File: lp6.lisp

package info (click to toggle)
acl2 8.6%2Bdfsg-2
  • links: PTS
  • area: main
  • in suites: trixie
  • size: 1,111,420 kB
  • sloc: lisp: 17,818,294; java: 125,359; python: 28,122; javascript: 23,458; cpp: 18,851; ansic: 11,569; perl: 7,678; xml: 5,591; sh: 3,976; makefile: 3,833; ruby: 2,633; yacc: 1,126; ml: 763; awk: 295; csh: 233; lex: 197; php: 178; tcl: 49; asm: 23; haskell: 17
file content (194 lines) | stat: -rw-r--r-- 6,522 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
; Copyright (C) 2022, ForrestHunt, Inc.
; Written by J Strother Moore
; License: A 3-clause BSD license.  See the LICENSE file distributed with ACL2.
; Release approved by DARPA with "DISTRIBUTION STATEMENT A. Approved
; for public release. Distribution is unlimited."

; (certify-book "lp6")

; See comment near the end of this file.
; cert_param: (non-acl2r)

(in-package "ACL2")

(include-book "projects/apply/top" :dir :system)

(defun bags ()
  '((a b c)
    (d x e f)
    (g h i x)
    (j)
    (x k l)))

; -----------------------------------------------------------------
; LP6-1

(defthm lp6-1
  (equal (loop$ for bag in (bags) append bag)
         '(A B C D X E F G H I X J X K L))
  :rule-classes nil)

; -----------------------------------------------------------------
; LP6-2

(defthm LP6-2
  (equal (loop$ for bag in (bags) when (member 'x bag) collect bag)
         '((D X E F) (G H I X) (X K L)))
  :rule-classes nil)

; -----------------------------------------------------------------
; LP6-3

(defthm LP6-3
  (implies (warrant thereis$)
           (equal (loop$ for bag in (bags)
                         when (loop$ for e in bag thereis (equal e 'x))
                         collect bag)
                  '((D X E F) (G H I X) (X K L))))
  :rule-classes nil)

; -----------------------------------------------------------------
; LP6-4

(defthm LP6-4
  (implies (warrant collect$ when$)
           (equal (loop$ for bag in (bags)
                         append
                         (loop$ for e in bag when (not (equal e 'x))
                                collect e))
                  '(A B C D E F G H I J K L)))
  :rule-classes nil)

; -----------------------------------------------------------------
; LP6-5

(defthm LP6-5
  (implies (warrant thereis$)
           (equal (loop$ for bag in (bags)
                         when (loop$ for e in bag thereis (equal e 'x))
                         collect (car bag))
                  '(D G X)))
  :rule-classes nil)

; -----------------------------------------------------------------
; LP6-6

(defthm LP6-6
  (implies (warrant thereis$)
           (equal (loop$ for bag in (bags)
                         collect
                         (loop$ for tail on bag
                                thereis
                                (if (equal (car tail) 'x) tail nil)))
                  '(NIL (X E F) (X) NIL (X K L))))
  :rule-classes nil)

; -----------------------------------------------------------------
; LP6-7

(defthm LP6-7-solution-1
  (equal (loop$ for bag in (bags)
                as  i from 0 to (- (len (bags)) -1)
                sum
                (let ((n (len bag)))
                  (if (evenp i)
                      (* n n)
                      (- (* n n )))))
         17)
  :rule-classes nil)

(defthm LP6-7-solution-2
  (equal (let ((max (len (bags))))
           (loop$ for tail on (bags)
                  sum
                  (let* ((i (- max (len tail)))
                         (bag (car tail))
                         (n (len bag)))
                    (if (evenp i)
                        (* n n)
                        (- (* n n ))))))
         17)
  :rule-classes nil)

; -----------------------------------------------------------------

; LP6-8 The solution to this problem cannot be phrased as an elementary defthm
; event because the problem involves interrogating the current ACL2 world which
; is only accessible via the live STATE and you can't access the live state as
; an object in a theorem.  So we exhibit our solution in the following comment
; which just records an interaction in the top-level ACL2 read-eval-print loop.

; ACL2 !>(let ((world (w state)))
;   (loop$ for rune in (function-theory :here)
;          when (and (arity (cadr rune) world)
;                    (> (arity (cadr rune) world) 9))
;          collect (cadr rune)))
; (EVISCERATE EVISCERATE1-LST EVISCERATE1
;             UPDATE-BRR-DATA-1-BUILTIN MEMOIZE-FORM
;             SEARCH-FN SEARCH-FN-GUARD BUILD-STATE1)

; However, make-event can be used to create a suitable defthm.

(make-event
 (let* ((world (w state))
        (runes (function-theory :here))
        (names
         (loop$ for rune
                in runes
                when (let ((a (arity (cadr rune) world)))
                       (and a (> a 9)))
                collect (cadr rune))))
   `(defthm lp6-8
      (equal
       ',names
       '(FMT0 FMT0*
              EVISCERATE EVISCERATE1-LST EVISCERATE1
              UPDATE-BRR-DATA-1-BUILTIN MEMOIZE-FORM
              SEARCH-FN SEARCH-FN-GUARD BUILD-STATE1))
      :rule-classes nil)))

; -----------------------------------------------------------------
; LP6-9 The same comment as above applies here, so we exhibit our solution
; in a comment.

; ACL2 !>(loop$ for triple in (w state)
;        when (and (eq (cadr triple) 'theorem)
;                  (loop$ for fn in (all-fnnames (cddr triple))
;                         thereis (eq fn 'expt)))
;        collect (car triple))
; (APPLY$-PRIM-META-FN-EV-CONSTRAINT-462 RATIONALP-EXPT-TYPE-PRESCRIPTION
;                                        EXPT-TYPE-PRESCRIPTION-NON-ZERO-BASE)

; Here is the make-event version.  We take the cdr, however, because there
; the "parallel" version of ACL2, ACL2(p) (see :DOC parallelism) has a
; different value for the car, as follows.

; ACL2: normal version
; car is APPLY$-PRIM-META-FN-EV-CONSTRAINT-464

; ACL2(p): ACL2 with parallelism (see :DOC parallelism)
; APPLY$-PRIM-META-FN-EV-CONSTRAINT-466

; Note that yet another variant of ACL2, which supports the real numbers (see
; :DOC real), has yet another value for the car.  It also has an additional
; value, REALP-EXPT-TYPE-PRESCRIPTION.  We avoid dealing with the cert_param
; comment near the top of this file, which excludes this book from ACL2(r)
; regressions.

; ACL2(r): ACL2 with the reals
; APPLY$-PRIM-META-FN-EV-CONSTRAINT-467

(make-event
 (let ((names (loop$ for triple in (w state)
                     when (and (eq (cadr triple) 'theorem)
                               (loop$ for fn
                                      in (all-fnnames (cddr triple))
                                      thereis (eq fn 'expt)))
                     collect (car triple))))
   `(defthm lp6-9
      (implies (warrant thereis$)
               (equal
                (cdr ',names) ; see comment above
                '(RATIONALP-EXPT-TYPE-PRESCRIPTION
                  EXPT-TYPE-PRESCRIPTION-NON-ZERO-BASE)))
      :rule-classes nil)))