Z)
                      (MV (TO-DF (CAR X)) (F28-ALT (CDR X)))
                (DECLARE (TYPE DOUBLE-FLOAT Y Z))
                (DF+ Y Z))
            (DF1)))
The admission of F28-ALT is trivial, using the relation O< (which is
known to be well-founded on the domain recognized by O-P) and the measure
(ACL2-COUNT X).  We observe that the type of F28-ALT is described by
the theorem (RATIONALP (F28-ALT X)).  We used the :type-prescription
rule BINARY-DF+.
(F28-ALT *) => :DF.
Summary
Form:  ( DEFUN F28-ALT ...)
Rules: ((:TYPE-PRESCRIPTION BINARY-DF+))
 F28-ALT
ACL2 !>>(DEFUN F29 (X)
          (IF (CONSP X)
              (MV-LET (Y Z)
                      (MV (CAR X) (F29 (CDR X)))
                (DECLARE (TYPE DOUBLE-FLOAT Y Z))
                (DF+ (TO-DF Y) Z))
            (DF1)))
ACL2 Error [Translate] in ( DEFUN F29 ...):  The bound variable list
(Y Z) from an MV-LET expression has been found not to be compatible
with the ``types'' (each a stobj name or an indicator of a non-stobj
object) computed for them, (NIL :DF).
If dfs are involved (see :DOC df), then proper double-float type declarations
may help.  Note:  this error occurred in the context 
(MV-LET (Y Z)
        (MV (CAR X) (F29 (CDR X)))
  (DECLARE (TYPE DOUBLE-FLOAT Y Z))
  (DF+ (TO-DF Y) Z)).
Summary
Form:  ( DEFUN F29 ...)
Rules: NIL
ACL2 Error [Failure] in ( DEFUN F29 ...):  See :DOC failure.
******** FAILED ********
ACL2 !>>(MUTUAL-RECURSION
          (DEFUN F30-BAD1 (X)
            (IF (CONSP X)
                (MV (TO-DF (CAR X)) (F31-BAD1 (CDR X)))
              (MV (DF0) (DF1))))
          (DEFUN F31-BAD1 (X)
            (IF (CONSP X)
                (MV-LET (U V)
                        (F30-BAD1 (CDR X))
                  (DF+ (TO-DF (CAR X)) (DF+ U V)))
              (DF1))))
ACL2 Error [Translate] in ( MUTUAL-RECURSION ... ( DEFUN F30-BAD1 ...)
...):  It is illegal to invoke DF1 here because of a signature mismatch.
This function call returns a result of shape :DF where a result of
shape * is required.  Note:  this error occurred in the context (DF1).
Summary
Form:  ( MUTUAL-RECURSION ( DEFUN F30-BAD1 ...) ...)
Rules: NIL
ACL2 Error [Failure] in ( MUTUAL-RECURSION ( DEFUN F30-BAD1 ...) ...):
See :DOC failure.
******** FAILED ********
ACL2 !>>(MUTUAL-RECURSION
          (DEFUN F31-BAD2 (X)
            (IF (CONSP X)
                (MV-LET (U V)
                        (F30-BAD2 (CDR X))
                  (DF+ (TO-DF (CAR X)) (DF+ U V)))
              (DF1)))
          (DEFUN F30-BAD2 (X)
            (IF (CONSP X)
                (MV (TO-DF (CAR X)) (F31-BAD2 (CDR X)))
              (MV (DF0) (DF1)))))
ACL2 Error [Translate] in ( MUTUAL-RECURSION ... ( DEFUN F31-BAD2 ...)
...):  The form U represents an ordinary object, but it is being used
where a form representing a :DF was expected.  See :DOC df.  Note:
this error occurred in the context (BINARY-DF+ U V).
Summary
Form:  ( MUTUAL-RECURSION ( DEFUN F31-BAD2 ...) ...)
Rules: NIL
ACL2 Error [Failure] in ( MUTUAL-RECURSION ( DEFUN F31-BAD2 ...) ...):
See :DOC failure.
