File: lp17.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (1003 lines) | stat: -rw-r--r-- 37,151 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
; Copyright (C) 2022, ForrestHunt, Inc.
; Written by J Strother Moore
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.
; Release approved by DARPA with "DISTRIBUTION STATEMENT A. Approved
; for public release. Distribution is unlimited."

; (certify-book "lp17")
; (ld "lp17.lisp" :ld-pre-eval-print t)

(in-package "ACL2")
(include-book "projects/apply/top" :dir :system)

; In our solutions below we usually demonstrate both the Tedious Recipe and
; then the more Direct Alternative that the experienced ACL2 user might use.
; Recall that the Tedious Recipe calls for defining a function fn, proving
; lemma 1, which says the generalized, normalize loop$ computes fn, proving
; lemma 2, which says fn computes the desired answer, and then main, which says
; the loop$ computes the desired answer.  In the more direct approach we don't
; need fn and we combine lemmas 1 and 2.

; In our demonstrations below, we follow the Tedious Recipe and prove main.
; Then we disable the work just done and prove the combined lemmas 1 and 2
; (into lemma-1&2) without mentioning fn.  The key is that generalized DO
; loop$s suggest the inductions that unwind them.  In our demonstrations we
; don't bother to prove main again using just lemma-1&2 since it is obvious the
; proof would be the same as the previous proof that used lemma 1 and then
; lemma 2.

; -----------------------------------------------------------------
; LP17-1

; Write a do loop$ that reverses the list lst.  For example, if lst is (A B C)
; the result should be (C B A).  Prove that your do loop$ is equal to (rev
; lst), where

; Our first solution follows the Tedious Recipe closely.

(defun rev (x)
  (if (endp x)
      nil
      (append (rev (cdr x)) (list (car x)))))

; This function does what our loop$ does.

(defun rev1 (x ac)
  (if (endp x)
      ac
      (rev1 (cdr x) (cons (car x) ac))))

; Lemma 1 establishes that our generalized loop$ is equal to the function we
; defined.

(defthm lp17-1-lemma1
  (equal (loop$ with x = lst
                with ans = ans0
                do
                (if (consp x)
                    (progn (setq ans (cons (car x) ans))
                           (setq x (cdr x)))
                    (return ans)))
         (rev1 lst ans0)))

; Lemma 2 establishes the function is appropriately related to rev.

(defthm lp17-1-lemma2
  (equal (rev1 lst ans0)
         (append (rev lst) ans0)))

; Note that we could have stated our main theorem with endp instead of consp
; and the required lemma1 would be unchanged.

(defthm lp17-1-main
  (equal (loop$ with x = lst
                with ans = nil
                do
                (if (consp x)
                    (progn (setq ans (cons (car x) ans))
                           (setq x (cdr x)))
                    (return ans)))
         (rev lst)))

; Direct Alternative:

; Now we demonstrate that we don't really need to introduce rev1.  A
; generalized DO loop$ suggests the induction that unwinds it.  So we can just
; combine lemmas 1 and 2.  But first we have to disable the lemmas above so we
; construct the next proof from scratch.

(in-theory (disable lp17-1-lemma1 lp17-1-lemma2 lp17-1-main))

; Following The Method, we tried to prove the generalized normalized lemma,
; lp17-1-lemma-1&2 below, first and it failed with a checkpoint suggesting the
; associativity of append.  We actually used that fact in the proof of
; lp17-lemma-1 above, but it was heuristically discovered and proved in the
; course of that proof.  However, it was not recorded as a rule and it is not
; discovered again in the attempt at lp17-1-lemma-1&2 because the do$ term
; confuses the heuristics.  But the checkpoint suggests we prove this:

(defthm assoc-of-append
  (equal (append (append a b) c)
         (append a (append b c))))

; Then we prove the generalized, normalized, combined lemmas 1 and 2:

(defthm lp17-1-lemma-1&2
  (equal (loop$ with x = lst
                with ans = ans0
                do
                (if (consp x)
                    (progn (setq ans (cons (car x) ans))
                           (setq x (cdr x)))
                    (return ans)))
         (append (rev lst) ans0)))

; Clearly we could prove lp17-1-main using this, since it's just the
; composition of the two lemmas actually used in the first proof.  So we'll
; quit, having made the point: a generalized DO loop$ suggests the induction
; that unwinds it.

; -----------------------------------------------------------------
; LP17-2

; Write a do loop$ that computes (member e lst) and prove it correct.

(defthm lp17-2
  (equal (loop$ with x = lst
                do
                (if (consp x)
                    (if (equal (car x) e)
                        (return x)
                        (setq x (cdr x)))
                    (return nil)))
         (member e lst)))

; -----------------------------------------------------------------
; LP17-3

; Prove the following:

; (defthm lp17-3-main
;   (equal (loop$ with x = lst
;                 with ans = 0
;                 do
;                 (cond ((endp x) (return ans))
;                       (t (progn (setq ans (+ 1 ans))
;                                 (setq x (cdr x))))))
;          (len lst)))

; Tedious Recipe:

(defun len-ac (x ans)
  (if (consp x)
      (len-ac (cdr x) (+ 1 ans))
      ans))

(defthm lp17-3-lemma1
  (equal (loop$ with x = lst
                with ans = ans0
                do
                (if (consp x)
                    (progn (setq ans (+ 1 ans))
                           (setq x (cdr x)))
                    (return ans)))
         (len-ac lst ans0)))

(defthm lp17-3-lemma2
  (implies (acl2-numberp ans0)
           (equal (len-ac lst ans0)
                  (+ ans0 (len lst)))))

(defthm lp17-3-main-via-recipe
  (equal (loop$ with x = lst
                with ans = 0
                do
                (cond ((endp x) (return ans))
                      (t (progn (setq ans (+ 1 ans))
                                (setq x (cdr x))))))
         (len lst)))


; Direct Alternative:

(in-theory (disable lp17-3-lemma1 lp17-3-lemma2 lp17-3-main-via-recipe))

(defthm lp17-3-lemma-1&2
  (implies (acl2-numberp ans0)
           (equal (loop$ with x = lst
                         with ans = ans0
                         do
                         (if (consp x)
                             (progn (setq ans (+ 1 ans))
                                    (setq x (cdr x)))
                             (return ans)))
                  (+ ans0 (len lst)))))

;-----------------------------------------------------------------
; lp17-4

; Write a do loop$ that computes (nth n lst), when n is a natural number.
; Prove it correct.

; This is a fully generalized loop$ as written, so we can just prove the
; theorem...

(defthm lp17-4
  (implies (natp n)
           (equal (loop$ with x = lst
                         with i = n
                         do
                         (cond ((endp x) (return nil))
                               ((equal i 0) (return (car x)))
                               (t (progn (setq i (- i 1))
                                         (setq x (cdr x))))))
                  (nth n lst))))

; -----------------------------------------------------------------
; lp17-5

; Prove the following:

; (defthm lp17-5-main
;   (implies (true-listp lst)
;            (equal (loop$ with x = lst
;                          with ans = nil
;                          do
;                          (cond ((endp x) (return ans))
;                                (t (progn (setq ans (append ans (list (car x))))
;                                          (setq x (cdr x))))))
;                   lst)))

; Tedious Recipe:

(defun copy-ac (x ans)
  (if (consp x)
      (copy-ac (cdr x) (append ans (list (car x))))
      ans))

(defthm lp17-5-lemma1
  (equal (loop$ with x = lst
                with ans = ans0
                do
                (if (consp x)
                    (progn (setq ans (append ans (list (car x))))
                           (setq x (cdr x)))
                    (return ans)))
         (copy-ac lst ans0)))

; We have to give the :induct hint below, because otherwise the prover does the
; simpler induction suggested by (append ans0 lst).

(defthm lp17-5-lemma2
  (implies (and (true-listp lst)
                (true-listp ans0))
           (equal (copy-ac lst ans0)
                  (append ans0 lst)))
  :hints (("Goal" :induct (copy-ac lst ans0))))

(defthm lp17-5-main
  (implies (true-listp lst)
           (equal (loop$ with x = lst
                         with ans = nil
                         do
                         (cond
                          ((endp x) (return ans))
                          (t (progn (setq ans (append ans (list (car x))))
                                    (setq x (cdr x))))))
                  lst)))

; Direct Alternative:

(in-theory (disable lp17-5-lemma1 lp17-5-lemma2 lp17-5-main))

; The system chooses the induction suggested by append, so we have to give an
; induct hint, but we don't need copy-ac to express it: we can use the DO loop$
; to give the hint.