******** FAILED ********
ACL2 !>>(MUTUAL-RECURSION
          (DEFUN F30-GOOD1 (X)
            (IF (NOT (CONSP X))
                (MV (DF0) (DF1))
              (MV (TO-DF (CAR X))
                  (F31-GOOD1 (CDR X)))))
          (DEFUN F31-GOOD1 (X)
            (IF (CONSP X)
                (MV-LET (U V)
                        (F30-GOOD1 (CDR X))
                  (DF+ (TO-DF (CAR X)) (DF+ U V)))
              (DF1))))
The admission of F30-GOOD1 and F31-GOOD1 are trivial, using the relation
O< (which is known to be well-founded on the domain recognized by O-P)
and the measure (ACL2-COUNT X) for F30-GOOD1 and (ACL2-COUNT X) for
F31-GOOD1.  We observe that the type of F30-GOOD1 is described by the
theorem (AND (CONSP (F30-GOOD1 X)) (TRUE-LISTP (F30-GOOD1 X))) and
the type of F31-GOOD1 is described by the theorem (RATIONALP (F31-GOOD1 X)).
The Non-simple Signatures:
(F30-GOOD1 *) => (MV :DF :DF).
(F31-GOOD1 *) => :DF.
Summary
Form:  ( MUTUAL-RECURSION ( DEFUN F30-GOOD1 ...) ...)
Rules: ((:FAKE-RUNE-FOR-TYPE-SET NIL)
        (:TYPE-PRESCRIPTION BINARY-DF+))
 (F30-GOOD1 F31-GOOD1)
ACL2 !>>(MUTUAL-RECURSION
          (DEFUN F30-GOOD2 (X)
            (IF (CONSP X)
                (MV (TO-DF (CAR X))
                    (THE DOUBLE-FLOAT (F31-GOOD2 (CDR X))))
              (MV (DF0) (DF1))))
          (DEFUN F31-GOOD2 (X)
            (IF (CONSP X)
                (MV-LET (U V)
                        (F30-GOOD2 (CDR X))
                  (DF+ (TO-DF (CAR X)) (DF+ U V)))
              (DF1))))
The admission of F30-GOOD2 and F31-GOOD2 are trivial, using the relation
O< (which is known to be well-founded on the domain recognized by O-P)
and the measure (ACL2-COUNT X) for F30-GOOD2 and (ACL2-COUNT X) for
F31-GOOD2.  We observe that the type of F30-GOOD2 is described by the
theorem (AND (CONSP (F30-GOOD2 X)) (TRUE-LISTP (F30-GOOD2 X))) and
the type of F31-GOOD2 is described by the theorem (RATIONALP (F31-GOOD2 X)).
The Non-simple Signatures:
(F30-GOOD2 *) => (MV :DF :DF).
(F31-GOOD2 *) => :DF.
Summary
Form:  ( MUTUAL-RECURSION ( DEFUN F30-GOOD2 ...) ...)
Rules: ((:FAKE-RUNE-FOR-TYPE-SET NIL)
        (:TYPE-PRESCRIPTION BINARY-DF+))
 (F30-GOOD2 F31-GOOD2)
ACL2 !>>(DEFTTAG :FLOATING-POINT)
 :FLOATING-POINT
ACL2 !>>(DEFMACRO RAW-CHECK (FORM &OPTIONAL (RAW-FORM 'NIL RAW-FORM-P))
         (CONS
          'LD
          (CONS
           (CONS
            'QUOTE
            (CONS
             (CONS
              '(SET-RAW-MODE NIL)
              (CONS
               (CONS
                'ER-LET*
                (CONS
                 (CONS (CONS 'STOBJS-OUT/VAL
                             (CONS (CONS 'TRANS-EVAL
                                         (CONS (CONS 'QUOTE (CONS FORM 'NIL))
                                               '('RAW-CHECK STATE NIL)))
                                   'NIL))
                       'NIL)
                 '((ASSIGN RAW-CHECK-XXX (CDR STOBJS-OUT/VAL)))))
               (CONS
                '(SET-RAW-MODE T)
                (CONS
                 (CONS
                  'LET
                  (CONS
                   (CONS (CONS 'RAW-CHECK-YYY
                               (CONS (IF RAW-FORM-P RAW-FORM FORM)
                                     'NIL))
                         'NIL)
                   (CONS
                    (CONS
                     'IF
                     (CONS
                      '(IF (TYPEP RAW-CHECK-YYY 'REAL)
                           (= (@ RAW-CHECK-XXX) RAW-CHECK-YYY)
                         (EQUAL (@ RAW-CHECK-XXX) RAW-CHECK-YYY))
                      (CONS
                       '(PPROGN
                             (PRINC$ "Raw-check success" (STANDARD-CO STATE)
                                     STATE)
                             (NEWLINE (STANDARD-CO STATE) STATE))
                       (CONS
                        (CONS
                         'FMS
                         (CONS
                          '"Raw-check failed for~|~x0~@1~|"
                          (CONS
                           (CONS
                            'LIST
                            (CONS
                             (CONS 'CONS
                                   (CONS '#\0
                                         (CONS (CONS 'QUOTE (CONS FORM 'NIL))
                                               'NIL)))
                             (CONS
                              (CONS
                               'CONS
                               (CONS
                                '#\1
                                (CONS
                                 (IF RAW-FORM-P
                                  (CONS
                                   'MSG
                                   (CONS
                                     '"~|and raw form~|~x0"
                                     (CONS (CONS 'QUOTE (CONS RAW-FORM 'NIL))
                                           'NIL)))
                                  "")
                                 'NIL)))
                              'NIL)))
                           '((STANDARD-CO STATE) STATE NIL))))
                        'NIL))))
                    'NIL)))
                 '((SET-RAW-MODE NIL) (VALUE :Q))))))
             'NIL))
           '(:LD-VERBOSE NIL
                         :LD-PROMPT NIL
                         :LD-PRE-EVAL-PRINT NIL
                         :LD-POST-EVAL-PRINT NIL))))
Summary
Form:  ( DEFMACRO RAW-CHECK ...)