(defthm lp17-5-lemma-1&2
  (implies (and (true-listp lst)
                (true-listp ans0))
           (equal (loop$ with x = lst
                         with ans = ans0
                         do
                         (if (consp x)
                             (progn (setq ans (append ans (list (car x))))
                                    (setq x (cdr x)))
                             (return ans)))
                  (append ans0 lst)))
  :hints (("Goal"
           :induct 
           (loop$ with x = lst
                  with ans = ans0
                  do
                  (if (consp x)
                      (progn (setq ans (append ans (list (car x))))
                             (setq x (cdr x)))
                      (return ans))))))
; -----------------------------------------------------------------
; lp17-6

; Prove the following.

; (defthm lp17-6-main
;   (implies (and (natp m)
;                 (natp n))
;            (equal (loop$ with i = m
;                          with j = n
;                          do
;                          (if (zp i)
;                              (return j)
;                              (progn (setq i (- i 1))
;                                     (setq j (+ j 1)))))
;                   (+ m n))))

; Tedious Recipe:

(defun plus-ac (i j)
  (if (zp i)
      j
      (plus-ac (- i 1) (+ j 1))))

(defthm lp17-6-lemma1
  (implies (and (natp m)
                (natp n))
           (equal (loop$ with i = m
                         with j = n
                         do
                         (if (integerp i)
                             (if (< 0 i)
                                 (progn (setq i (- i 1))
                                        (setq j (+ 1 j)))
                                 (return j))
                             (return j)))
                  (plus-ac m n))))

(defthm lp17-6-lemma2
  (implies (and (natp m)
                (natp n))
           (equal (plus-ac m n)
                  (+ m n))))

(defthm lp17-6-main
  (implies (and (natp m)
                (natp n))
           (equal (loop$ with i = m
                         with j = n
                         do
                         (if (zp i)
                             (return j)
                             (progn (setq i (- i 1))
                                    (setq j (+ j 1)))))
                  (+ m n))))

; Direct Alternative:

(in-theory (disable lp17-6-lemma1 lp17-6-lemma2 lp17-6-main))

(defthm lp17-6-lemma-1&2
  (implies (and (natp m)
                (natp n))
           (equal (loop$ with i = m
                         with j = n
                         do
                         (if (integerp i)
                             (if (< 0 i)
                                 (progn (setq i (- i 1))
                                        (setq j (+ 1 j)))
                                 (return j))
                             (return j)))
                  (+ m n))))

; -----------------------------------------------------------------
; lp17-7

; Write a do loop$ that computes (fact n), for natural number n, where

(defun fact (n)
  (if (zp n)
      1
      (* n (fact (- n 1)))))

; and prove it correct.

; Tedious Recipe:

(defun fact-ac (n ans)
  (if (zp n)
      ans
      (fact-ac (- n 1) (* ans n))))

(defthm lp17-7-lemma1
  (implies (natp n)
           (equal (loop$ with i = n
                         with ans = ans0
                         do
                         (if (integerp i)
                             (if (< 0 i)
                                 (progn (setq ans (* i ans))
                                        (setq i (- i 1)))
                                 (return ans))
                             (return ans)))
                  (fact-ac n ans0))))

(defthm lp17-7-lemma2
  (implies (and (natp n)
                (natp ac0))
           (equal (fact-ac n ac0)
                  (* (fact n) ac0))))

(defthm lp17-7-main
  (implies (natp n)
           (equal (loop$ with i = n
                         with ans = 1
                         do
                         (if (zp i)
                             (return ans)
                             (progn (setq ans (* i ans))
                                    (setq i (- i 1)))))
                  (fact n))))

; Direct Alternative:

(in-theory (disable lp17-7-lemma1 lp17-7-lemma2 lp17-7-main))

; We need the so-called law of commutativity2 of multiplication to normalize
; different nests of multiplications.  The normal user would just include one
; of the standard arithmetic books.  But just to demonstrate that all we need
; is that one rule, we prove it from first principles.  The proof is

;    (* y (* x z))
; =  (* (* y x) z) ; associativity (rewriting right-to-left)
; =  (* (* x y) z) ; commutativity
; =  (* x (* y z)) ; associativity (rewriting left-to-right)


; Because associativity has to be used ``both ways'' we have to disable it and
; give hints.  This is a standard proof while building up an effective set of
; rewrite rules from the standard axioms of arithmetic.

(defthm commutativity2-of-*
  (equal (* y (* x z))
         (* x (* y z)))
  :hints (("Goal"
           :in-theory (disable associativity-of-*)
           :use ((:instance associativity-of-*
                            (x y)
                            (y x)
                            (z z))
                 (:instance associativity-of-*
                            (x x)
                            (y y)
                            (z z))))))

(defthm lp17-7-lemma-1&2
  (implies (and (natp n)
                (natp ans0))
           (equal (loop$ with i = n
                         with ans = ans0
                         do
                         (if (integerp i)
                             (if (< 0 i)
                                 (progn (setq ans (* i ans))
                                        (setq i (- i 1)))
                                 (return ans))
                             (return ans)))
                  (* (fact n) ans0))))

; -----------------------------------------------------------------
; LP17-8

; Scan a list of numbers once and return the sum of the elements and the sum of
; the squares (with sq) of the elements as a cons pair.  E.g., given (1 2 3 4
; 5) return (cons (+ 1 2 3 4 5) (+ (sq 1) (sq 2) (sq 3) (sq 4) (sq 5))) = (15
; . 55).

; Prove that your do loop$ is equal to

; (cons (loop$ for e in lst sum e)
;       (loop$ for e in lst sum (sq e)))

; Tedious Recipe:

(defun sq (x) (* x x))
(defwarrant sq)

(defun sum-and-sum-sq (lst u v)
  (cond
   ((endp lst) (cons u v))
   (t (sum-and-sum-sq (cdr lst)
                      (+ (car lst) u)
                      (+ (sq (car lst)) v)))))

(defthm lp17-8-lemma1
  (implies (warrant sq)
           (equal (loop$ with lst = lst0
                         with u = u0
                         with v = v0
                         do
                         (cond ((consp lst)
                                (progn (setq u (+ u (car lst)))
                                         (setq v (+ v (* (car lst) (car lst))))
                                         (setq lst (cdr lst))))
                               (t (return (cons u v)))))
                  (sum-and-sum-sq lst0 u0 v0))))

(defthm lp17-8-lemma2
  (implies (and (warrant sq)
                (acl2-numberp u0)
                (acl2-numberp v0))
           (equal (sum-and-sum-sq lst0 u0 v0)
                  (cons (+ u0 (loop$ for e in lst0 sum e))
                        (+ v0 (loop$ for e in lst0 sum (sq e)))))))

(defthm lp17-8-main
  (implies (warrant sq)
           (equal (loop$ with lst = lst
                         with u = 0
                         with v = 0
                         do
                         (cond ((endp lst) (return (cons u v)))
                               (t (progn (setq u (+ (car lst) u))
                                         (setq v (+ (sq (car lst)) v))
                                         (setq lst (cdr lst))))))
                  (cons (loop$ for e in lst sum e)
                        (loop$ for e in lst sum (sq e))))))

; Direct Alternative:

(in-theory (disable lp17-8-lemma1 lp17-8-lemma2 lp17-8-main))

(defthm lp17-8-lemma-1&2
  (implies (and (warrant sq)
                (acl2-numberp u0)
                (acl2-numberp v0))
           (equal (loop$ with lst = lst0
                         with u = u0
                         with v = v0
                         do
                         (cond ((consp lst)
                                (progn (setq u (+ u (car lst)))
                                       (setq v (+ v (* (car lst) (car lst))))
                                       (setq lst (cdr lst))))
                               (t (return (cons u v)))))
                  (cons (+ u0 (loop$ for e in lst0 sum e))
                        (+ v0 (loop$ for e in lst0 sum (sq e)))))))

; -----------------------------------------------------------------
; LP17-9

; Define (partition-symbols lst) with a do loop$ that partitions lst into two
; lists, one containing all the symbols in lst and the other containing
; all the non-symbols.  Return the cons of the two partitions and prove it
; partition-symbols.

; Hint: Since you are likely to collect the elements in reverse order, a
; suitable specification for these purposes is that your loop$ is equal to

; (cons (rev (loop$ for e in lst when (symbolp e) collect e))
;       (rev (loop$ for e in lst when (not (symbolp e)) collect e)))

; Tedious Recipe:

(defun partition-symbols (lst)
  (loop$ with lst = lst
         with syms = nil
         with non-syms = nil
         do
         (cond ((endp lst) (return (cons syms non-syms)))
               ((symbolp (car lst))
                (progn (setq syms (cons (car lst) syms))
                       (setq lst (cdr lst))))
               (t
                (progn (setq non-syms (cons (car lst) non-syms))
                       (setq lst (cdr lst)))))))