Rules: NIL
 RAW-CHECK
ACL2 !>>(RAW-CHECK (EQUAL 3 3))
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (EQUAL 3 3) (= 3 3))
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (WITH-GUARD-CHECKING NIL (EQ '(A) '(A))))
Raw-check failed for
(WITH-GUARD-CHECKING NIL (EQ '(A) '(A)))
 :EXIT
ACL2 !>>(RAW-CHECK (WITH-GUARD-CHECKING NIL (EQ '(A) '(A)))
                   (EQ '(A) '(A)))
Raw-check failed for
(WITH-GUARD-CHECKING NIL (EQ '(A) '(A)))
and raw form
(EQ '(A) '(A))
 :EXIT
ACL2 !>>(RAW-CHECK (DF+ 2769713770832855/2251799813685248))
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (DF+ 2769713770832855/2251799813685248)
                   (+ (EVAL (READ-FROM-STRING "1.23"))))
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (DF+ 3 4)
                   (EVAL (READ-FROM-STRING "7.0")))
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (DF+ 9/16
                        1/4 6980579422424269/2251799813685248))
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (DF+ (TO-DF 1/3) 1/4))
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (DF/ (TO-DF 1/3) 1/4))
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (DFP 'ABC))
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (DFP 'ABC) NIL)
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (FROM-DF (TO-DF 1/4)))
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (FROM-DF (TO-DF 1/3)))
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (TO-DF 31/10))
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (TO-DFP 31/10))
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (NOT (EQUAL (TO-DFP 31/10) 31/10)))
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (NOT (DF= (DF+ 3602879701896397/36028797018963968
                                  (DF+ 3602879701896397/18014398509481984
                                       5404319552844595/18014398509481984))
                             (DF+ (DF+ 3602879701896397/36028797018963968
                                       3602879701896397/18014398509481984)
                                  5404319552844595/18014398509481984))))
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (LET ((X (TO-DF 3602879701896397/36028797018963968))
                         (Y (TO-DF 3602879701896397/18014398509481984))
                         (Z (TO-DF 5404319552844595/18014398509481984)))
                     (NOT (DF= (DF+ (DF+ X Y) Z)
                               (DF+ X (DF+ Y Z))))))
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (DF+ (IDENTITY-MACRO 1/4) 1/2)
                   (EVAL (READ-FROM-STRING "0.75")))
ACL2 Error [Translate] in RAW-CHECK:  The form 1/4 represents an ordinary
object, but it is being used where a form representing a :DF was expected.
See :DOC df.  Note:  this error occurred in the context (IDENTITY-MACRO 1/4).
 (:STOP-LD 3)
ACL2 !>>(RAW-CHECK (DF-RATIONALIZE (TO-DF 1/3)))
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (DF-RATIONALIZE (TO-DF 1/3))
                   (RATIONALIZE (TO-DF 1/3)))
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (RIZE 1/3)
                   (RATIONALIZE (FLOAT 1/3 (EVAL (READ-FROM-STRING "0.0")))))
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (RIZE *DF-PI*))
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (RIZE *DF-PI*)
                   (RATIONALIZE PI))
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (F1 3))
Raw-check success
 :EXIT
ACL2 !>>(RAW-CHECK (F1 (TO-DF 3)))
Raw-check success
 :EXIT
ACL2 !>>(DEFTTAG NIL)
 NIL
ACL2 !>>Bye.
 
     |