; Tedious Recipe

(defun recursive-partition-symbols (lst syms non-syms)
  (cond ((endp lst) (cons syms non-syms))
        ((symbolp (car lst))
         (recursive-partition-symbols (cdr lst)
                                      (cons (car lst) syms)
                                      non-syms))
        (t (recursive-partition-symbols (cdr lst)
                                        syms
                                        (cons (car lst) non-syms)))))
(defthm lp17-9-lemma1
  (equal (loop$ with lst = lst
                with syms = syms
                with non-syms = non-syms
                do
                (cond ((consp lst)
                       (cond
                        ((symbolp (car lst))
                         (progn (setq syms (cons (car lst) syms))
                                (setq lst (cdr lst))))
                        (t
                         (progn (setq non-syms (cons (car lst) non-syms))
                                (setq lst (cdr lst))))))
                      (t (return (cons syms non-syms)))))
         (recursive-partition-symbols lst syms non-syms)))

(defthm lp17-9-lemma2
  (equal (recursive-partition-symbols lst syms non-syms)
         (cons (append (rev (loop$ for e in lst when (symbolp e) collect e))
                       syms)
               (append (rev (loop$ for e in lst when (not (symbolp e)) collect e))
                       non-syms))))

(defthm lp17-9-main
  (equal (partition-symbols lst)
         (cons (rev (loop$ for e in lst when (symbolp e) collect e))
               (rev (loop$ for e in lst when (not (symbolp e)) collect e)))))

; Direct Alternative

(in-theory (disable lp17-9-lemma1 lp17-9-lemma2 lp17-9-main))

(defthm lp17-9-lemma-1&2
  (equal (loop$ with lst = lst
                with syms = syms
                with non-syms = non-syms
                do
                (cond ((consp lst)
                       (cond
                        ((symbolp (car lst))
                         (progn (setq syms (cons (car lst) syms))
                                (setq lst (cdr lst))))
                        (t
                         (progn (setq non-syms (cons (car lst) non-syms))
                                (setq lst (cdr lst))))))
                      (t (return (cons syms non-syms)))))
         (cons (append (rev (loop$ for e in lst when (symbolp e) collect e))
                       syms)
               (append (rev (loop$ for e in lst when (not (symbolp e)) collect e))
                       non-syms))))

; -----------------------------------------------------------------
; LP17-10

; Write a do loop$ that returns the list of naturals from n down to 0, where n
; is a natural.  For example, if n is 10 the answer is (10 9 8 7 6 5 4 3 2 1
; 0).  Prove that when n is a natural, your do loop$ returns the same thing as
; (loop$ for i from 0 to n collect (- n i)).

; Hints: Remember that in order for your lemma about the generalized do loop$
; is applied in the proof of your main theorem it must match the rewritten
; lambda objects of the main theorem.  But that means it must not only match
; the do-body lambda object.  It must also match the measure lambda object!  So
; pay special attention to the normalized measure lambda object in your
; ``lemma1.''  And by the way, if you have non-recursive functions you don't
; want opened up when the lambda objects are rewritten, try disabling them.

; Tedious Recipe:

(defun nats-ac-up (i n ans)
  (declare (xargs :measure (nfix (- (+ 1 (nfix n)) (nfix i)))))
  (let ((i (nfix i))
        (n (nfix n)))
    (if (> i n)
        ans
        (nats-ac-up (+ i 1) n (cons i ans)))))

; Note the normalized measure expression!  But in addition, when it comes time
; for this lemma to fire in the proof of the main theorem, we should have nfix
; disabled or else it will open in the main theorem and scatter IFs all over
; the measure lambda!

(defthm lp17-10-lemma1
  (implies (and (natp n)
                (natp i0))
           (equal 
            (loop$ with i = i0
                   with ans = ans0
                   do
                   :measure (nfix (+ 1 (- (nfix i)) (nfix n)))
		   (if (< n i)
                       (return ans)
                       (progn (setq ans (cons i ans))
                              (setq i (+ 1 i)))))
            (nats-ac-up i0 n ans0))))

; Another basic arithmetic lemma normally provided by a book.

(defthm minus-minus-n
  (implies (acl2-numberp n)
           (equal (- (- n)) n)))

(defthm lp17-10-lemma2
  (implies (and (natp n)
                (natp i0))
           (equal (nats-ac-up i0 n ans0)
                  (append (loop$ for i from 0 to (- n i0) collect (- n i))
                          ans0))))

; Note that we wrote the measure in the way it was originally written, not in
; the ``normalized'' form used in lemma1.  And we'll disable nfix in this
; proof.

(defthm lp17-10-main
  (implies (natp n)
           (equal (loop$ with i = 0
                         with ans = nil
                         do
                         :measure (nfix (- (+ 1 (nfix n)) (nfix i)))
		         (if (< n i)
                             (return ans)
                             (progn (setq ans (cons i ans))
                                    (setq i (+ 1 i)))))
                  (loop$ for i from 0 to n collect (- n i))))
  :hints (("Goal" :in-theory (disable nfix))))

; Direct Alternative:

(in-theory (disable lp17-10-lemma1 lp17-10-lemma2 lp17-10-main))

; This example illustrates that sometimes it is advantageous to introduce the
; auxiliary function to help guide the proof.  If you submit the lemma 1&2
; below without the hint you'll see the proof fail with a checkpoint at Subgoal
; *1/5'''.  That checkpoint contains the DO$ term below.  Inspection of second
; argument of that DO$ term,

; (LIST (CONS 'I I0)
;       (CONS 'ANS ANS0)
;       (CONS 'N I0))

; shows that this is the case where I and N in the loop$ body are both equal to
; I0.  But in that case, the loop$ takes just one step and terminates.  When
; the loop$ is captured by the named function nats-ac-up the prover's
; heuristics recognize this and expand the function out.  But when the loop$ is
; written as a DO$ the heuristics tentatively expand the DO$ but decide the
; result is too messy and reject the expansion.

; The proof can be completed if the user says ``Go ahead and expand that
; term!''  But perhaps rather than trying that you might just define nats-ac-up
; and break the proof into smaller steps.

(defthm lp17-10-lemma-1&2
  (implies (and (natp n)
                (natp i0))
           (equal 
            (loop$ with i = i0
                   with ans = ans0
                   do
                   :measure (nfix (+ 1 (- (nfix i)) (nfix n)))
		   (if (< n i)
                       (return ans)
                       (progn (setq ans (cons i ans))
                              (setq i (+ 1 i)))))
            (append (loop$ for i from 0 to (- n i0) collect (- n i))
                    ans0)))
  :hints
  (("Subgoal *1/5'''"
    :expand ((DO$
              (LAMBDA$
               (ALIST)
               (COND ((INTEGERP (CDR (ASSOC-EQ-SAFE 'I ALIST)))
                      (COND ((< (CDR (ASSOC-EQ-SAFE 'I ALIST)) 0)
                             (IF (INTEGERP (CDR (ASSOC-EQ-SAFE 'N ALIST)))
                                 (IF (< (CDR (ASSOC-EQ-SAFE 'N ALIST)) 0)
                                     1
                                     (+ 1 (CDR (ASSOC-EQ-SAFE 'N ALIST))))
                                 1))
                            ((INTEGERP (CDR (ASSOC-EQ-SAFE 'N ALIST)))
                             (COND ((< (CDR (ASSOC-EQ-SAFE 'N ALIST)) 0)
                                    (IF (< (+ 1 (- (CDR (ASSOC-EQ-SAFE 'I ALIST))))
                                           0)
                                        0
                                        (+ 1 (- (CDR (ASSOC-EQ-SAFE 'I ALIST))))))
                                   ((< (+ 1 (- (CDR (ASSOC-EQ-SAFE 'I ALIST)))
                                          (CDR (ASSOC-EQ-SAFE 'N ALIST)))
                                       0)
                                    0)
                                   (T (+ 1 (- (CDR (ASSOC-EQ-SAFE 'I ALIST)))
                                         (CDR (ASSOC-EQ-SAFE 'N ALIST))))))
                            ((< (+ 1 (- (CDR (ASSOC-EQ-SAFE 'I ALIST))))
                                0)
                             0)
                            (T (+ 1 (- (CDR (ASSOC-EQ-SAFE 'I ALIST)))))))
                     ((INTEGERP (CDR (ASSOC-EQ-SAFE 'N ALIST)))
                      (IF (< (CDR (ASSOC-EQ-SAFE 'N ALIST)) 0)
                          1
                          (+ 1 (CDR (ASSOC-EQ-SAFE 'N ALIST)))))
                     (T 1)))
              (LIST (CONS 'I I0)
                    (CONS 'ANS ANS0)
                    (CONS 'N I0))
              (LAMBDA$ (ALIST)
                       (IF (< (CDR (ASSOC-EQ-SAFE 'N ALIST))
                              (CDR (ASSOC-EQ-SAFE 'I ALIST)))
                           (LIST :RETURN (CDR (ASSOC-EQ-SAFE 'ANS ALIST))
                                 (LIST (CONS 'I (CDR (ASSOC-EQ-SAFE 'I ALIST)))
                                       (CONS 'ANS
                                             (CDR (ASSOC-EQ-SAFE 'ANS ALIST)))
                                       (CONS 'N
                                             (CDR (ASSOC-EQ-SAFE 'N ALIST)))))
                           (LIST NIL NIL
                                 (LIST (CONS 'I
                                             (+ 1 (CDR (ASSOC-EQ-SAFE 'I ALIST))))
                                       (LIST* 'ANS
                                              (CDR (ASSOC-EQ-SAFE 'I ALIST))
                                              (CDR (ASSOC-EQ-SAFE 'ANS ALIST)))
                                       (CONS 'N
                                             (CDR (ASSOC-EQ-SAFE 'N ALIST)))))))
              (LAMBDA$ (ALIST)
                       (LIST NIL NIL
                             (LIST (CONS 'I (CDR (ASSOC-EQ-SAFE 'I ALIST)))
                                   (CONS 'ANS
                                         (CDR (ASSOC-EQ-SAFE 'ANS ALIST)))
                                   (CONS 'N
                                         (CDR (ASSOC-EQ-SAFE 'N ALIST))))))
              '(NIL)
              NIL)))))

; -----------------------------------------------------------------
; LP17-11

; Define (all-pairs-do-loop$ imax jmax) to compute the same (all-pairs imax
; jmax) as was defined in section 11.  But use do loop$s instead of for
; loop$s in your definition of all-pairs-do-loop$.

; Recall the definition of all-pairs.
(defun make-pair (i j)
  (declare (xargs :guard t))
  (cons i j))

(defwarrant make-pair)

(defun all-pairs-helper2 (i j jmax)
  (declare (xargs :measure (nfix (- (+ (nfix jmax) 1) (nfix j)))
                  :guard (and (natp i) (natp j) (natp jmax))))
  (let ((j (nfix j))
        (jmax (nfix jmax)))
    (cond
     ((> j jmax) nil)
     (t (cons (make-pair i j)
              (all-pairs-helper2 i (+ 1 j) jmax))))))

(defun all-pairs-helper1 (i imax jmax)
  (declare (xargs :measure (nfix (- (+ (nfix imax) 1) (nfix i)))
                  :guard (and (natp i) (natp imax) (natp jmax))))
  (let ((i (nfix i))
        (imax (nfix imax)))
    (cond
     ((> i imax) nil)
     (t (append (all-pairs-helper2 i 1 jmax)
                (all-pairs-helper1 (+ 1 i) imax jmax))))))

(defun all-pairs (imax jmax)
  (declare (xargs :guard (and (natp imax) (natp jmax))))
  (all-pairs-helper1 1 imax jmax))

; Hints: In following our advice for proving do loop$s you will define
; functions that compute the same things as your do loop$s.  These functions
; will suggest the appropriate inductions.  Your ``lemma1'' will prove your do
; loop$s compute the pairs computed by those functions.  The next step in the
; recipe is to prove that the functions compute the same thing that all-pairs
; does.  This will not involve loop$s of any sort.  It's just a normal proof
; about the relation between some recursively defined functions.  But we found
; this step surprisingly challenging!

; Since that second step does not involve loop$s, you may consider your answer
; correct if you just prove lemma1!

(defun all-pairs-do-loop$ (imax jmax)
  (declare (xargs :guard (and (natp imax) (natp jmax))))
  (loop$ with i = imax
         with ans = nil
         do
         :guard (and (natp i) (natp jmax))
         (cond
          ((< i 1)
           (return ans))
          (t (progn
               (setq ans (loop$ with j = jmax
                                with ans = ans
                                do
                                :guard (natp j)
                                (cond
                                 ((< j 1)
                                  (return ans))
                                 (t (progn
                                      (setq ans (cons (make-pair i j) ans))
                                      (setq j (- j 1)))))))
               (setq i (- i 1)))))))

; By the way, all three of the :guards can be deleted and this proof will still
; work.  The guards are important only if we mean to run fast code in raw Lisp.
; We don't really care about fast code in this exercise, but we leave the
; guards in place below as an illustration of guards.

; The next job is to prove that the above function computes all-pairs.
; However, all-pairs recurs ``up'' while our do loop$s recur ``down.''  So
; first we'll define versions of all-pairs that recur down.  These functions
; serve dual roles here.  First, they provide the induction hint.  Second, they
; provide an intermediate specification.  That is, inducting according to the
; functions below let us prove that the do loop$s are equal to the functions
; below.  Later we'll prove that these functions are ``equal'' to
; all-pairs-helper2 and all-pairs-helper1.

; By the way, ``apdh'' is an abbreviation for ``all-pairs-do-helper.''

(defun apdh2 (i j ans)
  (cond
   ((natp j)
    (cond ((< j 1) ans)
          (t (apdh2 i (- j 1) (cons (make-pair i j) ans)))))
   (t nil)))

(defun apdh1 (i jmax ans)
  (cond
   ((natp i)
    (cond ((< i 1) ans)
          (t (apdh1 (- i 1) jmax (apdh2 i jmax ans)))))
   (t nil)))

; We start with the proof that the inner loop is apdh2.  But note that we've
; normalized the body of the loop$ so that it will match the rewritten loop$
; body in the next theorem.  Normalizing here just means we expand the
; non-recursive function make-pair.  This expansion coincidentally eliminates
; the need for the warrant for make-pair, at least in the proof of this lemma.

(defthm lp17-11-adph2-lemma1
  (implies (natp jmax)                              ; <--- no warrant req'd
           (equal                                   ;      because no make-
            (loop$ with j = jmax                    ;      pair anymore
                   with ans = ans0
                   do
                   :guard (natp j)
                   (cond
                    ((< j 1)
                     (return ans))
                    (t (progn
                         (setq ans (cons (cons i j) ; <--- make-pair opened
                                         ans))
                         (setq j (- j 1))))))
            (apdh2 i jmax ans0))))

; Prove that the generalized outer loop$ is apdh1.
(defthm lp17-11--adph1-lemma1
  (implies
   (and (warrant do$)                             ; <--- no warrant make-pair
        (natp imax)
        (natp jmax))
   (equal
    (loop$ with i = imax
           with ans = ans0                        ; <--- ans0 instead of nil
           do
           :guard (and (natp i) (natp jmax))
           (cond
            ((< i 1)
             (return ans))
            (t (progn
                 (setq ans (loop$ with j = jmax   ; <--- normalized inner
                                  with ans = ans  ;      loop$
                                  do
                                  :guard (natp j)
                                  (cond
                                   ((< j 1)
                                    (return ans))
                                   (t (progn
                                        (setq ans (cons (cons i j) ans))
                                        (setq j (- j 1)))))))
                 (setq i (- i 1))))))
    (apdh1 imax jmax ans0))))

(defthm lp17-11-main--sort-of
  (implies (and (warrant do$ make-pair)
                (natp imax)
                (natp jmax))
           (equal (all-pairs-do-loop$ imax jmax)
                  (apdh1 imax jmax nil))))

; We could declare victory here, according to the hint given in the problem
; statement.  We proved our all-pairs-do-loop$ computes the same thing as
; adph1.  But the problem actually said prove it equal to all-pairs but said
; we'd accept the above as a correct answer.  We'll carry on to the final
; result.

; We disable all-pairs-do-loop$ because from here on we'll just deal with the
; equivalent (apdh1 imax jmax nil).

(in-theory (disable all-pairs-do-loop$))

; It remains to prove that apdh1 is the same as all-pairs.  That has nothing to
; do with loop$.  It's actually a fairly non-elementary proof.  We relegate it
; a subsidary book since it's not about loops.  The book below proves ``lemma2''
; for apdh2 and apdh1, which allows us to finish the proof of main.

(include-book "lp17-11-lemma2")

; But since all-pairs-do-loop$ rewrites to apd1 (with ans = nil) and all-pairs rewrites
; to all-pairs-helper1, we're done:

(defthm lp17-11-main
  (implies (and (warrant do$ make-pair)
                (natp imax)
                (natp jmax))
           (equal (all-pairs-do-loop$ imax jmax)
                  (all-pairs imax jmax))))

; We won't bother with the Direct Alternative here.  This is another example of
; a problem that might just be easier to think about if it is decomposed into
; named functions.